Lenalidomide Modulates the Phenotype and Function of Human Mesenchymal Stromal Cells From Healthy Donors and MDS Patients.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3816-3816
Author(s):  
Manja Wobus ◽  
Gwendolin Dünnebier ◽  
Silvia Feldmann ◽  
Gerhard Ehninger ◽  
Martin Bornhauser ◽  
...  

Abstract Abstract 3816 Poster Board III-752 Introduction Recent studies in patients with MDS have clearly demonstrated the clinical efficacy of lenalidomide. However, its exact mechanisms of action have not been elucidated yet. Myelosuppression is the most common adverse event and seems to be dependent on dose as well MDS subtype, being rather infrequent in patients other than del5q. The aim of this study was to investigate whether lenalidomide affects the bone marrow microenvironment. Therefore, we analyzed in-vitro characteristics of isolated mesenchymal stromal cells (MSCs) from MDS patients and from healthy controls. Methods Bone marrow samples were collected from healthy donors (n=5) and patients with MDS (del5q MDS n=3, RA n=2, RAEB1/2 n=3). MSCs were isolated according to the standard adhesion protocol and cultured in the presence or absence of lenalidomide. Results Lenalidomide treatment of MSCs caused no morphological changes but proliferation was slightly increased. Typical surface molecules as CD73, CD90, CD105 and CD166 were expressed in MSCs from MDS patients at comparable levels to healthy controls. Lenalidomide treatment caused an upregulation of CD29 by 17.8 ± 4.4% and of CD73 by 24 ± 5.7% (mean fluorescence intensity). Investigating the cytokine production, we found lower IL-8 mRNA and protein levels in MSCs from MDS patients (mean in MDS MSC: 138.1 pg/ml vs. mean in healthy MSC: 1177 pg/ml). Interestingly, the IL-8 production can be increased by approximately 40% under lenalidomide treatment. MDS MSCs retained the capacity for adipogenic and osteogenic differentiation as well as their supportive function towards hematopoietic cells in long term culture-initiating assays (LTC-IC). However, the LTC-IC frequency was lower on MSC which had been preincubated with lenalidomide compared to controls. Lenalidomide also slightly accelerated osteogenic differentiation because mineralization started as early as on day 5 with lenalidomide whereas in the control cells first calcium deposits were visible after 7 days. Other samples showed augmented lipid vacuoles after adipogenic differentiation under lenalidomide treatment. Conclusion In conclusion, lenalidomide modulates the phenotype of MSC and leads to an increase of their IL-8 secretion by a yet unknown mechanism. Whether these in-vitro effects are associated with the clinical efficacy of this compound in patients with MDS remains to be investigated. Disclosures: Platzbecker: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

2011 ◽  
Vol 112 (7) ◽  
pp. 1817-1821 ◽  
Author(s):  
Valentina Achille ◽  
Melissa Mantelli ◽  
Giulia Arrigo ◽  
Francesca Novara ◽  
Maria Antonietta Avanzini ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2857-2857
Author(s):  
Chunkang Chang ◽  
Chengming Fei ◽  
Juan Guo ◽  
Youshan Zhao ◽  
Shucheng Gu ◽  
...  

Abstract Ineffective hematopoiesis is a major characteristic of myelodysplastic syndromes (MDS). Bone marrow mesenchymal stromal cells(BMMSCs) and their progeny (i.e., osteoblasts, adipocytes, and reticular cells), which are considered as main cellular components of the bone marrow niche, have been shown to physiologically support hematopoiesis, but their contribution to the pathogenesis of MDS is controversially discussed. In this study, we examined the osteogenic differentiation and hematopoietic stem cell-supporting capacitiy of BMMSCs in patients with MDS (n=67) and healthy donors (n=22). After 21 days osteogenic induction differentiation, osteogenesis potential of BMMSCs was significantly reduced in cases with RARS(83.3%), RCMD(75.0%), RAEB I(44.4%), RAEB II (40%), indicated by cytochemical stainings and reduced expressions of Runx2. Moreover, we observed that in co-cultures with normal hematopoietic stem cells(HSCs) and MDS-BMMSCs, the colony number (CFU-GM、BFU-E and CFU-GEMM) was significantly lower in the presence of MDS-BMMSCs in comparison to the normal counterpart. Furthermore, in MDS-BMMSCs, we detected increased mRNA expression of several members of the Notch pathway, including Delta-like-1, Jagged-1, Notch1, Notch2, Hes1 and Hes5. Basically, the Notch-Hes pathway is the main regulator of the microenvironment dependent hematopoietic stem cell fate. Therefore we investigated if the activation of Notch-Hes pathway affected their osteogenesis and hematopoietic stem cell-supporting capacitiy of BMMSCs. By overexpression of Notch1 intracellular domain (NICD) in BMMSCs from healthy donors, we confirmed that Notch signaling negatively regulated BMMSCs osteogenesis through inhibition of Runx2 transcriptional activity. Importantly, treatment with the Notch1 inhibitor DAPT reversed the osteogenic differentiation and improved the hematopoiesis supporting capacitiy of MDS-BMMSCs. Taken together, our findings suggest that the ineffective hematopoiesis typical of MDS may be partly due to the impaired osteogenic differentiation of BMMSCs, and the activation of Notch-Hes signaling is involved in the impaired osteogenic differentiation and diminished hematopoietic stem cell-supporting capacitiy of MDS-BMMSCs, restoring the adequate Notch-Hes signaling could represent a potential therapeutic approach to MDS. Disclosures No relevant conflicts of interest to declare.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 208
Author(s):  
Hai Thanh Pham ◽  
Mitsuaki Ono ◽  
Emilio Satoshi Hara ◽  
Ha Thi Thu Nguyen ◽  
Anh Tuan Dang ◽  
...  

Aging tissues present a progressive decline in homeostasis and regenerative capacities, which has been associated with degenerative changes in tissue-specific stem cells and stem cell niches. We hypothesized that amino acids could regulate the stem cell phenotype and differentiation ability of human bone marrow-derived mesenchymal stromal cells (hBMSCs). Thus, we performed a screening of 22 standard amino acids and found that D-tryptophan (10 μM) increased the number of cells positive for the early stem cell marker SSEA-4, and the gene expression levels of OCT-4, NANOG, and SOX-2 in hBMSCs. Comparison between D- and L-tryptophan isomers showed that the latter presents a stronger effect in inducing the mRNA levels of Oct-4 and Nanog, and in increasing the osteogenic differentiation of hBMSCs. On the other hand, L-tryptophan suppressed adipogenesis. The migration and colony-forming ability of hBMSCs were also enhanced by L-tryptophan treatment. In vivo experiments delivering L-tryptophan (50 mg/kg/day) by intraperitoneal injections for three weeks confirmed that L-tryptophan significantly increased the percentage of cells positive for SSEA-4, mRNA levels of Nanog and Oct-4, and the migration and colony-forming ability of mouse BMSCs. L-kynurenine, a major metabolite of L-tryptophan, also induced similar effects of L-tryptophan in enhancing stemness and osteogenic differentiation of BMSCs in vitro and in vivo, possibly indicating the involvement of the kynurenine pathway as the downstream signaling of L-tryptophan. Finally, since BMSCs migrate to the wound healing site to promote bone healing, surgical defects of 1 mm in diameter were created in mouse femur to evaluate bone formation after two weeks of L-tryptophan or L-kynurenine injection. Both L-tryptophan and L-kynurenine accelerated bone healing compared to the PBS-injected control group. In summary, L-tryptophan enhanced the stemness and osteoblastic differentiation of BMSCs and may be used as an essential factor to maintain the stem cell properties and accelerate bone healing and/or prevent bone loss.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06517
Author(s):  
Lyudmila M. Mezhevikina ◽  
Dmitriy A. Reshetnikov ◽  
Maria G. Fomkina ◽  
Nurbol O. Appazov ◽  
Saltanat Zh. Ibadullayeva ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 403
Author(s):  
Girolamo Di Maio ◽  
Nicola Alessio ◽  
Ibrahim Halil Demirsoy ◽  
Gianfranco Peluso ◽  
Silverio Perrotta ◽  
...  

Brown-like adipocytes can be induced in white fat depots by a different environmental or drug stimuli, known as “browning” or “beiging”. These brite adipocytes express thermogenin UCP1 protein and show different metabolic advantages, such as the ability to acquire a thermogenic phenotype corresponding to standard brown adipocytes that counteracts obesity. In this research, we evaluated the effects of several browning agents during white adipocyte differentiation of bone marrow-derived mesenchymal stromal cells (MSCs). Our in vitro findings identified two compounds that may warrant further in vivo investigation as possible anti-obesity drugs. We found that rosiglitazone and sildenafil are the most promising drug candidates for a browning treatment of obesity. These drugs are already available on the market for treating diabetes and erectile dysfunction, respectively. Thus, their off-label use may be contemplated, but it must be emphasized that some severe side effects are associated with use of these drugs.


Sign in / Sign up

Export Citation Format

Share Document