Differentiation of Human Male Germ Cells From Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro and In Vivo.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4581-4581
Author(s):  
Lian Ma ◽  
Xiaoying Wu ◽  
Limin Lin ◽  
Guangyu Lin ◽  
Qiuling Tang ◽  
...  

Abstract Abstract 4581 Introduction Infertility affects 15% of couples, about 50% infertility caused by male and growing evidence suggested an increasing problems in male reproductive. Recent studies have demostrated that adult stem cells have more flexible potentials than expected, and possessed the plasticity and capacity to transdifferentiate into mutilineage cells, including germ cells. Human umbilical cord-derived mesenchymal stem cells (HUCMSCs) possess stem cell properties. In this study, we cultured HUCMSCs, and assessed the possibility of HUCMSCs differentiated into human male germ cells in vivo and in vitro, and find a new source of cells for the transplantation to the male infertility. Methods The ethics committee of our institution approved this study. HUCMSCs were isolated from the Wharton's jelly of the umbilical cord, clonally expanded. To investigate the capacity of differentiation in vitro, HUCMSCs were treated with human menopausal gonadotropinn (HMG) and retinoid acid (RA) in vitro. While investigate the capacity of differentiation in vivo, HUCMSCs were transplanted into the seminiferous tubules of busulfan-treated mice testes after labeled with pIRES2-EGFP or bromodeoxyuridine (BrdU). After induction in vitro, the morphologic changes of the differentiated cells were detected by phase contrast microscopy?Aelectron microscopy and transmission electron microscope?Gthe male germ cell markers were detected by immunohistochemistry, Western-blot and PT-PCR. HUCMSCs were also transplanted into the seminiferous tubules of the busulfan-treated mice by microinjection. To assess the fate of HUCMSCs in the testis, the survival?Amigration and germ cell markers of the HUCMSCs in the infertility mice testis were detected by immunohistochemistry?A immunofluorescence. Results HUCMSCs can express some some molecular markers of germ cells after induction. Immunohistochemistry revealed that HUCMSCs can survive in the mice testis at least 120 days, and they can migrate from the lumens to the basement membrane then to lumens again. Immunofluorescence showed that HUCMSCs can go further differentiation in the mice favorable testicular environment, and express the germ cell markers. Conclusions These suggested that HUCMSCs may differentiate into male germ cell-like cells after induced by HMG and RA in vitro; and it could survive also in a favorable testicular environment, may differentiate into germ cell lineages. This finding may provide a new strategy for the treatment of male infertility. Disclosures: No relevant conflicts of interest to declare.

2012 ◽  
Vol 21 (18) ◽  
pp. 3289-3297 ◽  
Author(s):  
Hong-Chao Zhang ◽  
Xin-Bin Liu ◽  
Shu Huang ◽  
Xiao-Yun Bi ◽  
Heng-Xiang Wang ◽  
...  

2019 ◽  
Vol 15 (11) ◽  
pp. 2179-2192
Author(s):  
Yuanyuan Xie ◽  
Wei Liu ◽  
Bing Zhang ◽  
Bin Wang ◽  
Liudi Wang ◽  
...  

Until now, there is no effective method for tracking transplanted stem cells in human. Ruicun (RC) is a new ultra-small SPIONs agent that has been approved by China Food and Drug Administration for iron supplementation but not as a stem cell tracer in clinic. In this study, we demonstrated magnetic resonance imaging-based tracking of RC-labeled human umbilical cord derived mesenchymal stem cells (MSCs) transplanted to locally injured site of rat spinal cords. We then comprehensively evaluated the safety and quality of the RC-labeled MSCs under good manufacturing practicecompliant conditions, to investigate the feasibility of SPIONs for inner tracking in stem cell-based therapy (SCT). Our results showed that RC labeling at appropriate dose (200 μg/mL) did not have evident impacts on characteristics of MSCs in vitro, demonstrating safety, non-carcinogenesis, and non-tissue inflammation in vivo. The systematic assessments of intracellular biocompatibility indicated that the RC labeled MSCs met with mandatory requirements and standards for law-regulation systems regarding SCT, facilitating translation of cell-tracking technologies to clinical trials.


2018 ◽  
Vol 373 (2) ◽  
pp. 379-393 ◽  
Author(s):  
Tao Zhang ◽  
Pan Wang ◽  
Yanxia Liu ◽  
Jiankang Zhou ◽  
Zhenqing Shi ◽  
...  

2013 ◽  
Vol 25 (1) ◽  
pp. 290 ◽  
Author(s):  
R. H. Powell ◽  
M. N. Biancardi ◽  
J. Galiguis ◽  
Q. Qin ◽  
C. E. Pope ◽  
...  

Spermatogonial stem cells (SSC), progenitor cells capable of both self-renewal and producing daughter cells that will differentiate into sperm, can be manipulated for transplantation to propagate genetically important males. This application was demonstrated in felids by the successful xeno-transplantation of ocelot mixed germ cells into the testes of domestic cats, which resulted in the production of ocelot sperm (Silva et al. 2012 J. Androl. 33, 264–276). Spermatogonial stem cells are in low numbers in the testis, but have been identified and isolated in different mammalian species using SSC surface markers; however, their expression varies among species. Until recently, little was known about the expression of SSC surface markers in feline species. We previously demonstrated that many mixed germ cells collected from adult cat testes express the germ cell markers GFRα1, GPR125, and C-Kit, and a smaller population of cells expresses the pluripotent SSC-specific markers SSEA-1 and SSEA-4 (Powell et al. 2011 Reprod. Fertil. Dev. 24, 221–222). In the present study, our goal was to identify germ cell and SSC-specific markers in SSC from cat testes. Immunohistochemical (IHC) localization of germ cell markers GFRα1, GPR125, and C-Kit and pluripotent SSC-specific markers SSEA-1, SSEA-4, TRA-1-60, TRA-1-81, and Oct-4 was detected in testis tissue from both sexually mature and prepubertal males. Testes were fixed with modified Davidson’s fixative for 24 h before processing, embedding, and sectioning. The EXPOSE Mouse and Rabbit Specific HRP/DAB detection IHC kit (Abcam®, Cambridge, MA, USA) was used for antibody detection. Staining for SSEA-1, SSEA-4, TRA-1-60, TRA-1-81, and Oct-4 markers was expressed specifically at the basement membrane of the seminiferous tubules in both adult and prepubertal testes. The GFRα1 and GPR125 markers were detected at the basement membrane of the seminiferous tubules and across the seminiferous tubule section. However, C-Kit was not detected in any cell. Using flow cytometry from a pool of cells from seven adult testes, we detected 45% GFRα1, 50% GPR125, 59% C-Kit, 18% TRA-1-60, 16% TRA-1-81 positive cells, and a very small portion of SSEA-1 (7%) and SSEA-4 (3%) positive cells. Dual staining of germ cells pooled from 3 testes revealed 3 distinct cell populations that were positive for GFRα1 only (23%), positive for both GFRα1 and SSEA-4 (6%), and positive for SSEA-4 only (1%). Our IHC staining of cat testes indicated that cells along the basement membrane of seminiferous tubules were positive for SSC-specific markers, and flow cytometry analysis revealed that there were different cell populations expressing both germ cell and SSC-specific markers. Flow cytometry results show overlapping germ cell populations expressing SSEA-4 and GFRα1, and IHC results reveal that SSEA-4 positive cells are spermatogonia, whereas GFRα1 positive cells include other stages of germ cells, indicating that the small population of cells positive only for SSEA-4 is undifferentiated cat SSC.


2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Deshira Saiti ◽  
Orly Lacham-Kaplan

In mammalian development, primordial germ cells (PGCs) represent the initial population of cells that are committed to the germ cell lineage. PGCs segregate early in development, triggered by signals from the extra-embryonic ectoderm. They are distinguished from surrounding cells by their unique gene expression patterns. Some of the more common genes used to identify them are Blimp1, Oct3/4, Fragilis, Stella, c-Kit, Mvh, Dazl and Gcna1. These genes are involved in regulating their migration and differentiation, and in maintaining the pluripotency of these cells. Recent research has demonstrated the possibility of obtaining PGCs, and subsequently, mature germ cells from a starting population of embryonic stem cells (ESCs) in culture. This phenomenon has been investigated using a variety of methods, and ESC lines of both mouse and human origin. Embryonic stem cells can differentiate into germ cells of both the male and female phenotype and in one case has resulted in the birth of live pups from the fertilization of oocytes with ESC derived sperm. This finding leads to the prospect of using ESC derived germ cells as a treatment for sterility. This review outlines the evolvement of germ cells from ESCs in vitro in relation to in vivo events.


Reproduction ◽  
2004 ◽  
Vol 128 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Orly Lacham-Kaplan

Primordial germ cells appear in the embryo at about day 7 after coitum. They proliferate and migrate towards the genital ridge. Once there, they undergo differentiation into germ stem cells, known as ‘A spermatogonia’. These cells are the foundation of spermatogenesis. A spermatogonia commit to spermatogenesis, stay undifferentiated or degenerate. The differentiation of primordial germ cells to migratory, postmigratory and germ stem cells is dependent on gene expression and cellular interactions. Some of the genes that play a crucial role in germ cell differentiation are Steel, c-Kit, VASA, DAZL, fragilis, miwi, mili, mil1 and mil2. Their expression is stage specific, therefore allowing solid identification of germ cells at different developmental phases. In addition to the expression of these genes, other markers associated with germ cell development are nonspecific alkaline phosphatase activity, the stage specific embryonic antigen, the transcription factor Oct3/4 and β1- and α6-integrins. Commitment of cells to primordial germ cells and to A spermatogonia is also dependent on induction by the bone morphogenetic protein (BMP)-4. With this knowledge, researchers were able to isolate germ stem cells from embryonic stem cell-derived embryoid bodies, and drive these into gametes either in vivo or in vitro. Although no viable embryos were obtained from these gametes, the prospects are that this goal is not too far from being accomplished.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongpeng Zhang ◽  
Hao Wang ◽  
Yong Xia ◽  
Nianmin Qi

Pulmonary fibrosis (PF) is a kind of lung disease characterized by scar formation and inflammation damage. Mesenchymal stem cells (MSCs) are considered a promising therapy because of multidirectional differentiation and immune regulation. Our research was designed for identifying the preventative defensive ability and therapeutic effect of human umbilical cord mesenchymal stem cells (HUCMSCs). HUCMSCs were administered before or after bleomycin injection in different groups of C57BL/6 mice. We calculated the survival time of mice, the lung coefficients, contents of hydroxyproline, and pathological scores. The expression levels of HIF-1α (hypoxia-inducible factor-1α), α-SMA (α-smooth muscle actin), γH2AFX (γH2A histone family, member X), ZO-1 (zonula occludens-1), ROS (reactive oxygen species) content, and proliferation ability of A549 cells were detected after treatment with bleomycin and HUCMSCs conditioned medium (HUCMSCs-CM), respectively, or together in vitro. In addition, we examined the secretome of HUCMSCs in regular and inflammatory stimulation conditions. Our results demonstrated that prophylactic HUCMSC administration before bleomycin-induced modeling process could significantly meliorate damage to pulmonary fibrosis. After the deletion of HIF-1α, damage markers in A549 cells were significantly reduced in therapeutic administration condition. However, it was the opposite in prophylactic administration condition. The results confirmed that HUCMSCs had available preventive effect on bleomycin-induced pulmonary fibrosis in vivo and in vitro. However, it may have a negative effect in therapeutic administration condition because of the dual effect of HIF-1α.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4740-4740
Author(s):  
Kasia Mierzejewska ◽  
Magdalena Kucia ◽  
Janina Ratajczak ◽  
Mariusz Z Ratajczak

Abstract Abstract 4740 Background. As populations of CD34+, CD34+CXCR4+, or CD133+ cells that are enriched in stem cells, adult stem and progenitor cells purified from bone marrow (BM), mobilized peripheral blood (mPB), and umbilical cord blood (UCB) are currently employed in the clinic to treat damaged organs (e.g., heart after myocardial infarction [AMI] or injured spinal cord or liver). The cell populations expressing these phenotypes are highly enriched primarily for hematopoietic stem/progenitor cells (HSPCs) and small numbers of endothelial progenitors, and for many years it has been wrongly supposed that they can trans-dedifferentiate into tissue-specific cells. However, even when improvement of organ function is observed after employing them in therapy, the lack of a convincing demonstration for the presence of donor-recipient chimerism in treated tissues in most of the studies performed so far indicates that mechanisms other than trans-dedifferentiation of the HSPCs delivered to the damaged organs into tissue-specific cells play a significant role in some positive clinical outcomes. In support of this conclusion, evidence has accumulated that stem cells secrete a variety of growth factors, cytokines, chemokines, and bioactive lipids that interact with the surrounding microenvironment and, when used in therapy, improve cell viability in damaged organs. In particular, more attention is currently being paid to microvesicles (MVs), which are shed from the cell surface or derived from the intracellular membrane compartment as mediators in cell-to-cell communication. Hypothesis. We hypothesized that these positive outcomes in adult stem cell therapies (e.g., by employing CD133+ cells) can be explained by the paracrine effects of these cells, involving both soluble factors as well as cell membrane-derived MVs. Experimental strategies. CD133+ cells were purified from UCB by employing immunomagnetic beads (> 95% purity as checked by FACS) and incubated for 24 hours in RPMI at 37°C in a small volume of medium supplemented with 0.5% albumin. Subsequently, we harvested conditioned media (CM) from these cells and isolated CD133+ cell-shed microvesicles (MVs) by high speed centrifugation. We employed sensitive ELISA assays to measure the concentration of important pro-angiopoietic and anti-apoptotic factors in CD133+ cell-derived CM and isolated mRNA from both CD133+ cells and CD133+ cell-derived MVs for RQ-PCR analysis of gene expression. Subsequently, the chemotactic activity of CD133+ cell-derived CM and MVs was tested against human umbilical cord blood endothelial cells (HUVECs), and, in parallel, we tested whether CD133+ cell-derived CM and MVs induce major signaling pathways in HUVECs. Finally, in in vitro functional assays, we tested the ability of CD133+ cell-derived CM and MVs to induce tube formation by HUVECs and the ability of in vivo Matrigel assay implants to induce angiogenesis. Results. We observed that highly purified UCB-derived CD133+ cells express mRNAs and secrete proteins for several pro-angiopoietic factors (e.g. VEGF, KL, FGF-2, and IGF-1) into CM and shed microvesicles (MVs) from the cell surface and endosomal compartment that are enriched for mRNAs encoding VEGF, KL, FGF-2, and IGF-1. Both CD133+ cell-derived CM and MVs possessed anti-apoptotic properties, increased the in vitro cell survival of endothelial cells, stimulated phosphorylation of MAPKp42/44 and AKT in HUVECs, induced chemotactic migration, proliferation and tube formation in vitro in HUVECs, as well as stimulated in vivo angiogenesis in Matrigel implants. Conclusions. These observations suggesting an important role for CD133+ cell-derived paracrine signals should be considered when evaluating clinical outcomes using purified CD133+ cells in regenerative medicine. Overall, these cell-derived paracrine signals may explain the therapeutic benefits of adult stem cells employed in regeneration of, for example, heart AMI. Finally, we will discuss several possibilities for enhancing secretion and modulating the composition of these paracrine signals that could be explored in the clinic. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document