The Epitope Targeted by Apoptosis-Inducing ICAM-1 Antibody B11 Is Highly Expressed in Multiple Myeloma.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4897-4897
Author(s):  
Markus Hansson ◽  
Niina Veitonmäki ◽  
Anders Lindblom ◽  
Björn Frendéus

Abstract Abstract 4897 Complex adhesive and non-cognate interactions participate in multiple myeloma disease progression, resistance to apoptosis, and development of drug resistance. In spite of significant recent attempts to develop new drug classes targeting both myeloma and its microenvironment, multiple myeloma remains an incurable disease warranting development of more effective therapies. Applying novel combined target and drug discovery methodology we isolated a human tumor cell apoptosis-inducing antibody (IgG B11) targeting ICAM-1, as previously described. ICAM-1 is a cell adhesion molecule strongly implicated in myeloma pathophysiology, both regarding bone marrow stromal cell mediated disease progression and cell adhesion mediated drug resistance. We here characterize B11 epitope expression by multicolor FACS analysis in 25 patients investigated for multiple myeloma referred to Department of Hematology, Lund University Hospital, Lund, Sweden and 5 healthy controls. The B11 epitope was highly expressed in plasma cells in 5 of 5 patients with myeloma and in 1 of 1 patient with AL (light chain) amyloidosis. A comprehensive preclinical program assessing IgG B11 anti-myeloma activity and evaluating IgG B11 safety has been conducted. Based on these studies, and having received an investigational new drug (IND) approval from the U.S. Food and Drug Administration (FDA), clinical phase I trials with IgG B11 will soon commence. Disclosures Veitonmäki: BioInvent International: Employment. Lindblom:BioInvent International: Employment, Equity Ownership. Frendéus:BioInvent International AB: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4370-4370
Author(s):  
Michael J Mason ◽  
Carolina D. Schinke ◽  
Christine Eng ◽  
Fadi Towfic ◽  
Fred Gruber ◽  
...  

Multiple myeloma (MM) is a hematological malignancy of terminally differentiated plasma cells residing within the bone marrow with 25,000-30,000 patients diagnosed in the United States each year. The disease's clinical course depends on a complex interplay chromosomal abnormalities and mutations within plasma cells and patient socio-demographic factors. Novel treatments extended the time to disease progression and overall survival for the majority of patients. However, a subset of 15%-20% of MM patients exhibit an aggressive disease course with rapid disease progression and poor overall survival regardless of treatment. Accurately predicting which patients are at high-risk is critical to designing studies with a better understanding of myeloma progression and enabling the discovery of novel therapeutics that extend the progression free period of these patients. To date, most MM risk models use patient demographic data, clinical laboratory results and cytogenetic assays to predict clinical outcome. High-risk associated cytogenetic alterations include deletion of 17p or gain of 1q as well as t(14;16), t(14;20), and most commonly t(4,14), which leads to juxtaposition of MMSET with the immunoglobulin heavy chain locus promoter, resulting in overexpression of the MMSET oncogene. While cytogenetic assays, in particular fluorescence in situ hybridization (FISH), are widely available, their risk prediction is sub-optimal and recently developed gene expression based classifiers predict more accurately rapid progression. To investigate possible improvements to models of myeloma risk, we organized the Multiple Myeloma DREAM Challenge, focusing on predicting high-risk, defined as disease progression or death prior to 18 months from diagnosis. This effort combined 4 discovery datasets providing participants with clinical, cytogenetic, demographic and gene expression data to facilitate model development while retaining 4 additional datasets, whose clinical outcome was not publicly available, in order to benchmark submitted models. This crowd-sourced effort resulted in the unbiased assessment of 171 predictive algorithms on the validation dataset (N = 823 unique patient samples). Analysis of top performing methods identified high expression of PHF19, a histone methyltransferase, as the gene most strongly associated with disease progression, showing greater predictive power than the expression level of the putative high-risk gene MMSET. We show that a simple 4 feature model composed of age, stage and the gene expression of PHF19 and MMSET is as accurate as much larger published models composed of over 50 genes combined with ISS and age. Results from this work suggest that combination of gene expression and clinical data increases accuracy of high risk models which would improve patient selection in the clinic. Disclosures Towfic: Celgene Corporation: Employment, Equity Ownership. Dalton:MILLENNIUM PHARMACEUTICALS, INC.: Honoraria. Goldschmidt:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Amgen: Consultancy, Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Molecular Partners: Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; John-Hopkins University: Research Funding. Avet-Loiseau:takeda: Consultancy, Other: travel fees, lecture fees, Research Funding; celgene: Consultancy, Other: travel fees, lecture fees, Research Funding. Ortiz:Celgene Corporation: Employment, Equity Ownership. Trotter:Celgene Corporation: Employment, Equity Ownership. Dervan:Celgene: Employment. Flynt:Celgene Corporation: Employment, Equity Ownership. Dai:M2Gen: Employment. Bassett:Celgene: Employment, Equity Ownership. Sonneveld:SkylineDx: Research Funding; Takeda: Honoraria, Research Funding; Karyopharm: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria; Amgen: Honoraria, Research Funding. Shain:Amgen: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Sanofi Genzyme: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Consultancy. Munshi:Abbvie: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Celgene: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Janssen: Consultancy. Morgan:Bristol-Myers Squibb, Celgene Corporation, Takeda: Consultancy, Honoraria; Celgene Corporation, Janssen: Research Funding; Amgen, Janssen, Takeda, Celgene Corporation: Other: Travel expenses. Walker:Celgene: Research Funding. Thakurta:Celgene: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3401-3401
Author(s):  
Jayakumar R Nair ◽  
Tyger L Howell ◽  
Justin Caserta ◽  
Carmen M Baldino ◽  
Gerald Fetterly ◽  
...  

Abstract Despite major advances in chemotherapy, multiple myeloma remains incurable and in need of new therapies that target novel pathways. Insufficient understanding of the molecular pathways that regulate survival in myeloma is a major impediment towards designing better therapies to prolong survival in patients or even cure the disease. This necessitates the identification of new protein targets that are crucial for the growth and survival of multiple myeloma. Just like normal plasma cells, MM cells also depend on their interactions with bone marrow stromal cells (BMSC) for survival and production of essential growth factors. We have previously shown that MM cells interact with dendritic cells (DC) in the microenvironment and in vitro can stimulate DC to produce IL-6 (ASH2010#132, ASH2011 #147, ASH2012#722). Our recent publications show that when MM cells are not in direct contact with DC, the IL-6 produced by DC can protect MM cells against dexamethasone induced cell death, while neutralizing the IL-6 with antibodies can reverse that effect (Nair et al., 2011). Unfortunately, exactly how this survival response is mediated in MM is not very clear. PIM2, a serine threonine kinase, part of the proto-oncogene group of PIM kinases has been implicated in survival in several types of cancers including prostate cancer and multiple myeloma. In our lab, microarray gene expression analysis of publicly available datasets (Figure 1) show a trend towards increased expression of PIM2 in plasma cells from myeloma patients (left panel), and significantly in the poor prognosis subgroup MAF (Zhan et al., 2006) (right panel). For the first time we show that IL-6 produced by DC may be protecting myeloma cells by up regulating PIM2 and inactivating a major protein translation inhibitor 4EBP1, which also happens to be a PIM2 target. We show that silencing PIM2 with siRNA down regulates PIM2 activity and reverses the inactivation of 4EBP1, while the latter is known to cause cell death in myeloma. We also demonstrate that neutralizing IL-6 in MM cells that either don’t produce IL-6 on their own (MM.1S) or those that do (U266), abrogates extraneous DC-IL6 ability to induce PIM2 and its downstream target 4EBP1. Recombinant IL-6 also provided similar induction of PIM2 in myeloma and increased 4EBP1 phosphorylation, which was again reversed by neutralizing the antibody against IL-6. In myeloma patients, the use of dexamethasone in frontline therapies is often complicated by the ability of the bone marrow environment to produce IL-6 that not only induce increased proliferation of MM but also help resist dexamethasone mediated cell death in myeloma. Interestingly, when we used a novel PIM2 inhibitor, JP_11646 (kindly provided by Jasco Pharmaceuticals, LLC), it not only arrested IL-6 induced proliferation even at sub-lethal doses, but also prevented IL-6 mediated rescue of myeloma cells (Figure 2). This suggests that PIM2 might be a major player in IL-6 mediated drug resistance in myeloma and targeting it may help to subvert IL-6 mediated survival in myeloma. Through RT-PCR and westerns, we also show that IL-6 modulates PIM2 expression and activity resulting in increased 4EBP1 phosphorylation (Figure 3). This was abrogated when PIM2 activity was inhibited by JP_11646 (Figure 3). We also present data that suggests IL-6 via PIM2 may be regulating other anti-apoptotic molecules downstream of IL-6 receptors including MCL-1, that is vital to MM survival. Developing PIM2 targeted therapies provides an exciting opportunity to affect the myeloma tumor microenvironment where MM induced IL-6 production from BM could be inducing drug resistance. Figure 1: Microarray expression ofPIM2 in myeloma and MAF Figure 1:. Microarray expression ofPIM2 in myeloma and MAF Figure 2: PIM2 inhibition abrogates IL-6 induced MM proliferation (A) and protection (B). Figure 2:. PIM2 inhibition abrogates IL-6 induced MM proliferation (A) and protection (B). Figure 3: Inhibiting PIM2 activity prevents PIM2 induced phosphorylation of 4EBP1 by IL-6 in myeloma Figure 3:. Inhibiting PIM2 activity prevents PIM2 induced phosphorylation of 4EBP1 by IL-6 in myeloma Disclosures Caserta: Jasco Pharmaceuticals LLC: Equity Ownership. Baldino:Jasco Pharmaceuticals LLC: Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3176-3176 ◽  
Author(s):  
Dennis Cooper ◽  
Deepu Madduri ◽  
Suzanne Lentzsch ◽  
Sundar Jagannath ◽  
Jingjin Li ◽  
...  

Background Multiple myeloma (MM), the second most common hematologic malignancy, is characterized by the expansion of malignant plasma cells which express, the cell surface protein, B-cell maturation antigen (BCMA). Patients (pts) with advanced MM who are refractory to an immunomodulatory agent (IMiD), a proteasome inhibitor (PI), and an anti-CD38 monoclonal antibody (mAb) have an expected overall survival of <1 year (Gandhi et al. 2019). Given the therapeutic potential of utilizing BCMA to redirect T-cell effector function on multiple myeloma cells, we generated REGN5458, an anti-BCMA x anti-CD3 bispecific antibody that binds to both BCMA on plasma cells and to CD3 on T-cells. Here we describe the safety and clinical activity in relapsed/refractory MM patients treated on the initial dose level of REGN5458 in trial (NCT03761108). Methods The primary objectives of the Phase 1 portion of the study are to determine the safety, tolerability and occurrence of dose limiting toxicities (DLTs) of REGN5458. The primary objective of the Phase 2 portion is to assess the preliminary anti-tumor activity of REGN5458. Key secondary objectives include assessment of pharmacokinetics (PK) and pharmacodynamics. Eligible pts with MM must have >3 prior lines of therapy including a PI, IMiD and anti-CD38 antibody or progression on or after an anti-CD38 antibody and refractory to a PI and IMiD. Treatment consists of 16 weekly doses of REGN5458, followed by a maintenance phase of 12 doses administered every 2 weeks. Pts with progressive disease after initial response are eligible for retreatment. Response was assessed per the International Myeloma Working Group (IMWG) criteria. Results As of July 12, 2019, three pts have been treated at the initial dose level of 3 mg REGN5458. All pts had an ECOG score of 1. Pt 1, an 81-year-old male who had medullary plasmacytomas and cutaneous extramedullary plasmacytomas (EMPs), had received four prior lines of therapy. He experienced Grade (Gr) 1 cytokine release syndrome (CRS) that was treated with tocilizumab and corticosteroids because of persistent debilitating fever. This patient also experienced Gr 3 TEAEs including anemia, pain in both extremities (location of multiple sites of disease), and worsening hypertension within the DLT evaluation period. Subsequent to the DLT evaluation period, he had Gr 3 fatigue, Gr 3 febrile neutropenia, Gr 3 lung infection, Gr 3 atrial fibrillation, and Gr 4 septic shock. Pt 1 reached a partial response at Week 8 and a very good partial response (VGPR) as of Week 16 despite interruption of study drug at Week 14 due to TEAEs. This pt has IgG lambda myeloma and showed rapid decreases in both lambda free light chain and M-protein (Figure 1A) and resolution of medullary and cutaneous plasmacytomas following the Week 12 dose (Figure 1B and 1C). Pt 1 had transient cytokine elevations of interferon gamma, interleukin (IL)-6, and IL-10 following dosing through Week 5, consistent with mild CRS. Peripheral blood immune monitoring revealed increases in CD8 effector memory T-cells through Week 11, relative to other subsets which remained unchanged during the treatment period. Pt 1 remains in the treatment phase of the study. Pt 2 is a 76-year-old female who had received four prior lines of therapy and had extensive intra-abdominal EMPs. She had no ≥ Gr 2 TEAEs. Pt 2 had disease progression at first assessment and is in the follow-up phase of the study. Pt 3 is a 78-year-old female with seven prior lines of therapy. She experienced Gr 2 decreases in both platelets and neutrophils within the DLT evaluation period. Pt 3 had stable disease (SD) at first assessment and remains in the treatment phase of the study. No DLTs were reported. No pt experienced infusion-related reactions. No pt had Gr 5 TEAEs or discontinued treatment due to AEs. Additional PK and biomarker data will be presented. Conclusions/Summary In this FIH study of REGN5458, no DLTs were recorded in the first three pts treated with the initial dose. One pt responded with a VGPR and another had SD. The study is ongoing and recruiting pts at higher doses. Gandhi UH et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia; 2019; DOI:10.1038/s41375-019-0435-7 Disclosures Madduri: Celgene: Consultancy; AbbVie: Consultancy; Foundation Medicine: Consultancy; Takeda: Consultancy. Lentzsch:Bayer: Consultancy; Columbia University: Patents & Royalties: 11-1F4mAb as Anti-Amyloid Strategy; Janssen: Consultancy; Caelum Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Research Funding; Crossfires in hematologic Malignancies: Honoraria; International Myeloma Foundation: Honoraria; Multiple Myelopma Research Foundation: Honoraria; Abbvie: Consultancy; BMS: Consultancy; Proclara: Consultancy; Clinical Care Options: Speakers Bureau; Sanofi: Consultancy, Research Funding; Takeda: Consultancy. Jagannath:Celgene Corporation: Consultancy; Bristol-Myers Squibb: Consultancy; Merck & Co.: Consultancy; Janssen Pharmaceuticals: Consultancy; AbbVie: Consultancy; Karyopharm Therapeutics: Consultancy. Li:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Boyapati:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Adriaens:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Chokshi:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Zhu:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Lowy:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Weinreich:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Yancopoulos:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Sharma:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Karasarides:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. Sternberg:Regeneron Pharmaceuticals, Inc.: Employment, Equity Ownership. OffLabel Disclosure: The data described in the abstract will report on use of REGN5458 in a first-in-human trial in patients with multiple myeloma.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4727-4727 ◽  
Author(s):  
Seung Y. Chu ◽  
Yvonne Miranda ◽  
Sheryl Phung ◽  
Hsing Chen ◽  
Rumana Rashid ◽  
...  

Abstract CD38, being highly expressed on malignant plasma cells, is an attractive target of new therapies for multiple myeloma (MM). Several anti-CD38 antibodies including daratumumab are in clinical development; however, a limitation of such monospecific antibodies is their inability to stimulate cytotoxic T cell killing of myeloma cells. To exploit the potent mechanism of T cell immunotherapy yet preserve the favorable drug and dosing properties of therapeutic antibodies, we designed bispecific antibodies that recruit T cells to CD38+ MM cells. Such bispecifics act via a "redirected T cell-cytotoxicity" (RTCC) mechanism because they stimulate targeted T cell-mediated killing regardless of T cell receptor antigen specificity. Unlike other bispecific formats, these antibodies possess a full Fc domain and spontaneously form stable heterodimers that are readily manufactured. Their Fc domain was also engineered to abolish binding to Fcγ receptors (to reduce the potential for nonselective T cell activation), yet preserve binding to human FcRn (to maintain long serum half-life). We first generated a library of humanized and affinity-optimized anti-CD38 × anti-CD3 antibodies and measured their potency using RTCC assays in which antibodies stimulated killing of the human MM cell line RPMI8226 by human T cells. From this screen, we selected two candidates for further assessment. XmAb13243 and XmAb13551 have 21 and 0.2 nM affinities, respectively, for human CD38, and have identical T cell-engaging domains with 8 nM affinity for human CD3. XmAb13243 stimulated RTCC with an EC50 of 2.5 ng/ml (20 pM) after 24 hr, while XmAb13551 had an EC50 of ~100 pg/ml (~1 pM). In contrast to bispecific formats lacking an Fc domain, XmAb13243 and XmAb13551 had long half-lives in mice of ~7.6 and 8.3 days, respectively. Because these bispecifics were optimized for human CD38 and CD3 binding and do not crossreact with mouse antigens, we next evaluated efficacy in immunodeficient SCID mice engrafted with human PBMCs. In this model, engrafted human B cells differentiate into CD38+ plasma cells, which produce high levels of human Ig. Bispecific antibodies dosed at 0.2, 1, and 5 mg/kg, 7 and 15 days after engraftment, suppressed human IgG2, IgM, and IgE to below detectable levels by Day 14 (> 50-fold for IgG2, > 1,000-fold for IgM, and > 80-fold for IgE). Daratumumab at 5 mg/kg was markedly less potent than bispecifics, reducing IgG2 by 2-fold, IgM by 6-fold, and IgE by 3-fold. The control bispecific anti-RSV × anti-CD3 (which binds to T cells but not to CD38+ cells) had no effect on IgG2, IgM, or IgE levels. To investigate activity against an immune response requiring production of new human plasma cells, mice were vaccinated with tetanus toxoid 8 days after engraftment. Anti-CD38 × anti-CD3 bispecifics suppressed human anti-tetanus antibody titers to baseline (> 100-fold), while daratumumab suppressed titers by only 2-fold. We next assessed efficacy in cynomolgus monkeys. Unlike daratumumab, which does not crossreact with monkey CD38, XmAb13243 and XmAb13551 bind to both CD38 and CD3 in monkeys (23 and 0.3 nM, respectively, to CD38, and 6 nM to CD3 for both). We treated monkeys with a single dose of XmAb13243 or XmAb13551 at 2, 5, and 20 μg/kg. T cells were activated within 1 hr, as measured by dramatic increases in CD25 and CD69 activation markers. Within 8 hr, T cells depleted circulating CD38+ cells by > 95% at the 20 μg/kg dose. Our results demonstrate that XmAb13243 and XmAb13551 effectively recruit T cells to kill CD38+ cells in vivo. Our preclinical data in monkeys and humanized mice provide a rationale for clinical testing of anti-CD38 × anti-CD3 bispecific antibodies in patients with multiple myeloma and other CD38+ malignancies. Disclosures Chu: Xencor: Employment, Equity Ownership. Miranda:Xencor, Inc.: Employment, Equity Ownership. Phung:Xencor, Inc.: Employment, Equity Ownership. Chen:Xencor, Inc.: Employment, Equity Ownership. Rashid:Xencor, Inc.: Employment, Equity Ownership. Endo:Xencor, Inc.: Employment, Equity Ownership. Chan:Xencor, Inc.: Employment, Equity Ownership. Pong:Xencor, Inc.: Employment, Equity Ownership. Bonzon:Xencor, Inc.: Employment, Equity Ownership. Muchhal:Xencor, Inc.: Employment, Equity Ownership. Leung:Xencor, Inc.: Employment, Equity Ownership. Bernett:Xencor, Inc.: Employment, Equity Ownership. Moore:Xencor, Inc.: Employment, Equity Ownership. Szymkowski:Xencor, Inc.: Employment, Equity Ownership. Desjarlais:Xencor, Inc.: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2031-2031
Author(s):  
Brendan Weiss ◽  
Kate Sasser ◽  
Chandra Rao ◽  
Brad Foulk ◽  
Steven Gross ◽  
...  

Abstract Background Circulating plasma cells (PCs) have been identified as a prognostic factor in patients with myeloma precursor states (MGUS and SMM) and active multiple myeloma (MM). Enumeration of circulating PCs by available methods is not suitable for widespread use and does not provide molecular characterization. We developed and evaluated a novel method for enumeration and molecular characterization of circulating PCs (circulating multiple myeloma cells, “CMMC”), based on the CELLSEARCH® System (Janssen Diagnostics LLC, Raritan, NJ), an automated technology for the capture, enumeration and characterization of rare cells in the peripheral blood. Methods We are performing a prospective study of patients with MGUS and SMM to evaluate CMMCs as biomarker for progression to active MM. Utilizing the CELLSEARCH® System CMMCs were captured by CD138 ferrofluid magnetic particles and identification was defined as CD38+ and CD19-, CD45-. Nonviable cells were excluded by DAPI. Isolated CMMCs were stored and FISH for t(4:14), t(14;16) and del17 was performed. Results We have enrolled 16 patients, MGUS = 3, SMM = 11, and newly diagnosed MM = 2. The Mayo Risk stratification for MGUS patients was: low risk = 2, low-intermediate = 1. All SMM patients were low risk by Mayo Model incorporating serum free light chains. The median number of bone marrow plasma cells for MGUS patients was 7 (range 7-9) and for SMM patients was 15 (range 10-40). The median CMMCs for MGUS = 6 (range 2-55), median CMMCs for SMM = 31 (5-1918). The two patients with NDMM had 5870 and 5 CMMCs, respectively. A single patient with SMM progressed with a symptomatic solitary lumbar plasmacytoma and had CMMCs of 5 and 3 at baseline and progression, respectively. Abnormalities by FISH were detected in both bone marrow and CMMCs. Accrual is ongoing and additional data will be presented at the meeting. Conclusions The CELLSEARCH® CMMC assay can detect, quantify and provide molecular characterization of circulating PCs in MGUS/SMM/MM; longer prospective follow-up is needed to test the prognostic value of CMMCs. Disclosures Weiss: Janssen: Consultancy, Research Funding. Sasser:Janssen: Employment. Rao:Janssen: Employment, Equity Ownership. Foulk:Janssen: Employment. Gross:Johnson & Johnson: Employment, Equity Ownership. Cohen:Janssen: Membership on an entity's Board of Directors or advisory committees. Vogl:Celgene Corporation: Consultancy; Amgen: Consultancy; Millennium/Takeda: Research Funding; GSK: Research Funding; Acetylon: Research Funding. Stadtmauer:Janssen: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3157-3157 ◽  
Author(s):  
Meletios Athanasios Dimopoulos ◽  
Michel Delforge ◽  
Roman Hajek ◽  
Martin Kropff ◽  
Maria Teresa Petrucci ◽  
...  

Abstract Abstract 3157 Background: Lenalidomide maintenance following induction with melphalan, prednisone, and lenalidomide has been shown to provide sustained disease control by significantly decreasing the relative risk of progression in NDMM patients [Palumbo, 2010]. HRQoL analyses, alongside efficacy and safety considerations, may help establish a more complete picture of an overall treatment profile. Initial findings on HRQOL have shown a well-balanced profile of MPR-R in terms of efficacy, safety and tolerability, with HRQoL improving both during MPR induction and lenalidomide maintenance [Dimopoulos, 2011]. Alternative findings on novel NDMM treatment have shown efficacy of melphalan, prednisone and bortezomib (VMP) treatment to be associated with an intermittent deterioration in patients' HRQoL [Dhawan, 2009]. Methods: This analysis considers the impact on HRQoL of ending treatment due to progressive disease (PD) or discontinuation due to other reasons (DC) for both MPR-R and MP patients. HRQoL scores were assessed for six domains, pre-selected based on clinical relevance: Global QoL, Physical Functioning, Fatigue and Pain (from EORTC QLQ-C30), and Disease Symptoms and Side Effects of Treatment (from EORTC MY20). Mean HRQoL scores measured at PD/DC, PD alone and DC alone were compared to mean HRQoL scores at baseline. In a second analysis, HRQoL observations during treatment (excluding baseline) were compared to HRQoL at end of treatment, analyzing observations for patients experiencing PD/DC, PD and DC via a mixed effects model that adjusted for time of observation as a fixed effect and patient as a random effect. Results: With a May 2010 follow-up, mean HRQoL at PD/DC had significantly improved from baseline for 3 of 6 domains with MPR-R - Global QoL (55.9 vs. 46.8; p=.021), Pain (30.4 vs. 42.6; p=.044) and Disease Symptoms (21.6 vs. 28.6; p=.031)(a) with non-significant changes in the other 3 domains. When assessing MPR-R patients experiencing PD, Global QoL (48.0 vs. 37.3; p=.029) and Pain (38.9 vs. 54.6; p=.046) also significantly improved from baseline, with no significant changes in the other 4 scales. MPR-R patients with DC experienced one significant improvement for Disease Symptoms (16.0 vs. 26.9; p=.007), with non-significant changes in the other domains. No significant HRQoL changes at end of treatment vs. baseline were observed for MP in any comparisons of the six domains considered. HRQoL during treatment was better in 33 of 36 comparisons when compared to HRQoL at end of treatment (assessment for six HRQoL domains; MPR-R and MP; PD/DC, PD and DC, i.e. 6×2×3), with significantly better HRQoL during treatment in 14 out of 36 observations. PD/DC significantly reduced HRQoL in terms of Physical Functioning (56.9 vs. 67.5, p =.003) and Fatigue (46.4 vs. 37.8, p=.026) for MPR-R and Global QoL (48.7 vs. 59.4, p <.001), Physical Functioning (61.6 vs. 70.3, p =.001) and Fatigue (46.7 vs. 39.3, p =.021) for MP. All significant differences involved PD, with no significant differences observed for DC. 9 of 12 (=6×2) HRQoL comparisons (see Figure 1) showed significantly higher HRQoL during treatment vs. PD; 2 of 3 non-significant HRQoL differences related to Side Effects of Treatment. HRQoL was clinically meaningfully higher during treatment than at progression in all 5 statistically significant MPR-R comparisons, but only in two MP comparisons (Global QoL and Physical Functioning), as determined by Minimal Important Differences (MIDs) [Dimopoulos, 2011]. The results indicate that delaying progression through continued MPR-R treatment is of key importance in strengthening NDMM patients' HRQoL. Conclusions: Continuous lenalidomide significantly prolongs progression-free survival in NDMM patients. The underlying analysis documented higher HRQoL especially during MPR-R treatment compared to HRQoL at disease progression. Patients continuing on lenalidomide treatment experienced an elevated level of HRQoL, often reporting higher HRQoL levels at the end of MPR-R treatment vs. baseline. These findings further highlight the favourable balance between efficacy, tolerability and HRQoL with MPR-R. Disclosures: Dimopoulos: Celgene: Consultancy, Honoraria. Off Label Use: Lenalidomide in newly diagnosed multiple myeloma. Delforge:Celgene: Consultancy, Honoraria, Speakers Bureau; Janssen-Cilag: Consultancy, Honoraria, Speakers Bureau. Hajek:Celgene: Honoraria; Janssen-Cilag: Honoraria; Merck: Honoraria. Petrucci:Celgene: Honoraria. Lewis:Celgene: Employment, Equity Ownership. Millar:Celgene: Consultancy. Zhang:Celgene: Employment, Equity Ownership. Mei:Celgene: Employment, Equity Ownership. Palumbo:Celgene: Consultancy, Honoraria; Janssen-Cilag: Consultancy, Honoraria; Ortho-Biotech: Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3048-3048
Author(s):  
Daniel M Sullivan ◽  
Trinayan Kashyap ◽  
Jana L Dawson ◽  
Yosef Landesman ◽  
Steven Grant ◽  
...  

Abstract Purpose: Drug resistance is the greatest obstacle to the successful treatment of multiple myeloma (MM). We investigated whether the clinical XPO1 inhibitor selinexor (KPT-330), when combined with bortezomib or carfilzomib, could overcome proteasome inhibitor (PI) resistance in myeloma. Experimental Design: PI-resistant human MM cell lines 8226-B25 and U266-PSR were treated with the XPO1 inhibitors selinexor or KOS-2464 in combination with bortezomib or carfilzomib and assayed for apoptosis and viability. Mice challenged with PI-resistant human MM cells (U266-PSR) were treated with selinexor +/- bortezomib. CD138+/light-chain+ MM cells from PI-refractory MM patients were treated with selinexor +/- bortezomib or selinexor +/- carfilzomib and assayed for apoptosis. All experiments were compared to the standard of care, bortezomib therapy. IkBα-protein was assayed by Western blot and immunofluorescence microscopy and IkBα-NFkB-complex formation by proximity ligation assay. IkBα protein knockdown in human MM cells by siRNA was performed to determine the mechanism of selinexor inhibitor action. Further analysis of selinexor/bortezomib treatment on intra-cellular protein levels and intra-cellular localization was performed by lysine and N-terminal labeling with six-plex tandem mass tags (heavy isotope) and assayed by LC-MS/MS discovery proteomics. Results: Selinexor in combination with bortezomib or carfilzomib decreased viability and induced apoptosis in PI-resistant MM cells. Resistant MM cell lines were up to 10-fold resistant to single agent bortezomib or carfilzomib when compared to parental cells. The combination of the XPO1 inhibitors selinexor or KOS-2464 sensitized drug resistant cells to bortezomib (P < 0.02) and carfilzomib (P < 0.005) when compared to single agents. Selinexor and bortezomib inhibited PI-resistant MM tumor growth and increased survival with minimal toxicity in NOD/SCID-g mice. Bone marrow mononuclear cells isolated and treated with selinexor or KOS-2464 and bortezomib or carfilzomib from newly diagnosed (n=8), relapsed (n=5), and bortezomib (n=8) and carfilzomib (n=6) refractory MM patient samples were all sensitized by selinexor and KOS-2464 to bortezomib (P < 0.043) and carfilzomib (P < 0.044) as shown by increased apoptosis. Normal, non-myeloma CD138/light-chain double-negative patient cells were not sensitized to apoptosis by XPO1 inhibitors. Immunofluorescence microscopy of IkBα in 8226-B25 PI-resistant cells showed an increase in IkBα after treatment with selinexor/bortezomib as compared with vehicle control or single agent bortezomib or selinexor. Nuclear IκBα was also increased by selinexor treatment. IkBα protein expression was increased by bortezomib (70%) and selinexor (50%) versus control. The selinexor/bortezomib combination increased IkBα protein (212%) as compared to vehicle control or single agent bortezomib or selinexor. Similar results were found in drug-naïve 8226 and U226 cells, as well as PI-resistant 8226-B25 and U225-PSR cells. The increase in nuclear IkBα after selinexor treatment was confirmed by ImageStream flow cytometry. Selinexor/bortezomib therapy significantly increased IkBα-NFkB-complexes in PI-resistant MM cells. Selinexor in combination with bortezomib increased proximity co-localization of NFkB and IkBα without affecting XPO1 protein expression after 4 hours of drug treatment. Analysis of the number of NFkB-IkBα foci/binding showed that selinexor/bortezomib increased the number of foci in the nucleus versus untreated control or single agent selinexor or bortezomib (P ≤ 0.00077). IkBα knockdown reduced selinexor-induced cytotoxicity in both IM-9 (9.5-fold) and 8226 (12.3 to 25.4-fold) human MM cells. Intracellular protein analysis by heavy isotope labeling and LC-MS/MS showed changes in several signaling pathways including p53, MAPK, VEGF and angiopoietin, IL-1, HMGB1/TLR and APRIL and BAFF as well as those related to NFkB signaling. Conclusion: Selinexor, when used in combination with bortezomib or carfilzomib has the potential to overcome PI drug resistance in MM. Disclosures Kashyap: Pharma: Employment. Landesman:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm: Employment, Equity Ownership. Shacham:Karyopharm: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3772-3772 ◽  
Author(s):  
Amanda R. Leonti ◽  
Laura Pardo ◽  
Todd A. Alonzo ◽  
Robert B. Gerbing ◽  
Lisa Eidenschink Brodersen ◽  
...  

E-selectin (E-sel) is a cell adhesion glycoprotein that is expressed on endothelial cells and has been implicated in therapeutic resistance. In most myeloid leukemias, leukemic blasts express E-sel ligands (EsL), which contain the glycan epitope of the carbohydrate sialyl Lex (sLex). This expression increases the likelihood of adhesion to vascular endothelial cells and facilitates sequestration in the bone marrow vascular niche, leading to cell adhesion-mediated drug resistance and poor clinical outcome. E-sel antagonists like uproleselan, interrupts leukemic cell homing to the vascular niche, increases susceptibility to cytotoxic and targeted therapies and can be potent adjuncts to therapeutics. Recent data demonstrated a correlation between leukemic cell surface levels of EsL and response to uproleselan, linking EsL expression to response. We questioned whether transcriptome profiling of EsL-forming glycosylation genes can be used to identify elevated EsL expression in patients with acute myeloid leukemia (AML), and subsequently which patients might best respond to uproleselan. RNA-seq data from patients treated in COG AAML1031 (N = 1,074) was available for evaluation. We examined transcriptome expression of 24 genes that code for enzymes involved in glycosylation of EsL. All analyses were performed in R. Cox proportional hazards models were generated using the survival package. Multidimensional flow cytometry (MDF) was used to detect cell surface EsL expression by two techniques: direct binding of an E-sel/hIg, PE labeled chimera, and the anti-sLex antibody HECA-452. Seven of the 24 genes examined had minimal expression (mean <1 TPM) and were excluded from further analysis. The remaining 17 were variably expressed (Fig. 1A). To assess association of expression with outcome, univariate Cox models for overall survival (OS) were generated, using gene expression as a continuous coefficient (N = 1,061). Of the 17 genes, 7 were significantly associated with increased risk (p < 0.05, Fig. 1B). ST3GAL4 and FUT7 were targeted for further evaluation, as they directly synthesize sLex (Fig. 1C), and were significantly associated with adverse outcome (HR = 1.013, p < 0.0001, and HR = 1.023, p < 0.0001, respectively). Patients highly expressing FUT7 (highest quartile of expression) had significantly worse outcome than low expressors (lowest 3 quartiles of expression), with a 5-year OS of 50.3% vs. 68.3% (p < 0.0001, Fig. 1D). Similarly, those with high ST3GAL4 expression had a 5-year OS of 51.3%, compared to 68.1% for low expressors (p < 0.0001, Fig. 1D). A subset of patients highly expressed both genes (ST3GAL4 and FUT7 high; SFhigh, N = 132). Compared to patients that did not highly express either gene (SFlow), these individuals had particularly adverse survival (45.8% OS vs 71.0% OS, p < 0.0001). Patients with one of two high expressing genes (SFinter) had a 5-year OS of 55.5%, illustrating what may be a compounding unfavorable impact conferred on survival (Fig. 1E). Further investigation of clinical characteristics within these 3 groups revealed that 71.5% of infants <1 year were SFlow, with only 4.66% in SFhigh. In addition, CBF-AML was greatly underrepresented in SFhigh, with 97% of both t(8;21) and inv(16) patients in SFlow, and 0% in SFhigh. To verify surface protein expression of the two genes, leukemic specimens from SFhigh patients (N = 10) and SFlow patients (N = 10) underwent cell surface expression evaluation of glycosylated EsL using two MDF assays. SFlow patients had low or undetectable levels of cell surface EsL by both assays, whereas SFhigh patients had significantly higher expression of EsL (p < 0.001, Fig. 1F). This suggests a strong correlation between transcriptome measurements of EsL glycosylation genes and cell surface glycosylation levels of EsL. In summary, we have shown that multiple genes involved in the glycan synthesis of EsLs are highly expressed in pediatric AML. Two of these genes, ST3GAL4 and FUT7, are associated with poor outcome. Additionally, high expression of these genes is detectable at the transcript level and associated with cell surface EsL expression. These genes provide novel targets for overcoming drug resistance induced by the tumor microenvironment, and lend support for the use of EsL glycosylation genes as predictive biomarkers. These data also confirm the importance of E-sel in disease progression in AML and its potential as a therapeutic target. Figure 1 Disclosures Pardo: Hematologics, Inc: Employment. Eidenschink Brodersen:Hematologics, Inc: Employment. Magnani:GlycoMimetics Inc: Employment, Equity Ownership. Fogler:GlycoMimetics Inc: Employment, Equity Ownership. Loken:Hematologics, Inc: Employment, Equity Ownership.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2036-2036 ◽  
Author(s):  
Hervé Avet-Loiseau ◽  
Jill Corre ◽  
Sabrina Maheo ◽  
Jianbiao Zheng ◽  
Malek Faham ◽  
...  

Abstract Background: Recent reports support the prognostic importance of minimal residual disease (MRD) levels in multiple myeloma (MM) patients and suggest that novel methods for MRD assessment can play a role in the evolving MM treatment paradigm (Martinez-Lopez et al., Blood 2014). The application of next-generation sequencing (NGS)-based MRD assessment has been previously demonstrated in multiple lymphoid malignancies (Faham et al., Blood 2012; Ladetto et al., Leukemia 2013). NGS-based MRD assessment requires a diagnostic sample for initial identification of the myeloma clonotype. In order for this MRD assessment approach to be clinically practical, it must allow for analysis of a diverse set of diagnostic samples. In this study, we assessed the rate of myeloma clonotype identification in 6 sample types at diagnosis: bone marrow (BM) aspirate slides, RNA extracted from CD138+ plasma cells, methanol-fixed BM cells, BM mononuclear cells, RBC-lysed BM cells, and DNA extracted from small numbers of CD138+ plasma cells. Methods: Baseline samples were collected from 606 patients with MM. The following samples were provided at baseline: bone marrow aspirate (BMA) slides (164), RNA extracted from CD138+ plasma cells (402), methanol-fixed BM cells (30), BMA cell preparations using a Ficoll protocol (13), BMA cell preparations using an RBC lysis protocol (19), and DNA extracted from small numbers of CD138+ plasma cells (5). Samples with sufficient input DNA (>15ng) were included in the analysis, although this requirement was waived for samples from CD138+ cells. The Ficoll BMA cell preparations were divided into the mononuclear cell fraction and the lower Ficoll fraction, which is typically comprised of granulocytes and erythrocytes. Identification of myeloma clonotypes was performed using Sequenta's LymphoSIGHT™ method. Briefly, using universal primer sets, we amplified immunoglobulin heavy chain (IGH) and light chain (IGK) variable, diversity, and joining gene segments from genomic DNA. Amplified products were sequenced and analyzed using standardized algorithms for clonotype determination. Myeloma-specific clonotypes were identified for each patient based on their high-frequency (>5%) within the B-cell repertoire. Results: The NGS assay identified a high-frequency myeloma clonotype in 555/606 (92%) of patients with MM. Myeloma clonotype identification rates were 141/164 (86%) in BMA slides, 375/402 (93%) in RNA extracted from CD138+ plasma cells, 30/30 (100%) in methanol cell preparations, 13/13 (100%) in Ficoll cell preparations, 18/19 (95%) in RBC lysis cell preparations, and 5/5 (100%) using small amounts of input CD138+ DNA (approximately 5000 cells). These applicability rates are consistent with previous reports of sequencing applicability in MM patients. In thirteen patients, we investigated the potential loss of myeloma-specific clonotypes due to Ficoll cell preparation. The variation in myeloma cell loss was typically low but ranged from essentially no loss to the loss of more than 90% of the myeloma cells in the PBMC of one patient compared to the RBC lysis preparation. The myeloma cells were detected in the typically discarded lower layer of the Ficoll preparation which explained the loss. Conclusions: These results suggest that sequencing based MRD analysis is applicable in >90% of patients with MM. Multiple sample types, including archived BMA slides, can be used for identification of the myeloma clonotype. Further evaluation and optimization of sample processing methods is ongoing to enable application of the sequencing method for clinical MRD assessment in MM patients. Disclosures Zheng: Sequenta, Inc.: Employment, Equity Ownership. Faham:Sequenta, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Munshi:Celgene: Consultancy; Onyx: Consultancy; Janssen: Consultancy; Sanofi-Aventi: Consultancy; Oncopep: Consultancy, Equity Ownership, Patents & Royalties.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1825-1825 ◽  
Author(s):  
Steven Gross ◽  
Brad Foulk ◽  
Jaymala Patel ◽  
Mark Connelly ◽  
Marielena Mata

Abstract Abstract 1825 Detection of circulating Multiple Myeloma cells (CMMC) by flow cytometry is an indicator of active disease. In addition, circulating plasma cells can be detected in earlier stages of disease, including MGUS and Smoldering Multiple Myeloma, and appear to correlate with prognosis. The capture and characterization of these circulating plasma cells from peripheral blood may provide novel biomarkers for the management of Multiple Myeloma patients, particularly in monitoring minimal residual disease and in progression from MGUS or Smoldering Multiple Myeloma to active disease. The enumeration and characterization of circulating tumor cells (CTC) in patients with metastatic breast, prostate or colorectal cancer using the CellSearch® technology, has been shown to provide clinically relevant prognostic and predictive information. Here we describe the development of an automated assay for detecting circulating normal plasma cells (CPC) and multiple myeloma cells (CMMC) in blood using CellSearch. Assay results from Multiple Myeloma, MGUS patients, and from an aged matched control population are presented. The CellTracks® AutoPrep® System and CellTracks Analyzer II® systems were used to capture and enumerate CPC and CMMC. Magnetic particles conjugated to anti-CD138 are used to capture myeloma cells from 4.0mL of blood. Enriched cells are then stained with the nucleic acid dye DAPI and anti-CD38-Phycoerythrin (PE) antibody. Allophycocyanine (APC) conjugated anti-CD45 and anti-CD19 were used to exclude leukocytes and B-cells. In addition, FITC labeled anti-CD56 was added as a biomarker. The enriched and stained cells were transferred to a CellTracks® cartridge and MagNest® for magnetic mounting. The cartridge was scanned using the CellTracks Analyzer II®. Individual images of cells were presented to the operator for review, and scored as CMMCs, based on fluorescence and cell morphology. In a model spike-in system the assay consistently recovered ∼60% of the cells from the Multiple Myeloma cell line H929 spiked into 4.0mL of blood from healthy donors. The assay was linear over the tested range of from 0 to 2000 spiked H929 cells (r2 0.98, slope 0.50, intercept 10). The assay was validated using blood from age matched healthy donors (n=22) and patients with Multiple Myeloma (n=66) and MGUS (n=7). In 4.0mL blood from normal donors, 0 CPC were detected in 12/22 (55%) and low numbers (1–6 CPC) were detected in 10/22 (45%) samples. Interestingly, one CD56 positive CPC (CMMC?) was found in a normal donor. CMMC in Multiple Myeloma patients ranged from 0 – 17,000 /4.0mL blood. One or more CMMC were detected in 91% of the patients, > 5 in 68%, > 10 in 58% and > 100 in 35%. Expression of CD56 was highly variable in the patient population. CMMC in MGUS patients ranged from 0 – 112 /4.0mL blood. One or more CMMC were detected in 6/7 of the patients, > 5 in 4/6, > 10 in 2/6 and > 100 in 1/6. To further characterize CMMC, and differentiate CPC from CMMC, an interphase fluorescent in situ hybridization (FISH) assay was developed to be used with the capture and detection system described above. A four color FISH probe was used to simultaneously detect high risk mutations including two recurrent translocations of the IgH locus (t(4;14)(p16;q32) and t(14;16)(q32;q23)) as well as deletion of the TP53 locus (Δ17p13). The FISH assay was verified on cell lines H929, MM1s, and U266, which showed mutations at t(4;14), t(14;16) and Δ17p13, respectively. The FISH assay was tested on 9 CMMC patient samples and 8 samples yielded evaluable results. Two samples showed t(4;14)fusions, 3 patients showed aberrant FISH signal patterns indicating aneuploidy of chromosome 4 or 14 and the remaining patients showed normal FISH patterns. Well controlled prospective clinical studies are needed to establish the prognostic and predictive value of the presence, and characteristics, of CMMC in multiple myeloma or MGUS. In addition, as with CTC, this automated CMMC assay should prove useful in evaluating the effectiveness of new treatments as well as the assessment of potential treatment targets on CMMC in this difficult disease. Disclosures: Gross: Johnson and Johnson: Employment, Equity Ownership. Foulk:Johnson and Johnson: Employment, Equity Ownership. Patel:Johnson and Johnson: Employment, Equity Ownership. Connelly:Johnson and Johnson: Employment, Equity Ownership. Mata:Johnson and Johnson: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document