STAT3 Silencing as a Novel Therapeutic Strategy for Activated B Cell-Type Diffuse Large B-Cell Lymphoma.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 926-926
Author(s):  
Anna Scuto ◽  
Maciej Kujawski ◽  
Claudia Kowolik ◽  
Hua Yu ◽  
Stephen Forman ◽  
...  

Abstract Abstract 926 Among the non-Hodgkin's lymphomas, the diffuse large B cell lymphoma (DLBCL) represents the most frequent (30%) of the aggressive lymphomas. Persistent STAT3 signaling contributes to malignant progression in many diverse human tumors. IL-6 and IL-10 are major activators of STAT3 signaling and are important in the pathophysiology of DLBCL. STAT3 has been found to be persistently active in activated B cells (ABC), which are non-germinal center-derived DLBCL cells. We studied the consequences of STAT3 inhibition on multiple biological functions in two representative human cell lines of this group, Ly3 and Ly10 cells. For this purpose, we established stably transduced STAT3 shRNA-expressing lentivirus Ly3 cells, control lentivirus Ly3 cells, STAT3 shRNA-expressing lentivirus Ly10 cells and control lentivirus Ly10 cells. The stable expression of STAT3 shRNA results in 40-50% reduction of total STAT3 protein levels in the STAT3 shRNA lentivirus Ly3 cells compared to the control lentivirus cells. STAT3 down-regulation induced inhibition of cell proliferation (approximately 40%). Ly3 cells respond to IL-10 more than to IL-6 in terms of proliferation; both cytokines induced less proliferation in the STAT3 shRNA lentivirus Ly3 cells compared to the control lentivirus Ly3 cells. Similar results were obtained in Ly10 cells, which respond more to IL-6 than to IL-10 in terms of proliferation. We analyzed by quantitative real-time PCR the mRNA levels of different STAT3 target genes and observed significant reduction in mRNA levels of Mcl-1, Bcl-xL and Survivin in STAT3 shRNA lentivirus Ly3 cells, as well as significant reduction of Cyclin D2 and up-regulation of STAT1 in shRNA lentivirus Ly10 cells. Comparison of these gene expression profiles with data obtained from other B-cell lymphoma cell lines revealed that silencing of STAT3 resulted in down-regulation of different STAT3 target genes in a cell-dependent manner. We also observed that both STAT3 and control lentivirus Ly3 cells have the same protein levels of c-Myc; nevertheless STAT3 silencing resulted in inhibition of IL-10-inducible upregulation of c-Myc. We next investigated the effect of STAT3 inhibition on adhesion to bone marrow stroma and chemotaxis. STAT3 shRNA lentivirus Ly3 cells adhered less to the stroma layer than control cells, and the longer they were cocultured with the stroma cells in the presence of serum-free media the more they lost the ability to adhere. Moreover, STAT3 shRNA lentivirus Ly3 cells had decreased capacity to migrate toward SDF-1 alpha, an important factor that mediates proliferation, survival, chemotaxis, migration and adhesion into bone marrow stroma. Radiation, in combination with chemotherapy, is one of the therapies used for DLBCL patients. We therefore investigated whether STAT3 down-regulation sensitized Ly3 cells to radiation. Radiation induced a higher accumulation of phospho-H2A.X (first sentinel event following DNA damage such as DSBs) and apoptosis in STAT3 shRNA lentivirus cells compared to control cells. Moreover, IL-6 and IL-10 protected the STAT3 shRNA lentivirus Ly3 cells less than the control cells from the induction of phospho-H2A.X following radiation. We further investigated the effect of STAT3 silencing in animal models of Ly3 lymphoma (Nude or NOD-SCID mice). Tumors in control lentivirus Ly3-bearing mice grew robustly, whereas tumors in STAT3 shRNA lentivirus Ly3-bearing mice regressed 5 days after injection. This tumor regression was associated with Caspase-3-dependent apoptosis, significant reduction of STAT3 target genes at the protein level such as Mcl-1, c-Myc and Survivin (approximately 40% to 60% inhibition), and reduction of cytokine production such as IL-10, IL-15, Leptin and Thrombopoietin. Taken together, these results suggest that inhibition of STAT3 is a potential promising approach in the therapy of ABC-type DLBCL. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1413-1413
Author(s):  
Leandro Cerchietti ◽  
Maria E. Figueroa ◽  
Rita Shaknovich ◽  
Ari Melnick

Abstract The BCL6 oncogenic transcriptional repressor protein is frequently constitutively expressed in Diffuse Large B-cell Lymphomas (DLBCLs). A BCL6 peptidomimetic inhibitor (BPI) that specifically inhibits the repressor activity of BCL6 can induce cell death in DLBCL cell lines and primary tumor tissue, both in vitro and in vivo. Many genes involved in DNA damage, cell cycle and others are targets of BCL6. Among these is the p53 tumor suppressor gene. However, we find that p53 mRNA levels are actually higher in the subset of DLBCL patients with higher BCL6 expression (n=176 cases). Overall, we could readily detect p53 protein expression by immunohistochemistry in 50% of BCL6 positive DLBCL samples (n=350 cases). By studying expression levels of p53 target genes, we show that even in DLBCLs expressing wild-type p53, the protein is not fully active, and a p53 activating peptide was required to trigger p53 activity and execute cellular checkpoints. Accordingly, even though p53 was already present, BCL6 blockade by BPI could still induce a p53 response in DLBCL cells (with only small changes in p53 levels). Based on these results we speculated that BCL6 might inhibit p53 activity through an alternative mechanism such as regulating its activity through post-translational modifications. In accordance with this prediction, we found that BPI can strongly induce expression of the p300 histone acetyl-transferase, which can activate p53 by acetylation. The p300 promoter has two BCL6 binding sites and by chromatin immunoprecipitation (ChIP) assays we show that BCL6 directly binds to these sites. We found that 80% of DLBCL (n=70) express low protein levels of p300 (compared with other B-lymphomas) and the same is apparent from mRNA studies. By performing kinetic studies in DLBCL cells with multiple time points, we show that after BPI treatment, p300 mRNA and then protein levels are induced, after which p53 becomes acetylated and after which p53 target genes (p21, PUMA, NOXA, GADD45 and PIG3) are upregulated. These changes are partially or totally overcome by expression of either a p53-dominant negative or p300-dominant negative construct. In DLBCL cells with p53 mutations, this program is preferentially executed trough p73 and/or p63, which in turn become acetylated by p300. Interestingly, after BPI treatment p300 acetylates BCL6 itself, which further reduces BCL6 activity. This leads to higher BCL6 inhibition and triggering of a signal amplification loop. These findings have significant therapeutic implications, since co-treatment of DLBCL cells with BPI plus histone deacetylase inhibitors such as Trichostatin A or SAHA (i.e. that hyperacetylate p53 and BCL6) resulted in a synergistic effect in killing DLBCL cells. Our studies demonstrated that p300 is a direct target gene of BCL6 with a critical role in determining DLBCL response to treatments that require activation of p53 and/or p53-family members. This can be capitalized on to develop powerful biological therapeutic regiments for DLBCL.


2010 ◽  
Vol 80 (9) ◽  
pp. 1335-1342 ◽  
Author(s):  
Mi-Ae Lyu ◽  
Bokyung Sung ◽  
Lawrence H. Cheung ◽  
John W. Marks ◽  
Bharat B. Aggarwal ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Danxia Zhu ◽  
Cheng Fang ◽  
Wenting He ◽  
Chen Wu ◽  
Xiaodong Li ◽  
...  

We investigated the role of miR-181a in diffuse large B-cell lymphoma (DLBCL) and its potential target genes. miR-181a levels were lower in activated B-cell- (ABC-) like DLBCL cells than that in germinal center B-cell- (GCB-) like DLBCL cells. Overexpression of miR-181a in ABC-like DLBCL cell lines (OCI-LY10 and U2932) resulted in G0/G1 cell cycle arrest, increased apoptosis, and decreased invasiveness. miRNA target prediction programs (miRanda, TargetScan, and miRDB) identified caspase recruitment domain-containing protein 11 (CARD11) as a putative miR-181a target. CARD11 mRNA and protein levels were higher in the ABC-like DLBCL than that in GCB-like DLBCL. Moreover, CARD11 mRNA and protein levels were downregulated in the OCI-LY10 and U2932 cell lines overexpressing miR-181a. Dual luciferase reporter assays confirmed the miR-181a binding site in the CARD11 3′UTR region. OCI-LY10 and U2932 cells transfected with a CARD11 expression vector encoding miR-181a with a mutated binding site showed higher CARD11 protein levels, cell viability, G2/M phase cells, and invasiveness compared to those transfected with a wild-type CARD11 expression vector. Nude mice xenografted with OCI-LY10 cells with overexpressed wild-type miR-181a generated smaller tumors compared to those with overexpressed mutated binding site of CARD11 3′UTR and miR-181a. These results indicate that miR-181a inhibits ABC-like DLBCL by repressing CARD11.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 2121-2127 ◽  
Author(s):  
Hai-Jun Zhou ◽  
Lan V. Pham ◽  
Archito T. Tamayo ◽  
Yen-Chiu Lin-Lee ◽  
Lingchen Fu ◽  
...  

Abstract CD40 is an integral plasma membrane–associated member of the TNF receptor family that has recently been shown to also reside in the nucleus of both normal B cells and large B-cell lymphoma (LBCL) cells. However, the physiological function of CD40 in the B-cell nucleus has not been examined. In this study, we demonstrate that nuclear CD40 interacts with the NF-κB protein c-Rel, but not p65, in LBCL cells. Nuclear CD40 forms complexes with c-Rel on the promoters of NF-κB target genes, CD154, BLyS/BAFF, and Bfl-1/A1, in various LBCL cell lines. Wild-type CD40, but not NLS-mutated CD40, further enhances c-Rel–mediated Blys promoter activation as well as proliferation in LBCL cells. Studies in normal B cells and LBCL patient cells further support a nuclear transcriptional function for CD40 and c-Rel. Cooperation between nuclear CD40 and c-Rel appears to be important in regulating cell growth and survival genes involved in lymphoma cell proliferation and survival mechanisms. Modulating the nuclear function of CD40 and c-Rel could reveal new mechanisms in LBCL pathophysiology and provide potential new targets for lymphoma therapy.


Author(s):  
Emily Camilleri ◽  
Carlos Aya-Bonilla ◽  
Jamie Nourse ◽  
Philip J. Brown ◽  
Alison H. Banham ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1116-1116
Author(s):  
Yumiko Kasugai ◽  
Hiroyuki Tagawa ◽  
Yoshihiro Kameoka ◽  
Sivasundaram Karnan ◽  
Ritsuro Suzuki ◽  
...  

Abstract Amplification of 6p21 has been detected in various solid tumor and hematological neoplasms. These include hepatoma, osteosarcoma, pancreatic cancer, bladder cancer, and mantle cell lymphoma . However, no candidate target genes in this amplified region have been identified. In diffuse large B-cell lymphoma (DLBCL), no amplification has been reported. Recently, we established genome-wide array comparative genomic hybridization (array CGH) consisting of 2300 BAC clones that can survey a whole genome at the density of an average size of 1.3 Mb. The array CGH detected amplification at 6p21 in 12 of 70 (24%) DLBCL patients (Tagawa et al., Cancer Res. in press) and one DLBCL cell line, SUDHL-9. We next made high density array glass for 6p21 region with 23 BAC clones covering 3 Mb. We found that the minimal common region of amplification was approximately 2Mb in size. In this region, there are 27 known genes including cyclin D3. The cyclin D3 has been reported to be overexpressed in a case of DLBCL with t(6;14)(p21.1;q32.3). We have analyzed expression level of those genes in the minimal common region of amplification, and found that five genes, BYSL, cyclin D3, TBN, KIAA0240, and TBCC were overexpressed. These results indicate that not only cyclin D3 but also other genes are also possible target genes for the 6p21 amplification.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2421-2421 ◽  
Author(s):  
Ravi K. Amaravadi ◽  
Duonan Yu ◽  
Andrei Thomas-Tikhonenko ◽  
Craig B. Thompson

Abstract Burkitt’s lymphoma is an example of an aggressive B cell neoplasm characterized by overexpression of the c-myc oncogene and frequent inactivation of the tumor suppressor gene p53. A non-transgenic mouse model of Burkitt’s lymphoma was generated by retroviral transduction of the human c-myc gene into bone marrow cells derived from the p53-estrogen receptor (p53ER) knock-in mouse. The resulting myc/p53ER cells produce an aggressive B cell lymphoma when injected subcutaneously into the flanks of syngeneic mice. When tumor-bearing mice are treated with tamoxifen intraperitoneally, the p53ER fusion protein is targeted to the nucleus where p53-dependent apoptosis can take place. On successive in vivo passages, cells develop the ability to survive p53 activation and escape p53ER-dependent apoptosis despite tamoxifen treatment and nuclear localization of the p53ER fusion protein. We hypothesized that cells resistant to p53-dependent apoptosis utilize autophagy as an essential survival mechanism. Thus, these tumors could be sensitive to chloroquine, a lysosomotropic inhibitor of autophagy that has been used extensively in humans as an antimalarial and for the treatment of rheumatoid arthritis. Daily intraperitoneal chloroquine or hydroxychloroquine treatment of mice bearing myc/p53ER tumors in the absence of tamoxifen resulted in a delay in tumor growth. When tamoxifen was added to induce nuclear localization of p53ER, mice that received tamoxifen plus chloroquine had a complete tumor response while mice that received tamoxifen plus saline had transient tumor shrinkage followed quickly by regrowth. Tamoxifen plus chloroquine treatment enhanced the expression of p53-dependent target genes and increased caspase activation compared to tamoxifen plus saline treatment. A higher percentage of cells in tumors treated with tamoxifen plus chloroquine underwent apoptosis compared to tumors treated with tamoxifen plus saline. Moreover, tumors that recurred in the mice treated with daily tamoxifen plus chloroquine did so after a significantly longer latency period then mice treated with tamoxifen plus saline. Recurrent tumors showed loss of expression of p53 target genes. Electron microscopy of recurrent tumors confirmed the accumulation of vacuoles in chloroquine treated tumors compared to controls, suggesting inhibition of lysosome function leads to the accumulation of ineffective autophagic vacuoles. These results indicate that inhibiting autophagy with lysosomotropic chloroquine derivatives could be a useful therapeutic addition to treatment regimens for aggressive B cell lymphomas.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 608-608
Author(s):  
Friedrich Feuerhake ◽  
Stefano Monti ◽  
Jonathan Blank ◽  
Erxi Wu ◽  
Wen Chen ◽  
...  

Abstract The proteasome inhibitor, bortezomib (VELCADE®, formerly PS341), has significant anti-tumor activity in several lymphoid malignancies. Reported targets of this broad-based inhibitor include the NF K B pathway (I K B A). Recently defined subtypes of large B-cell lymphoma (LBCL) exhibit constitutive activation of NF K B, prompting us to analyze the efficacy of bortezomib in a panel of 10 DLBCL cell lines. Six of the diffuse LBCL cell lines were sensitive to bortezomib treatment at doses below 10 nM (range IC50 = 2.9 to 6.9 nM) whereas 4 cell lines were resistant at 10 nM (IC50 = 14.8 to 70.2 nM). Baseline proteasomal function, as defined by cleavage of the 20S proteasome-specific fluorogenic peptide LLVY-AMC, was similar in sensitive and resistant DLBCLs; however, the IC50 for bortezomib proteasomal inhibition was somewhat lower in sensitive vs. resistant lines (sens. vs res., p = .04, one-sided t test). Baseline NF K B activity varied widely in the DLBCL cell lines and did not differ in cell lines that were sensitive vs. resistant to bortezomib. Ten nM bortezomib did not inhibit NF K B activity in resistant DLBCL cell lines whereas the same dose reduced NF K B activity in sensitive DLBCL cell lines (sens. vs. res., p < .005, rank test [Mann-Whitney]). However, 5 of 6 sensitive DLBCL cell lines had very low baseline NF K B levels (< 0.5 relative absorbance units) suggesting that NF K B inhibition was not a major factor in bortezomib response and prompting further analysis of additional bortezomib targets. Three sensitive and 1 resistant DLBCL cell line were selected for detailed analyses of transcriptional profiles following bortezomib treatment. We developed an algorithm for identifying genes that were significantly up- or down-regulated in the bortezomib-sensitive cell lines but unchanged in the resistant line. In addition, we utilized gene set enrichment analysis (GSEA) and gene ontogeny (GO) termed enrichment to interpret the molecular signatures of response. Genes down-regulated in response to bortezomib included critical B-cell transcription factors, components of the B-cell receptor signaling cascade and genes regulating mitosis and cell cycle control; up-regulated genes included heat shock proteins (HSP) and multiple proteasomal components. Consistent with the functional data, down-regulation of NF K B target genes was not a common feature in all bortezomib-sensitive cell lines. In contrast, target genes of the c-MYC transcription factor were significantly down-regulated and c-MYC activity was decreased in sensitive (but not resistant) DLBCL cell lines following bortezomib treatment (sens. vs. res., p < .005, rank test). Taken together, the results provide insights into likely mechanisms of action of bortezomib in DLBCL, highlighting c-MYC as a potentially important target and identifying HSP as a complementary target to overcome bortezomib resistance.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 346-346
Author(s):  
Elaine Y. Chung ◽  
Diana Cozma ◽  
Duonan Yu ◽  
Michael Dews ◽  
Erik A. Wentzel ◽  
...  

Abstract We have recently demonstrated that Pax5 promotes B-lymphomagenesis by upregulating key components of B-cell receptor signaling [Cozma et al, J Clin Inv, 117 (8), 2007]. Gene regulation by Pax5 often involves complex formation with other oncogenic transcription factors of the Ets family, namely Myb and Ets1. We determined that expression of these proteins themselves depends on the presence of Pax5, as seen in human diffuse large B-cell lymphomas with Pax5 knockdown and murine lymphomas with epigenetic silencing of Pax5 [Yu et al, Blood, 101:1950–1955, 2003; Johnson et al, Nat Immunol, 5:853–861, 2004]. Upon reconstitution with the Pax5 gene, Myb and Ets1 levels increase sharply. This occurs with little increase in steady-state mRNA levels, suggesting post-transcriptional regulation, possibly by microRNAs. To test this hypothesis, we compared miRNA profiles of Pax5-deficieint and sufficient cells and discovered that several miRNAs are indeed repressed by Pax5. Among them is the miR-15a/16-1 cluster whose predicted targets include both Myb and Ets1. Consistent with this prediction, forced expression of miR-15a/16 brings down Myb and Ets1 protein levels. This is accompanied by impaired Pax5 function and overall suppression of B-lymphomagenesis. Thus, Ets family members (along with previously identified bcl-2) are key targets of the miR-15a/16 locus, a tumor suppressor in chronic lymphocytic leukemia. Interplay between Pax5, Myb/Ets1, and miR-15a/16-1. (A) Upregulation of Myb and Ets 1 in tumors over-expressing Pax5ER fusion, as compared to control GFP-only neoplasms. (B) Down-regulation of Myb and Ets1 in Pax5 tumors engineered to over-express the miR-15a/16-1 cluster. All panels depict Western blotting. Interplay between Pax5, Myb/Ets1, and miR-15a/16-1. (A) Upregulation of Myb and Ets 1 in tumors over-expressing Pax5ER fusion, as compared to control GFP-only neoplasms. (B) Down-regulation of Myb and Ets1 in Pax5 tumors engineered to over-express the miR-15a/16-1 cluster. All panels depict Western blotting.


Sign in / Sign up

Export Citation Format

Share Document