Endoglin Identifies the First Wave of Hematopoietic Progenitors During Embryogenesis.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1600-1600
Author(s):  
Luciene Borges ◽  
Michelina Iacovino ◽  
June Baik ◽  
Tim Mayerhofer ◽  
Michelle Letarte ◽  
...  

Abstract Abstract 1600 Endoglin (Eng), an ancillary receptor for several members of the Transforming Growth Factor (TGF)-beta superfamily, plays a critical role in early development. Eng-/- embryos dye around 10.5 dpc due primarily to vascular and cardiac abnormalities. Yolk sacs (YS) of 9.5 dpc Eng-/- embryos present abnormal vasculature and anemia. However, the mechanism by which endoglin leads to an anemic phenotype is unclear. Using in vitro differentiation of Eng-/- ES cells, we have previously demonstrated that endoglin is required for proper hemangioblast and primitive hematopoietic development. To test the hypothesis that endoglin might have a direct effect on blood formation, here we investigated the role of endoglin during hematopoiesis in vivo. We first evaluated YS from 9.5 dpc Eng-/- embryos and observed significantly reduced numbers of hematopoietic colony-forming cells (CFCs), in particular GEMMs and BFU-Es, when compared to both Eng+/− and Eng+/+ embryos. Real-time PCR analysis revealed decreased expression of embryonic globin, Gata-1, and SCL in the mutant YS. We then investigated the function of endoglin in wild-type mice by sorting the endoglin positive and negative population from E7.5 to 9.5 CD1 mouse embryos. When cultured on the stromal cell line OP9 in the presence of hematopoietic cytokines, only cell cultures derived from the Eng+ fraction gave rise to hematopoietic progenitors, as evidenced by colony assays and FACS analyses. Engneg cells did not produce any hematopoietic colonies. We then separated cells into 4 fractions using Eng and Flk-1, and found that from E7.5-9.5, the hematopoietic progenitor activity resided in the Eng+Flk-1+ double-positive fraction. FACS and microarray analyses of the 4 fractions in E7.5 embryos demonstrated that the Eng+Flk-1+ fraction highly expresses both endothelial and hematopoietic markers, including VE-Cadherin, Tie-2, PECAM1, Gata-1, SCL, and Lmo2, indicative of hemogenic endothelial potential. Taken together, our findings demonstrate that endoglin marks the first wave of hematopoietic progenitors during development, pointing to a defined role for endoglin in the specification of YS hemogenic endothelium as early as E7.5, in addition to its well defined role in vascular branching and remodeling. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 525-525
Author(s):  
Colles Price ◽  
Ping Chen ◽  
Zejuan Li ◽  
Yuanyuan Li ◽  
Anissa Wiley ◽  
...  

Abstract Abstract 525 Acute leukemia represents one of the most deadly cancers in the United States. Clinical treatments in leukemia have progressed significantly through the use of therapies targeted specifically to chromosomal translocations. The success of these therapies has provided a model for future treatment in various cancers. However, there are various subtypes of leukemia where five-year survival and relapse rates have poor clinical outcome, indicating that new therapies are needed. A particular leukemia subtype, namely mixed lineage leukemia (MLL)-rearranged leukemia that is a result of chromosomal rearrangements leading to fusions between MLL and partner genes, is associated with a dismal outcome. Therapeutic targeting of MLL rearrangements has proven challenging as there have been dozens of described rearrangements. An emerging hallmark of cancer is the deregulation of non-coding RNAs called microRNAs (miRs). We hypothesized that MLL-associated leukemias have aberrant microRNA expression. We performed microRNA microarray analyses on leukemia patient samples and showed that microRNA-9 (miR-9) is highly upregulated in MLL-associated leukemias. We discovered that expression of miR-9 enhances cell transformation in vitro and tumorigenesis in vivo, and the opposite is true when miR-9 function is inhibited by anti-miR sponges. Interestingly, we observed that mice transplanted with both MLL-AF9 and miR-9 had a significantly higher amount of blast-like cells and immature cells in the bone marrow and fewer in the peripheral blood compared to mice transplanted with MLL-AF9 alone. Furthermore, inhibition of miR-9 function causes a significant defect in stem cell self-renewal and myeloid differentiation. Thus, this suggests that miR-9 has a critical role in stem cell potentiation and myeloid promotion in MLL-associated leukemias. To investigate target genes of miR-9, we correlated microarray expression of miR-9 and those of its putative target genes predicted with multiple prediction algorithms. We identified six potential target genes that exhibit a significantly inverse correlation of expression with miR-9 and are inhibited in MLL-associated leukemia. These identified genes are Transforming growth factor beta-induced protein (TGFBI), E-cadherin (CDH1), Nuclear factor-kappa-B p105 subunit (NFkB1), Ras homolog gene family member H (RHOH), Ring1 and YY1-binding protein (RYBP) and Foxhead Box O3 (FOXO3), We demonstrated that all these targets genes are inhibited upon expression of miR-9, in vitro and in vivo and blocking miR-9 function rescues their expression. As these target genes affect multiple cell processes such as proliferation, stem cell differentiation, chromatin remodeling, and cellular migration, it appears that miR-9 is a potential master regulator during MLL-associated tumorigenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1494-1494
Author(s):  
Michael D. Milsom ◽  
Akiko Yabuuchi ◽  
George Q. Daley ◽  
David A. Williams

Abstract Abstract 1494 Poster Board I-517 Rac1 is a Rho GTPase involved in integrating signaling pathways that regulate numerous cellular processes including adhesion, migration, proliferation and HSC engraftment. Homozygous deletion of Rac1 is lethal in the murine embryo prior to E9.5 and Rac1−/− embryos demonstrate defective gastrulation associated with reduced epiblast adhesion and motility. We have recently demonstrated using lineage-specific conditional deletion that Rac1 insufficiency results in severely impaired hematopoiesis in the embryonic sites of hematopoiesis (AGM, aortic clusters and fetal liver) in the setting of normal hematopoietic development in the yolk sac (YS) and reduced HSC and progenitors in the fetal circulation. This data appears to support the controversial hypothesis that YS derived HSC seed embryonic sites, but an alternative explanation is that Rac1 is essential for some aspect of the induction of intraembryonic hematopoiesis in situ. Another possibility is that Vav1-Cre-mediated excision of Rac1 occurs prior to the onset of hematopoiesis in the embryo proper but not early enough to affect yolk sac hematopoiesis. To test whether Rac1 insufficiency perturbs the normal early differentiation of hematopoietic cells in vitro, we used a lentivirus expressing a Rac1-specific shRNA to knock down expression in an ES line previously characterized to have good hemogenic potential. We observed that the de novo knockdown of Rac1 expression appeared to have no impact upon derivation of hematopoietic progenitors. To demonstrate that this was not the result of inefficient knockdown of Rac1, we derived Rac1−/− ES lines from blastomeres resulting from the mating of Rac1+/− mice. Rac1−/− ES lines were produced in normal Mendelian ratios (4 Rac1+/+: 9 Rac1+/−: 3 Rac1−/−) and did not demonstrate any evidence of abnormal expansion on murine embryonic fibroblasts. In order to assess the impact of Rac1 deficiency on the hemogenic potential of ES cells, standard in vitro differentiation via embryoid body formation was utilized. Neither Rac1 haploinsufficiency nor complete absence of Rac1 had any impact on the production of CD41+/c-Kit+ hematopoietic progenitors within embryoid bodies (Table 1). Furthermore, colony forming assays demonstrated that Rac1 insufficiency did not alter the relative frequency of hematopoietic progenitor compartments (Table 2). We conclude that in the absence of a requirement for vascular migration of HSC, Rac1 is not required for the specification of definitive hematopoiesis. These data, together with our previously published in vivo data continue to support the hypothesis that HSC migration from the YS to the embryo may be required for development of hematopoiesis in the embryo proper. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3376-3376
Author(s):  
Romain Gioia ◽  
Cedric Leroy ◽  
Claire Drullion ◽  
Valérie Lagarde ◽  
Serge Roche ◽  
...  

Abstract Abstract 3376 Nilotinib has been developed to overcome resistance to imatinib, the first line treatment of chronic myeloid leukemia (CML). To anticipate resistance to nilotinib, we generate nilotinib resistant CML cell lines in vitro to characterize mechanisms and signaling pathways that may contribute to resistance. Among the different mechanisms of resistance identified, the overexpression of the Src-kinase Lyn was involved in resistance both in vitro, in a K562 cell line (K562-rn), and in vivo, in nilotinib-resistant CML patients. To characterize how Lyn mediates resistance, we performed a phosphoproteomic study using SILAC (Stable Isotope Labelling with Amino acid in Cell culture). Quantification and identification of phosphotyrosine proteins in the nilotinib resistant cells point out two tyrosine kinases, the spleen tyrosine kinase Syk and the UFO receptor Axl. The two tyrosine kinase Syk and Axl interact with Lyn as seen by coimmunopreciptation. Syk is phosphorylated on tyrosine 323 and 525/526 in Lyn dependent manner in nilotinib resistant cells. The inhibition of Syk tyrosine kinase by R406 or BAY31-6606 restores sensitivity to nilotinib in K562-rn cells. In parallel, the inhibition of Syk expression by ShRNA in K562-rn cells abolishes Lyn and Axl phosphorylation and then interaction between Lyn and Axl leading to a full restoration of nilotinib efficacy. In the opposite, the coexpression of Lyn and Syk in nilotinib sensitive K562 cells induced resistance to nilotinib whereas a Syk kinase dead mutant did not. These results highlight for the first time the critical role of Syk in resistance to tyrosine kinase inhibitors in CML disease emphasizing the therapeutic targeting of this tyrosine kinase. Moreover, Axl, which is already a target in solid tumor, will be also an interesting pathway to target in CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 485-485
Author(s):  
Firdos Ahmad ◽  
Lucia Stefanini ◽  
Timothy Daniel Ouellette ◽  
Teshell K Greene ◽  
Stefan Feske ◽  
...  

Abstract Abstract 485 Platelet activation is a central event in thrombosis and hemostasis. We recently demonstrated that most aspects of platelet activation depend on synergistic signaling by two signaling modules: 1) Ca2+/CalDAG-GEFI/Rap1 and 2) PKC/P2Y12/Rap1. The intracellular Ca2+ concentration of platelets is regulated by Ca2+ release from the endoplasmic reticulum (ER) and store-operated calcium entry (SOCE) through the plasma membrane. Stromal interaction molecule 1 (STIM1) was recently identified as the ER Ca2+ sensor that couples Ca2+ store release to SOCE. In this study, we compared the activation response of platelets lacking STIM1−/− or CalDAG-GEFI−/−, both in vitro and in vivo. To specifically investigate Ca2+-dependent platelet activation, some of the experiments were performed in the presence of inhibitors to P2Y12. The murine Stim1 gene was deleted in the megakaryocyte/platelet lineage by breeding Stim flox/flox mice with PF4-Cre mice (STIM1fl/fl). STIM1fl/fl platelets showed markedly reduced SOCE in response to agonist stimulation. aIIbβ3 activation in STIM1fl/fl platelets was significantly reduced in the presence but not in the absence of the P2Y12 inhibitor, 2-MesAMP. In contrast, aIIbb3 activation was completely inhibited in 2-MesAMP-treated CalDAG-GEFI−/− platelets. Deficiency in STIM1, and to a lesser extent in CalDAG-GEFI, reduced phosphatidyl serine (PS) exposure in platelets stimulated under static conditions. PS exposure was completely abolished in both STIM1fl/fl and CalDAG-GEFI−/− platelets stimulated in the presence of 2-MesAMP. To test the ability of platelets to form thrombi under conditions of arterial shear stress, we performed flow chamber experiments with anticoagulated blood perfused over a collagen surface. Thrombus formation was abolished in CalDAG-GEFI−/− blood and WT blood treated with 2-MesAMP. In contrast, STIM1fl/fl platelets were indistinguishable from WT platelets in their ability to form thrombi. STIM1fl/fl platelets, however, were impaired in their ability to express PS when adhering to collagen under flow. Consistently, when subjected to a laser injury thrombosis model, STIM1fl/fl mice showed delayed and reduced fibrin generation, resulting in the formation of unstable thrombi. In conclusion, our studies indicate a critical role of STIM1 in SOCE and platelet procoagulant activity, but not in CalDAG-GEFI mediated activation of aIIbb3 integrin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4829-4829
Author(s):  
David C Dorn ◽  
Wei He ◽  
Joan Massague ◽  
Malcolm A.S. Moore

Abstract Abstract 4829 The role of TIF1γ in hematopoiesis is still incompletely understood. We previously identified TIF1γ as a novel binding factor for Smad2/3 in the Transforming Growth Factor-β (TFGβ)-inducible signaling pathway implicated in the enhancement of erythropoiesis. To investigate the function of TIF1γ in regulation of hematopoietic stem cells we abrogated TIF1γ signaling by shRNA gamma-retroviral gene transfer in human umbilical cord blood-derived CD34+ hematopoietic stem/ progenitor cells (HCS/ HPCs). Upon blocking TIF1γ the self-renewal capacity of HSCs was enhanced two-fold in vitro as measured by week 5 CAFC assay and three-fold in vivo as measured by competitive engraftment in NOD/ SCID mice over controls. This was associated with a delay in erythroid differentiation and enhanced myelopoiesis. These changes were predominantly observed after TIF1γ knockdown and only mildly after Smad2 depletion but not after Smad3 or 4 reduction. Our data reveal a role for TIF1γ-mediated signaling in the regulation of HSC self-renewal and differentiation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2332-2332
Author(s):  
Vitalyi Senyuk ◽  
Yunyuan Zhang ◽  
Yang Liu ◽  
Ming Ming ◽  
Jianjun Chen ◽  
...  

Abstract Abstract 2332 MicroRNA-9 (miR-9) is required for normal neurogenesis and organ development. The expression of miR-9 is altered in several types of solid tumors suggesting that it may have a function in cell transformation. However the role of this miR in normal hematopoiesis and leukemogenesis is unknown. Here we show that miR-9 is expressed at low levels in hematopoietic stem/progenitor cells (HSCs/HPCs), and that it is upregulated during hematopoietic differentiation. Ectopic expression of miR-9 strongly accelerates terminal myelopoiesis, while promoting apoptosis in vitro and in vivo. In addition, the inhibition of miR-9 in HPC with a miRNA sponge blocks myelopoiesis. EVI1, required for normal embryogenesis, and is considered an oncogene because inappropriate upregulation induces malignant transformation in solid and hematopoietic cancers. In vitro, EVI1 severely affects myeloid differentiation. Here we show that EVI1 binds to the promoter of miR-9–3 leading to DNA hypermethylation of the promoter as well as repression of miR-9. We also show that ectopic miR-9 reverses the myeloid differentiation block that is induced by EVI1. Our findings suggest that inappropriately expressed EVI1 delays or blocks myeloid differentiation, at least in part by DNA hypermethylation and downregulation of miR-9. It was previously reported that FoxOs genes inhibit myeloid differentiation and prevent differentiation of leukemia initiating cells. Here we identify FoxO3 and FoxO1 as new direct targets of miR-9 in hematopoietic cells, and we find that upregulation of FoxO3 in miR-9-positive cells reduces the acceleration of myelopoiesis. These results reveal a novel role of miR-9 in myelopoiesis and in the pathogenesis of EVI1-induced myeloid neoplasms. They also provide new insights on the potential chromatin-modifying role of oncogenes in epigenetic changes in cancer cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3846-3846
Author(s):  
Ji-Yoon Noh ◽  
Shilpa Gandre-Babbe ◽  
Yuhuan Wang ◽  
Vincent Hayes ◽  
Yu Yao ◽  
...  

Abstract Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent potential sources of megakaryocytes and platelets for transfusion therapy. However, most current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny, including platelet-releasing megakaryocytes. Mutations in the mouse and human genes encoding transcription factor GATA1 cause accumulation of proliferating, developmentally arrested megakaryocytes. Previously, we reported that in vitro differentiation of Gata1-null murine ES cells generated self-renewing hematopoietic progenitors termed G1ME cells that differentiated into erythroblasts and megakaryocytes upon restoration of Gata1 cDNA by retroviral transfer. However, terminal maturation of Gata1-rescued megakaryocytes was aberrant with immature morphology and no proplatelet formation, presumably due to non-physiological expression of GATA1. We now engineered wild type (WT) murine ES cells that express doxycycline (dox)-regulated Gata1 short hairpin (sh) RNAs to develop a strategy for Gata1-blockade that upon its release, restores physiologic GATA1 expression during megakaryopoiesis. In vitro hematopoietic differentiation of control scramble shRNA-expressing ES cells with dox and thrombopoietin (TPO) produced megakaryocytes that underwent senescence after 7 days. Under similar differentiation conditions, Gata1 shRNA-expressing ES cells produced immature hematopoietic progenitors, termed G1ME2 cells, which replicated continuously for more than 40 days, resulting in ~1013-fold expansion (N=4 separate experiments). Upon dox withdrawal with multi-lineage cytokines present (EPO, TPO, SCF, GMCSF and IL3), endogenous GATA1 expression was restored to G1ME2 cells followed by differentiation into erythroblasts and megakaryocytes, but no myeloid cells. In clonal methylcellulose assays, dox-deprived G1ME2 cells produced a mixture of erythroid, megakaryocytic and erythro-megakaryocytic colonies. In liquid culture with TPO alone, dox-deprived G1ME2 cells formed mature megakaryocytes in 5-6 days, as determined by morphology, ultrastructure, acetylcholinesterase staining, upregulated megakaryocytic gene expression (Vwf, Pf4, Gp1ba, Selp, Ppbp), CD42b surface expression, increased DNA ploidy and proplatelet production. Compared to G1ME cells rescued with Gata1 cDNA retrovirus, dox-deprived G1ME2 cells exhibited more robust megakaryocytic maturation, similar to that of megakaryocytes produced from cultured fetal liver. Importantly, G1ME2 cell-derived megakaryocytes generated proplatelets in vitro and functional platelets in vivo (~40 platelets/megakaryocyte with a circulating half life of 5-6 hours). These platelets were actively incorporated into growing arteriolar thrombi at sites of laser injury and subsequently expressed the platelet activation marker p-selectin (N=3-4 separate experiments). Our findings indicate that precise timing and magnitude of a transcription factor is required for proper terminal hematopoiesis. We illustrate this principle using a novel, readily reproducible strategy to expand ES cell-derived megakaryocyte-erythroid progenitors and direct their differentiation into megakaryocytes and then into functional platelets in clinically relevant numbers. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 298 (4) ◽  
pp. F1006-F1017 ◽  
Author(s):  
Li Zhou ◽  
Ping Fu ◽  
Xiao Ru Huang ◽  
Fei Liu ◽  
Arthur C. K. Chung ◽  
...  

Aristolochic acid nephropathy (AAN) has become a worldwide disease and is the most severe complication related to the use of traditional Chinese medicine. However, the pathogenic mechanisms of AAN remain unclear and therapies are limited. The present study tested the hypothesis that transforming growth factor (TGF)-β/Smad3 may be a key pathway leading to chronic AAN. This was examined in vivo in Smad3 wild-type/knockout (WT/KO) mice and in vitro in tubular epithelial cells with knockdown of Smad2 or Smad3. Results revealed that chronic administration of aristolochic acid (AA) resulted in a severe AAN characterized by progressive renal dysfunction and tubulointerstitial fibrosis including epithelial-mesenchymal transition (EMT) in Smad3 WT mice, but not in Smad3 KO mice, suggesting a critical role for Smad3 in the development of AAN. This was further tested in vitro. We found that AA was able to activate Smad signaling to mediate EMT and renal fibrosis via both TGF-β-dependent and JNK/MAP kinase-dependent mechanisms because blockade of JNK and specific knockdown of Smad3, but not Smad2, were able to attenuate AA-stimulated collagen matrix expression and EMT. In conclusion, TGF-β/Smad3 may be an essential mediator for chronic AAN. Results from this study indicate that specific blockade of the TGF-β/Smad3 signaling pathway may have therapeutic potential for chronic AAN.


2004 ◽  
Vol 379 (3) ◽  
pp. 749-756 ◽  
Author(s):  
Anouchka SKOUDY ◽  
Meritxell ROVIRA ◽  
Pierre SAVATIER ◽  
Franz MARTIN ◽  
Trinidad LEÓN-QUINTO ◽  
...  

Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor β, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation.


1999 ◽  
Vol 189 (11) ◽  
pp. 1691-1698 ◽  
Author(s):  
Noboru Motoyama ◽  
Tohru Kimura ◽  
Tomomi Takahashi ◽  
Takeshi Watanabe ◽  
Toru Nakano

bcl-x is a member of the bcl-2 gene family, which regulates apoptotic cell death in various cell lineages. There is circumstantial evidence suggesting that bcl-x might play a role in the apoptosis of erythroid lineage cells, although there is no direct evidence. In this study, we used Bcl-X null mouse embryonic stem (ES) cells, and showed that Bcl-X is indispensable for the production of both embryonic primitive erythrocytes (EryP) and adult definitive erythrocytes (EryD) at the end of their maturation. In vivo, bcl-x−/− ES cells did not contribute to circulating EryD in adult chimeric mice that were produced by blastocyst microinjection of the bcl-x−/− ES cells. bcl-x−/− EryP and EryD were produced by in vitro differentiation induction of ES cells on macrophage colony-stimulating factor–deficient stromal cell line OP9, and further analysis was carried out. The emergence of immature EryP and EryD from bcl-x−/− ES cells was similar to that from bcl-x+/+ ES cells. However, prominent cell death of bcl-x−/− EryP and EryD occurred when the cells matured. The data show that the antiapoptotic function of bcl-x acts at the very end of erythroid maturation.


Sign in / Sign up

Export Citation Format

Share Document