Dysregulation of TNFα-Induced Necroptotic Signaling In Chronic Lymphocytic Leukemia: Suppression of CYLD Gene by LEF1

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 377-377 ◽  
Author(s):  
Peng Liu ◽  
Bei Xu ◽  
Jianyong Li

Abstract Abstract 377 Impaired cell death program has been noted as one of the hallmarks of Chronic lymphocytic leukemia (CLL) and contributes to its accumulation of malignant monoclonal B cells as well as to chemotherapy resistance. A cell can die through apoptosis or necrosis pathway. While apoptosis is known as a regulated cellular program, necrosis is known as an accidental event caused by overwhelming stress. However, accumulating evidence suggests that necrosis can also be executed by regulated mechanisms, especially in apoptotic-deficient conditions. Recently, the term necroptosis has been used to designate one particular form of programmed necrosis induced by stimulating death receptors with agonists such as TNFα, FasL, and TRAIL. Apoptosis suppression by caspase inhibitors such as zVAD may switch apoptotic response to necroptosis or enhance necroptosis. In contrast to well-characterized apoptotic pathway, the detailed molecular mechanisms underlying necroptosis are still not fully understood. A genome wide siRNA screen revealed two members of the receptor interacting protein (RIP) kinase family, RIP1 and RIP3P, to be essential for necroptosis. Upon stimulation of death receptors, RIP3 is recruited to RIP1 to form a necroptosis-inducing complex which is essential for cell death execution. The deubiquitinase cylindromatosis (CYLD) is recruited to TNFα receptor upon its activation and directly regulates RIP1 ubiquitination. In addition, by activating key enzymes of metabolic pathways, RIP3 regulates TNFα-inducing mitochondrial reactive oxygen species (ROS) production, which partly accounts for its ability to potentiate necroptosis. Until now, much less is known about the significance of necroptosis in malignant disease. Here we demonstrate that primary CLL cells failed to undergo necroptosis upon stimulation of TNFα combined with pan-caspase inhibitor zVAD. Upon TNFα+zVAD stimulation, normal CD19+ B cells increased ROS production > 8 fold, while same treatment only resulted in ∼ 2 fold induction in ROS generation in CLL samples. Two core components of necroptotic machine, RIP3 and CYLD, are markedly down-regulated in CLL compared with normal B cells, at both protein and transcription levels. Moreover, we identified LEF1, a downstream effector of Wnt/β-catenin pathway, as a transcription repressor of CYLD in CLL. LEF1 is highly expressed in CLL cells, whereas normal B cells have very low levels of LEF1 expression. Attenuation of LEF1 expression through RNAi technology resulted in a dramatic increase in CYLD levels in CLL cells, as determined by western blot and real time RT-PCR analysis. Dual-luciferase assays showed that forced expression of LEF1 markedly decreased CYLD promoter activity compared with controls. Mutation of LEF1 responsive elements (LERs) on CYLD promoter significantly abolished transcriptional repression of CYLD by LEF1. Chromatin immunoprecipitation assays showed that LEF1 is recruited to LER region within the CYLD promoter in CLL cells. Additionally, Knocking down LEF1 sensitizes CLL cells to TNFα-induced necroptosis. The present investigation provides the first evidence that CLL cells have defects not only in apoptotic program but also in necroptotic signaling. Targeting the key regulators of necroptotic machine such as LEF1 to restore this pathway may represent a novel approach for CLL treatment. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1361-1361
Author(s):  
Gerardo Ferrer ◽  
Kate E Hodgson ◽  
Victor Ciria ◽  
Gael Roue ◽  
Dolors Colomer ◽  
...  

Abstract Abstract 1361 The two TNF family proteins (B-cell activating factor [BAFF] and a proliferation-inducing ligand [APRIL]) and their three receptors (transmembrane activator and CAML interactor [TACI], B-cell maturation antigen [BCMA], and BAFF receptor [BAFF-R]) play a critical role in the process of differentiation, maturation and survival of normal B cells. Additionally, recent studies indicate that activation or inhibitory signals can modulate the sensitivity of normal B cells to BAFF and APRIL through the regulation of their receptors. In chronic lymphocytic leukemia (CLL), BAFF and APRIL have been shown to increase survival of neoplastic B cells in vitro. We investigated whether stimulation of CLL cells through the B cell receptor (BCR) or CD40 ligation could regulate the expression of BAFF-R, TACI and BCMA and enhance BAFF and APRIL sensitivity. Purified B cells were obtained from 23 CLL patients and nine healthy controls. Receptor expression was measured by flow cytometry at baseline and at 48 hours after stimulation with F(ab’)2 antihuman IgM (10 μg/ml) and CD40L (500ng/ml) plus IL-4 (20ng/ml). Cell activation and viability, as assessed by labeling CD69 and Annexin V/TO-PRO-3, were evaluated at 48, and at 72 hours after co-stimulation with either soluble BAFF (100ng/ml) or APRIL (500ng/ml). Baseline analyses showed that BAFF-R was the most highly expressed receptor in CLL cells and normal B cells (Mean fluorescence intensity (MFI) ratios, 213.5 and 185.8, respectively). TACI and BCMA were also expressed in all CLL cells and normal B cells (MFI ratios TACI: 2.5 and 1.9; BCMA: 14.8 and 6.6, respectively), but at a significantly lower level than BAFF-R (p<0.001). Furthermore, BCMA MFI ratio was significantly higher in CLL than in normal B cells (p=0.015). After 48h of culture, an increase of all three receptors was observed in normal B cells in response to either BCR stimulation or CD40 ligation. In contrast, in CLL cells BCR stimulation induced almost no variation in the receptors expression in all cases. This was accompanied by a failure of cell activation and a significant decreased viability of CLL cells (from 36% to 24% p=0.013). By contrast, CD40 ligation in CLL cells induced a significant upregulation of TACI expression (p=0.007) and a significant reduction of BCMA (p=0.007), which correlated with an increase of CLL cell activation and viability (p<0.001). BAFF-R levels did not change. The addition of exogenous soluble BAFF or APRIL showed increase in the viability of normal B cells at 72 hours independently of whether cells were unstimulated or stimulated through the BCR or by CD40 ligation. In CLL cells, however, the viability was significantly increased in CD40-stimulated cells whereas in either unstimulated or BCR-stimulated CLL cells, the addition of BAFF and APRIL had a modest effect on viability (Table). These findings indicate that stimulation of CLL cells through the BCR and CD40 modifies the sensitivity of CLL cells to respond to BAFF and APRIL which reflects the regulation of BCMA, TACI and BAFF-R. In contrast to normal B cells, CD40-ligation in CLL cells upregulated only TACI expression. The fact that the addition of CD40L plus IL-4 and BAFF increased viability in CLL cells while BAFF alone had almost no effect may be related to the ability of CD40 ligation to increase TACI expression. Although BCR stimulation failed to increase the expression of the receptors, co-stimulation by BAFF plus BCR increased viability in CLL cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2382-2382
Author(s):  
Sanne H. Tonino ◽  
Jacoline M van Laar ◽  
Marinus H. J. van Oers ◽  
Jean Y.J. Wang ◽  
Eric Eldering ◽  
...  

Abstract Abstract 2382 Poster Board II-359 Although recent advances in treatment-strategies for chronic lymphocytic leukemia (CLL) have resulted in increased remission rates and response duration, the disease eventually relapses, which necessitates repeated cycles of therapy. Eventually most patients develop chemo-resistant disease which infers a very poor prognosis. The activity of purine-analogs and alkylating agents, the backbone of current treatment regimens, depends on functional p53 and chemo-resistance is highly associated with a dysfunctional p53-response. P53-independent sensitization of CLL cells to these compounds could represent a novel strategy to overcome chemo-resistance. Platinum-based compounds have been successfully applied in relapsed lymphoma and recently also in high-risk CLL. In various cancer-types, the activity of such compounds has been found to be p53-independent and in part mediated by p73. In this study we investigated the efficacy and mechanism of action of platinum-based compounds in chemo-refractory CLL. Neither cisplatinum nor oxaliplatin as a single agent induced cell death in clinically relevant doses. However, independent of p53-functional status, platinum-based compounds acted synergistically with fludarabine, which was found to be caspase-dependent. Combination-treatment resulted in strong upregulation of the pro-apoptotic BH3-only protein Noxa. We did not find evidence for a role of p73; however, the observed synergy was found to involve generation of reactive oxygen species (ROS). Co-treatment with ROS-scavengers completely abrogated Noxa-upregulation and cell-death upon combination treatment in p53-dysfunctional CLL. Noxa RNA-interference markedly decreased sensitivity to combination treatment, supporting a key role for Noxa as mediator between ROS signaling and apoptosis induction. In addition to these findings, we tested the effects of platinum-based compounds and fludarabine on drug-resistance resulting from CD40-ligand stimulation of CLL cells, which represents a model for CLL cells in the protective micro-environment of the secondary lymph node-tissue (Hallaert et al Blood 2008 112(13):5141). Combination treatment could overcome CD40-ligand induced chemo-resistance and was, at least in part, mediated by the generation of ROS and marked induction of expression of Noxa. Our data indicate that interference with the cellular redox-balance represents an interesting target to overcome drug resistance due to both p53-dysfunction as well as micro-environmental protective stimuli in CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3593-3593
Author(s):  
Sonal C. Temburni ◽  
Ryon M. Andersen ◽  
Luke Janson ◽  
Xiao-Jie Yan ◽  
Barbara Sherry ◽  
...  

Abstract Abstract 3593 Unlike other hematologic disorders, chronic lymphocytic leukemia(CLL) exhibits remarkable heterogeneity in the rates of disease progression among cases. CLL cells survive by receiving signals from the microenvironment via various receptors: B-cell antigen receptor (BCR), Toll-like receptors (TLRs) and cytokine and chemokine receptors. We previously reported that CLL clones with somatically mutated IGHVs and high (≥30%) percentage of CD38 expressing cells have the highest percentage of CCR4-expressing cells. To further explore the functional contribution of the CCR4:CCL17 axis in CLL, we studied CCL17-induced chemotactic behavior in 16 CLL cases. In transwell cultures we observed a bimodal migratory response to CCL17 at 2 doses in a dose range of 0.78– 25ng/ml, in ~60% of cases; the remaining cases showed maximal migration at a single dose (1.56 or 3.12ng/ml). A comparison of phenotypes of the migrated and non-migrated cell populations was undertaken in 10 cases, analyzing CXCR3, CXCR4, CCR4 and CCR7 that are involved in homing of cells to sites favoring growth, and CD31, CD38 and CD69, activation related molecules. The migrated cells consistently showed significantly higher percentages and densities of CD38 expression than the non-migrated cells suggesting a role for CD38 in the CCR4-mediated downstream pathway. CCR4 ligand, CCL17, is constitutively expressed in the thymus and is produced by dendritic cells, endothelial cells, keratinocytes and fibroblasts, whereas CCL22 is produced by tumor cells and the tumor microenvironment. Serum levels of both these ligands in untreated patients were quantified by ELISA. CCL17 levels ranged between 45-1, 229 pg/ml in U-CLL cases (n=23) and between 43-1, 418 pg/ml in M-CLL cases (n=30). CCL22 levels ranged between 121-5, 497 pg/ml in U-CLL cases (n=23) and 409-5, 502 pg/ml in M-CLL cases (n=30). The percentages of CCR4- expressing B cells directly correlated with percentages of T cells expressing CCR4 in individual cases, whereas they inversely correlated with both, serum levels of CCL17 (p< 0.01) and CCL22 (p< 0.05). CCL17 produced by DCs in peripheral organs may exert an accessory role in BCR- and TLR-9-mediated immune responses in B cells. We therefore tested if CCL17 supported BCR- and TLR-mediated proliferative responses in a cohort of 31 (16 U-CLL and 15M-CLL) CLL cases. CCL17 augmented BCR-mediated B-cell proliferation in 9/16 (56%) U-CLL cases, but only in 3/15 (20%) M-CLL cases. On the other hand, CCL17 showed an additive effect in promoting TLR-9-mediated cell proliferation in 13/15 (87%) M-CLL cases at a dose of 2ng/nl (approximating that detected in serum); it also augmented TLR-9 mediated B cell proliferation in 6/16 U-CLL cases but at a 5-fold or higher dose (10-25 ng/ml). In a subset of this cohort (8 cases) CCL17-induced modulation of molecules involved in the apoptotic process was studied. We found upregulation of anti-apoptotic proteins Mcl-1 and Bcl2 and down-regulation of pro-apoptotic molecules Bim, PUMA, and Bid in 5 of these cases. The pro-survival effects of CCL17 were partially abrogated by the blocking anti-CCR4 mAb (1G1). Taken together, these findings suggest that CCL17 plays a role in modulating TLR-9-mediated signaling and migration in CLL. Therefore, inhibition of CCR4:CCL17 interaction in vivo represents a novel therapy by preventing migration of CLL cells towards an environment that promotes their survival. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4142-4142
Author(s):  
Rajendra N Damle ◽  
Sonal Temburni ◽  
Ryon M. Andersen ◽  
Jacqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the clonal amplification of CD5-expressing B cells that appear to develop and evolve based on signals from the microenvironment. In vitro and in vivo evidence suggests that the B-cell antigen receptor (BCR) and Toll-like receptors (TLRs) may be keys to this stimulation. Because clonal turnover can lead to the release of naked nuclear material into the cellular microenvironment, these remnants of dying/dead cells may contribute to disease progression by repeated low level T-independent activation of CLL cells through the combination of the BCR and TLRs. To test this hypothesis, we assessed TLR9-driven or BCR + TLR9-driven CLL B-cell activation, focusing on its impact on telomerase activation in CLL cells, which is known to be important in the disease and which we have shown to be selectively activated by BCR stimulation in Ig V-unmutated (U-CLL) clones but not in Ig V-mutated (M-CLL) clones. B cells, isolated by negative selection from peripheral blood of IgM+ CLL patients and cryopreserved until use, were cultured for 16 hr without/ with TLR9 agonist, ODN 2006, alone and were assayed for apoptosis using Annexin V and flow cytometry. To study the relative contribution of simultaneous TLR9 activation and BCR activation, B cells were exposed to ODN2006 alone or HB57dex (monoclonal anti IgM Ab conjugated onto dextran) alone or a combination of the two reagents. Extracts from cells cultured for a period of 3 days were assayed for functional telomerase activity using TRAP. Parallel cultures of B cells exposed to the same stimuli were harvested at day 3 and assayed for cell activation and proliferation, which was assessed by 3H thymidine incorporation. CLL cells cultured with ODN2006 exhibited significant apoptosis within 16 hours in 6/12 cases. However at day 3, the same stimulus elicited significant increases in percentages of CD69-expressing cells and densities of HLA-DR in all CLL cases studied. As compared to BCR activation, which upregulates telomerase activity in U-CLL only, TLR9-mediated activation of CLL induced telomerase activation in all CLL cases. Furthermore, ODN2006 elicited significantly higher induction of telomerase activity in M-CLL cases compared to U-CLL cases (p=0.01). In addition, in M-CLL cases, simultaneous activation via TLR9 and BCR significantly upregulated the telomerase activity (p=0.05) that was induced by TLR9 activation alone. IRAK-1/4 inhibitor down modulated both TLR9 mediated and TLR9 +BCR mediated telomerase activity to a greater extent in M-CLL cases than in U-CLL cases. TLR9 activation of CLL cells induced a 3.75 + 0.8 fold (range 1.1 to 19.6; n=32) increase in cell proliferation. When segregated by Ig V mutation, U-CLL cells (n=16) responded significantly better (6.0 + 1.6 fold) compared to M-CLL cells (2.1 + 0.3 fold, n=16; p=0.03). However, co-stimulation of cells via their BCR significantly increased TLR-mediated responses only in M-CLL cases (from 2.3 + 0.4 fold to 5.4 + 1.7 fold; p=0.05). IRAK-1/4 inhibitor did not exert a significant effect on TLR9 mediated cell proliferation in either the U-CLL or M-CLL cases. Co-culture of CLL cells with human stromal cells, HS5, further upregulated the concerted TLR9 + BCR induced proliferative responses in 70% of the cases studied. Together, these results indicate that simultaneous stimulation of CLL cells via both their TLR9 and BCR molecules positively impacts on telomerase activity in all patients studied. Since telomerase is crucial in maintaining longevity of repeatedly stimulated cells, this could represent a mechanism for worse clinical outcome in CLL. These studies stress the need for devising therapeutic agents or combinations thereof to effectively target multiple pathways downstream of these signaling receptors and to ultimately eradicate newly evolving CLL cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5278-5278
Author(s):  
Agnieszka Bojarska-Junak ◽  
Iwona Hus ◽  
Anna Dmoszynska ◽  
Jacek Rolinski

Abstract Chronic lymphocytic leukemia (CLL) is characterized by a very heterogeneous clinical course, which is slow and indolent in most of the patients, however some patient experience rapid disease progression and anticancer therapy is required shortly after the diagnosis. Many issues in CLL development and progression are still unclear. The functional consequences of CD1d expression on tumour cells are not well understood. However, increasing evidence suggests that they may affect iNKT cells.The role of CD1d expression in CLL immunopathogenesis remains undefined. In this study, we investigated the potential role of CD1d in CLL by analyzing the level of CD1d expression on leukemic B cells in peripheral blood of120 patients and assessed its correlation with prognostic markers such as ZAP-70 and CD38 expression, Rai stages and unfavourable cytogenetic changes.Measuring CD1d expression by flow cytometry and qRT-PCR, we showed lower CD1d molecule and CD1d mRNA expression in B cells of CLL patients than of healthy controls. The frequency of CD1d+/CD19+ cells, CD1d staining intensity and CD1d transcript levels increased with the disease stage. CD1d expression was positively associated with ZAP-70 and CD38 expressions as well as with unfavourable cytogenetic changes (17p deletion, 11q deletio),. We established the relationship between high CD1d expression and shorter time to treatment and overall survival. The percentage of CD1d+/CD19+cells inversely correlated with the percentage of iNKT cells. iNKT cells ζ-chain expression was downregulated in the high-CD1d group.These results suggest that high CD1d expression is associated with poor prognosis of CLL and might be involved in disease progression. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 668-668
Author(s):  
Phuong-Hien Nguyen ◽  
Nina Reinart ◽  
Michael Hallek

Abstract The Src family kinase Lyn is predominantly expressed in B cells and plays a central role in initiating B cell receptor (BCR) signaling. Lyn is associated with BCR complexes and is renowned for its role in B cell activation and proliferation. Active Lyn contributes to positive regulation of signalling through tyrosine phosphorylation of components of the BCR. Intriguingly, Lyn was also shown as a negative regulator of BCR signal transduction. Lyn plays an essential role in negative regulation of signalling through its unique ability to phosphorylate immunoreceptor tyrosine based inhibition motifs (ITIM) in inhibitory cell surface receptors. ITIM phosphorylation induces the recruitment of inhibitory phosphatases such as SHP-1/2 and SHIP-1, which attenuate BCR signalling. Lyn-deficient mice have reduced number of B cells and increased numbers of myeloid progenitors. It was reported that expression and activity of Lyn in human chronic lymphocytic leukemia (CLL) is elevated compared to healthy B cells. Besides, higher levels of Lyn are associated with a shorter treatment-free survival of CLL patients. This rises up a hypothesis about Lyn’s significant role in B cell tumorigenesis, malignant transformation of B cells, and the balance between myeloid cells and B lymphocytes. We generated Eµ-TCL1 transgenic LYN-deficient mice (TCL1+/wtLYN-/-) and monitored them in order to identify the population of malignant B cells and to characterize the development of malignant cells in these mice in comparison with Eµ-TCL1 transgenic mice (TCL1+/wtLYNwt/wt). In comparison to TCL1+/wtLYNwt/wt mice, TCL1+/wtLYN-/- mice show a significantly reduced number of malignant B cells in the peripheral blood, as well as a reduced leukocyte count. Besides, TCL1+/wtLYN-/- mice have significantly decreased infiltration of malignant B cells in lymphoid tissues such as spleen, liver, lymph node and bone marrow. This result is also resembled in a hepato-splenomegaly in the TCL1+/wtLYNwt/wt mice. These mice develop severe splenomegaly and hepatomegaly due to infiltration of malignant cells, while TCL1+/wtLYN-/- mice do not develop hepatomegaly. The non-transgenic LYN-/- control mice develop splenomegaly due to infiltration of myeloid cells. Although TCL1+/wtLYN-/- mice have hindered development of TCL1-induced CLL, preliminary data suggest it is not only due to LYN-deficiency in B cell compartment of these mice. Indeed, B cell of TCL1+/wtLYN-/- mice show enhanced proliferation and better survival ex vivo compared to TCL1+/wtLYNwt/wt mice. Notably, TCL1+/wtLYN-/- mice developed a skewed microenvironment which might contribute to CLL down regulation. LYN-/- microenvironment, particularly in aged mice, does not support engraftment of TCL1-induced leukemic B cell as well as LYNwt/wt mice in our transplantation model. These results point to a complex regulation of Lyn signalling in CLL involving not only leukemic cells but also cells of the micromillieu, that needs further investigation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4131-4131
Author(s):  
Stefania Gobessi ◽  
Binu K Sasi ◽  
Luca Laurenti ◽  
Dimitar G Efremov

Abstract Serum IgM would be expected to bind chronic lymphocytic leukemia B cells through two different mechanisms. The first mechanism is via interactions between the immunoglobulin heavy chain CDR3 of the leukemic B cell receptors (BCRs) and internal epitopes located in the FR2 and FR3 regions of serum IgM molecules, analogous to the recently identified cell-autonomous BCR-BCR interaction. The latter interaction represents a general feature of human CLL BCRs and was recently shown to be positively selected during leukemia development in the Eμ-TCL1 transgenic murine model. The second mechanism is by binding of serum IgM to the recently identified Fc receptor for IgM (FcμR), which is overexpressed on CLL B cells. In the present study we investigated the consequences of the interaction between serum IgM and CLL cells. Incubation of CLL cells with Alexa488-conjugated human IgM resulted in strong cell surface labeling, confirming that IgM binds to CLL cells. Binding was substantially inhibited by preculture of CLL cells with Fcμ, suggesting that IgM interacts with CLL B cells primarily through the FcμR. To investigate whether IgM also binds to the leukemic BCRs, we analyzed activation of downstream BCR signaling pathways and expression of a well-defined set of BCR-target genes (Herishanu Y et al, Blood. 2011;117:563-74) in CLL cells cultured in the presence or absence of purified IgM. After three hours in culture with polyclonal or monoclonal human IgM, 5 of the 7 investigated BCR target genes (OAS3, RGS1, GFI1, CCND2 and KLF4) showed a 2- to 9-fold increase with respect to unstimulated CLL cells, whereas the remaining two genes (EGR1 and EGR2) were not induced. The induced BCR target genes were also upregulated to an equal or even greater extent by Fcμ, suggesting that these effects are primarily or exclusively caused by binding of IgM to the FcμR. Analysis of downstream signaling events, such as SYK and ERK phosphorylation, also showed similar induction by IgM and Fcμ. However, intracellular Ca2+ flux was induced to a substantially greater extent with IgM, suggesting that certain effects are mediated by a direct interaction between serum IgM and the leukemic cell BCRs. Since co-ligation of the FcμR was recently shown to enhance the survival of anti-IgM-stimulated murine B lymphocytes (Ouchida R et al, J Immunol. 2015;194:3096-101), we investigated the consequences of IgM binding on CLL cell survival. CLL cells from 18 patients were cultured with or without purified human IgM for 72 hours and then analyzed by Annexin V/PI staining. A modest but significant increase in the percentage of viable CLL cells was observed in the presence of IgM (percentage of viable CLL cells without IgM: 40.5±17.8; with IgM: 43.8±18.4; P =0.016), which was replicated in a smaller series of samples cultured with Fcμ (n=12, percentage of viable CLL cells without Fcμ: 41.1±17.8; with Fcμ: 49.5±15.6; P =0.019). Altogether, these data suggest that binding of serum IgM results in activation of prosurvival pathways in CLL cells and that this effect is most likely mediated by co-triggering the FcμR and BCR. Disclosures No relevant conflicts of interest to declare.


PLoS Medicine ◽  
2015 ◽  
Vol 12 (3) ◽  
pp. e1001796 ◽  
Author(s):  
Ana-Carolina Martinez-Torres ◽  
Claire Quiney ◽  
Tarik Attout ◽  
Heloïse Boullet ◽  
Linda Herbi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document