Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell

Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3573-3584 ◽  
Author(s):  
M. Gho ◽  
Y. Bellaiche ◽  
F. Schweisguth

The bristle mechanosensory organs of the adult fly are composed of four different cells that originate from a single precursor cell, pI, via two rounds of asymmetric cell division. Here, we have examined the pattern of cell divisions in this lineage by time-lapse confocal microscopy using GFP imaging and by immunostaining analysis. pI divided within the plane of the epithelium and along the anteroposterior axis to give rise to an anterior cell, pIIb, and a posterior cell, pIIa. pIIb divided prior to pIIa to generate a small subepithelial cell and a larger daughter cell, named pIIIb. This unequal division, oriented perpendicularly to the epithelium plane, has not been described previously. pIIa divided after pIIb, within the plane of the epithelium and along the AP axis, to produce a posterior socket cell and an anterior shaft cell. Then pIIIb divided perpendicularly to the epithelium plane to generate a basal neurone and an apical sheath cell. The small subepithelial pIIb daughter cell was identified as a sense organ glial cell: it expressed glial cell missing, a selector gene for the glial fate and migrated away from the sensory cluster along extending axons. We propose that mechanosensory organ glial cells, the origin of which was until now unknown, are generated by the asymmetric division of pIIb cells. Both Numb and Prospero segregated specifically into the basal glial and neuronal cells during the pIIb and pIIIb divisions, respectively. This revised description of the sense organ lineage provides the basis for future studies on how polarity and fate are regulated in asymmetrically dividing cells.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 571-571
Author(s):  
William T. Tse ◽  
Livana Soetedjo ◽  
Timothy Lax ◽  
Lei Wang ◽  
Patrick J. Kennedy

Abstract Abstract 571 Asymmetric cell division, a proposed mechanism by which hematopoietic progenitor/stem cells (HPSC) maintain a balance between self-renewal and differentiation, has rarely been observed. Here we report the surprising finding that cultured mouse primary HPSC routinely generate pairs of daughter cells with 2 distinct phenotypes after a single round of cell division. Mouse bone marrow cells were cultured on chamber slides in the presence of stem cell factor (SCF). BrdU was added overnight to label dividing cells, and the cells were examined by immunofluorescence microscopy on day 2–4 of culture. In each BrdU+c-Kit+ divided cell doublet, c-Kit was invariably expressed in only 1 of the 2 daughter cells. In contrast, the other daughter cell was negative for c-Kit but positive for the asymmetric cell fate determinant Numb and mature myeloid markers Mac1, Gr1, M-CSFR and F4/80. Similarly, in each BrdU+Sca1+ cell doublet, 1 daughter cell was positive for the stem cell markers Sca1, c-Kit, CD150 and CD201, whereas the other cell was negative for these markers but positive for Numb and the mature myeloid markers. Analysis of 400 such doublets showed that the probability of HPSC undergoing asymmetric division was 99.5% (95% confidence interval 98–100%), indicating that asymmetric division in HPSC is in fact not rare but obligatory. In other model systems, it has been shown that activation of the atypical protein kinase C (aPKC)-Par6-Par3 cell polarity complex and realignment of the microtubule cytoskeleton precede asymmetric cell division. We asked whether similar steps are involved in the asymmetric division of HPSC. We found that c-Kit receptors, upon stimulation by SCF, rapidly capped at an apical pole next to the microtubule-organizing center, followed by redistribution to the same pole of the aPKC-Par6-Par3 complex and microtubule-stabilizing proteins APC, β-catenin, EB1 and IQGAP1. Strikingly, after cell division, the aPKC-Par6-Par3 complex and other polarity markers all partitioned only into the c-Kit+/Sca1+ daughter cell and not the mature daughter cell. The acetylated and detyrosinated forms of stabilized microtubules were also present only in the c-Kit+/Sca1+ cell, as were the Aurora A and Polo-like kinases, 2 mitotic kinases associated with asymmetric cell division. To understand how c-Kit activation triggers downstream polarization events, we studied the role of lipid rafts, cholesterol-enriched microdomains in the cell membrane that serve as organization centers of signaling complexes. These are enriched in phosphatidylinositol 4,5-bisphosphate and annexin 2, putative attachment sites for the aPKC-Par6-Par3 complex. We found that SCF stimulation led to coalescence of lipid raft components at the site of the c-Kit cap, and treatment with a wide range of inhibitors that blocked lipid raft formation abrogated polarization of the aPKC-Par6-Par3 complex and division of the c-Kit+/Sca1+ cells. Because obligatory asymmetric division in cultured HPSC would prevent a net increase in their number, we sought a way to bypass its mechanism. We tested whether inhibition of protein phosphatase 2A (PP2A), a physiological antagonist of aPKC, would enhance aPKC activity and promote self-renewal of HPSC. Treatment of cultured HPSC with okadaic acid or calyculin, 2 well-characterized PP2A inhibitors, increased the percent of c-Kit+/Sca1+ cells undergoing symmetric division from 0% to 23.3% (p<0.001). In addition, small colonies comprised of symmetrically dividing cells uniformly positive for Sca1, c-Kit, CD150 and CD201 were noted in the culture. To functionally characterize the effect of PP2A inhibition, mouse bone marrow cells were cultured in the absence or presence of PP2A inhibitors and transplanted into irradiated congenic mice in a competitive repopulation assay. At 4–8 weeks post-transplant, the donor engraftment rate increased from ∼1 in mice transplanted with untreated cells to >30% in mice transplanted with PP2A inhibitor-treated cells. This dramatic increase indicates that PP2A inhibition can effectively perturb the mechanism of asymmetric cell division and promote the self-renewal of HPSC. In summary, our data showed that obligatory asymmetric cell division works to maintain a strict balance between self-renewal and differentiation in HPSC and pharmacological manipulation of the cell polarity machinery could potentially be used to expand HPSC for clinical use. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1967-1974 ◽  
Author(s):  
Y. Akiyama-Oda ◽  
T. Hosoya ◽  
Y. Hotta

In the development of the Drosophila central nervous system, some of the neuroblasts designated as neuroglioblasts generate both glia and neurons. Little is known about how neuroglioblasts produce these different cell types. NB6-4 in the thoracic segment (NB6-4T) is a neuroglioblast, although the corresponding cell in the abdominal segment (NB6-4A) produces only glia. Here, we describe the cell divisions in the NB6-4T lineage, following changes in cell number and cell arrangement. We also examined successive changes in the expression of glial cells missing (gcm) mRNA and protein, activity of which is known to direct glial fate from the neuronal default state. The first cell division of NB6-4T occurred in the medial-lateral orientation, and was found to bifurcate the glial and neuronal lineage. After division, the medial daughter cell expressed GCM protein to produce three glial cells, while the lateral daughter cell with no GCM expression produced ganglion mother cells, secondary precursors of neurons. Although gcm mRNA was present evenly in the cytoplasm of NB6-4T before the first cell division, it became detected asymmetrically in the cell during mitosis and eventually only in the medial daughter cell. In contrast, NB6-4A showed a symmetrical distribution of gcm mRNA and GCM protein through division. Our observations suggest that mechanisms regulating gcm mRNA expression and its translation play an important role in glial and neuronal lineage bifurcation that results from asymmetric cell division.


1998 ◽  
Vol 9 (8) ◽  
pp. 2037-2049 ◽  
Author(s):  
William B. Raich ◽  
Adrienne N. Moran ◽  
Joel H. Rothman ◽  
Jeff Hardin

Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele ofzen-4, an MKLP1 homologue in the nematodeCaenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.


2010 ◽  
Vol 192 (16) ◽  
pp. 4134-4142 ◽  
Author(s):  
Jennifer R. Juarez ◽  
William Margolin

ABSTRACT The Min system regulates the positioning of the cell division site in many bacteria. In Escherichia coli, MinD migrates rapidly from one cell pole to the other. In conjunction with MinC, MinD helps to prevent unwanted FtsZ rings from assembling at the poles and to stabilize their positioning at midcell. Using time-lapse microscopy of growing and dividing cells expressing a gfp-minD fusion, we show that green fluorescent protein (GFP)-MinD often paused at midcell in addition to at the poles, and the frequency of midcell pausing increased as cells grew longer and cell division approached. At later stages of septum formation, GFP-MinD often paused specifically on only one side of the septum, followed by migration to the other side of the septum or to a cell pole. About the time of septum closure, this irregular pattern often switched to a transient double pole-to-pole oscillation in the daughter cells, which ultimately became a stable double oscillation. The splitting of a single MinD zone into two depends on the developing septum and is a potential mechanism to explain how MinD is distributed equitably to both daughter cells. Septal pausing of GFP-MinD did not require MinC, suggesting that MinC-FtsZ interactions do not drive MinD-septal interactions, and instead MinD recognizes a specific geometric, lipid, and/or protein target at the developing septum. Finally, we observed regular end-to-end oscillation over very short distances along the long axes of minicells, supporting the importance of geometry in MinD localization.


2018 ◽  
Vol 217 (11) ◽  
pp. 3785-3795 ◽  
Author(s):  
Zsolt G. Venkei ◽  
Yukiko M. Yamashita

The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.


2018 ◽  
Author(s):  
Sara Molinari ◽  
David L. Shis ◽  
James Chappell ◽  
Oleg A. Igoshin ◽  
Matthew R. Bennett

AbstractA defining property of stem cells is their ability to differentiate via asymmetric cell division, in which a stem cell creates a differentiated daughter cell but retains its own phenotype. Here, we describe a synthetic genetic circuit for controlling asymmetrical cell division in Escherichia coli. Specifically, we engineered an inducible system that can bind and segregate plasmid DNA to a single position in the cell. Upon division, the co-localized plasmids are kept by one and only one of the daughter cells. The other daughter cell receives no plasmid DNA and is hence irreversibly differentiated from its sibling. In this way, we achieved asymmetric cell division though asymmetric plasmid partitioning. We also characterized an orthogonal inducible circuit that enables the simultaneous asymmetric partitioning of two plasmid species – resulting in pluripotent cells that have four distinct differentiated states. These results point the way towards engineering multicellular systems from prokaryotic hosts.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Felipe Mora-Bermúdez ◽  
Fumio Matsuzaki ◽  
Wieland B Huttner

Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis.


2017 ◽  
Vol 28 (11) ◽  
pp. 1530-1538 ◽  
Author(s):  
Anthony S. Eritano ◽  
Arturo Altamirano ◽  
Sarah Beyeler ◽  
Norma Gaytan ◽  
Mark Velasquez ◽  
...  

Asymmetric cell division is the primary mechanism to generate cellular diversity, and it relies on the correct partitioning of cell fate determinants. However, the mechanism by which these determinants are delivered and positioned is poorly understood, and the upstream signal to initiate asymmetric cell division is unknown. Here we report that the endoplasmic reticulum (ER) is asymmetrically partitioned during mitosis in epithelial cells just before delamination and selection of a proneural cell fate in the early Drosophila embryo. At the start of gastrulation, the ER divides asymmetrically into a population of asynchronously dividing cells at the anterior end of the embryo. We found that this asymmetric division of the ER depends on the highly conserved ER membrane protein Jagunal (Jagn). RNA inhibition of jagn just before the start of gastrulation disrupts this asymmetric division of the ER. In addition, jagn-deficient embryos display defects in apical-basal spindle orientation in delaminated embryonic neuroblasts. Our results describe a model in which an organelle is partitioned asymmetrically in an otherwise symmetrically dividing cell population just upstream of cell fate determination and updates previous models of spindle-based selection of cell fate during mitosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mareike Damen ◽  
Lisa Wirtz ◽  
Ekaterina Soroka ◽  
Houda Khatif ◽  
Christian Kukat ◽  
...  

AbstractThe development of complex stratified epithelial barriers in mammals is initiated from single-layered epithelia. How stratification is initiated and fueled are still open questions. Previous studies on skin epidermal stratification suggested a central role for perpendicular/asymmetric cell division orientation of the basal keratinocyte progenitors. Here, we use centrosomes, that organize the mitotic spindle, to test whether cell division orientation and stratification are linked. Genetically ablating centrosomes from the developing epidermis leads to the activation of the p53-, 53BP1- and USP28-dependent mitotic surveillance pathway causing a thinner epidermis and hair follicle arrest. The centrosome/p53-double mutant keratinocyte progenitors significantly alter their division orientation in the later stages without majorly affecting epidermal differentiation. Together with time-lapse imaging and tissue growth dynamics measurements, the data suggest that the first and major phase of epidermal development is boosted by high proliferation rates in both basal and suprabasally-committed keratinocytes as well as cell delamination, whereas the second phase maybe uncoupled from the division orientation of the basal progenitors. The data provide insights for tissue homeostasis and hyperproliferative diseases that may recapitulate developmental programs.


Sign in / Sign up

Export Citation Format

Share Document