Novel Protein Agonist of Thrombopoiesis Acts Via a Physiocrine Pathway Distinct From That of Thrombopoietin

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2376-2376
Author(s):  
Minh-Ha T Do ◽  
Wei Zhang ◽  
Kyle Chiang ◽  
Chi-Fang Wu ◽  
Chulho Park ◽  
...  

Abstract Abstract 2376 Thrombopoietin (TPO) is recognized as the main regulator of platelet production, yet its genetic ablation in mice does not completely obliterate thrombopoiesis, suggesting that alternate pathways could lead to platelet formation. We recently identified a naturally-occurring protein that acts as a potent agonist of platelet production by a mechanism distinct from that of TPO. This protein belongs to a novel class of human extracellular signaling proteins called physiocrines that are generated from tRNA synthetases by alternative splicing or proteolysis. Physiocrines interact with several classes of receptors through unique mechanisms to modulate cellular differentiation and tissue homeostasis in normal and pathological processes. The newly identified thrombopoietic physiocrine, termed ATYR0030, is an engineered version of a naturally-occurring physiocrine derived from the tyrosyl tRNA synthetase (YRS). In vivo, systemic administration of ATYR0030 or YRS physiocrine to rats led to an increase in platelets counts comparable to that seen with TPO treatment, but with a greater effect in animals with low baseline platelet levels. When injected into normal animals preselected for low platelet counts, ATYR0030 treatment resulted in an increase in platelets up to, but not beyond, normal levels (Figure 1), suggesting a role in platelet homeostasis and differentiating its effects from the known activity of TPO. Intravenous administration of ATYR0030 also accelerated recovery of platelet counts in carboplatin-treated rats, indicating a possible role in bone marrow reconstitution after chemical insult. Consistent with homeostatic properties, no toxicity was seen in a repeat-dose 28-day non-GLP safety study in rats dosed up to 100-fold above the efficacious range. Histopathology assessment revealed no tissue abnormalities, no increase in bone marrow reticulin and no hyperplasia of myeloid precursors. Clinical chemistry and hematology parameters were in the normal range with a modest increase in platelet counts, as anticipated in animals with normal platelet levels. Our in vitro data suggest that ATYR0030 may play a role in megakaryopoiesis by facilitating cell migration and adhesion to the vasculature. In contrast to TPO, ATYR0030 does not directly signal through the TPO receptor and does not activate the JAK/STAT pathway but rather appears to engage specific G-protein coupled receptors. In vitro, ATYR0030 does not stimulate proliferation of cultured M07e human megakaryoblasts or primary bone marrow cells isolated from AML patients (Figure 2). The parent synthetase is present in human platelets and is secreted in response to platelet activation, perhaps providing a feedback mechanism to stimulate the release of new platelets. In an effort to link the biological activity of ATYR0030 and the role that the parent synthetase plays in human physiology, we have begun to analyze samples from patients with abnormal platelets counts to determine circulating levels of the parent synthetase. The unique thrombopoietic activity of ATYR0030 may lead to an orthogonal approach to restoring normal platelet levels in thrombocytopenic patients who currently have limited treatment options. For example, in the myelodysplastic syndrome population, TPO-receptor agonists carry a risk of stimulating blast proliferation and accelerating disease progression to acute myeloid leukemia (AML). The distinct proliferation profile of ATYR0030 may translate into important safety benefits by reducing the risk of progression to AML. In addition, the potential role of ATYR0030 in regulating platelet homeostasis may provide a greater safety margin in the normalization of platelet levels, thereby also limiting the risk of thrombosis. Leveraging the therapeutic potential of this thrombopoietic physiocrine may lead to the development of a novel treatment option with a favorable safety profile. Disclosures: Do: aTyr Pharma: Employment, Equity Ownership, Patents & Royalties. Zhang:aTyr Pharma: Employment, Equity Ownership. Chiang:aTyr Pharma: Employment, Equity Ownership. Wu:aTyr Pharma: Employment, Equity Ownership, Patents & Royalties. Park:aTyr Pharma: Equity Ownership. Yang:aTyr Pharma: Consultancy, Equity Ownership, Patents & Royalties, Research Funding. Kunkel:aTyr Pharma: Consultancy, Stock Ownership. Ashlock:aTyr Pharma: Employment, Equity Ownership. Mendlein:aTyr Pharma: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Belani:Atyr Pahrma: Consultancy, Equity Ownership, Patents & Royalties. Vasserot:aTyr Pharma: Employment, Equity Ownership, Patents & Royalties. Watkins:aTyr Pharma: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3279-3279 ◽  
Author(s):  
Ann Janssens ◽  
Michael D. Tarantino ◽  
Robert Bird ◽  
Maria Gabriella Mazzucconi ◽  
Ralph Vincent V. Boccia ◽  
...  

Abstract Abstract 3279 Background: ITP is an autoimmune disorder characterized by increased platelet destruction and suboptimal platelet production. Romiplostim stimulates platelet production via the TPO-receptor, and is recommended for second- and third-line treatment of chronic ITP in adults. We report final data from a large prospective study of romiplostim in adults with ITP of varying duration and severity. Methods: Eligibility criteria were broad: patients ≥18 years of age, who had received prior ITP therapies (final protocol amendment: ≥1, previous amendments: ≥3), with low platelet counts (final amendment: ≤ 30 × 109/L, previous amendments: ≤ 10, ≤ 20 × 109/L) or experiencing uncontrolled bleeding. The only excluded comorbidities were: hematological malignancy, myeloproliferative neoplasms, MDS and bone marrow stem cell disorder. Romiplostim was initiated at 1 (final amendment) or 3 (previous amendments) μg/kg/week, with dose adjustments allowed to maintain platelet counts ≥50 × 109/L. Patients could continue on study until they had access to commercially available romiplostim. Rescue medications were allowed at any time; concurrent ITP therapies could be reduced when platelet counts were > 50 × 109/L. Primary endpoint was incidence of adverse events (AEs) and antibody formation. Secondary endpoint was platelet response, defined as either (1) doubling of baseline count and ≥ 50 × 109/L or (2) ≥20 × 109/L increase from baseline. Results: A total of 407 patients received romiplostim, 60% of whom were female. Median (Q1, Q3) time since ITP diagnosis was 4.25 (1.20, 11.40) years (maximum 57.1 years), with 51% of patients splenectomised and 39% receiving baseline concurrent ITP therapies. Seventy-one percent of patients completed the study, with requirement for alternative therapy and withdrawn consent the most common reasons for discontinuation (5% each). Median (Q1, Q3) on-study treatment duration was 44.29 (20.43, 65.86) weeks (maximum 201 weeks), with a total of 20,201 subject-weeks on study. Incidence and type of AEs were consistent with previous studies. The most common serious treatment-related AEs were cerebrovascular accident, headache, bone marrow reticulin fibrosis (with no evidence of positive trichrome staining for collagen and no evidence suggesting primary idiopathic myelofibrosis), nausea, deep vein thrombosis, hemorrhage and pulmonary embolism, with each reported in 2 of 407 (0.5%) patients. All other serious treatment-related AEs were each reported in one patient. Eighteen patients died; 3 deaths (hemolysis, intestinal ischaema, aplastic anemia) were considered treatment-related. No neutralizing antibodies to romiplostim or TPO were reported. Approximately 90% of patients achieved each of the platelet response definitions, regardless of splenectomy status. Overall, median (Q1, Q3) time to response was 2 (1, 4) weeks for response definition 1, and 1 (1, 3) week for response definition 2. Median (Q1, Q3) baseline platelet count was 14 (8, 21) × 109/L. After 1 week of treatment median (Q1, Q3) platelet count had increased to 42 (18, 101) × 109/L. From week 8 onwards, and excluding counts within 8 weeks of rescue medication use, median platelet counts were consistently above 100 × 109/L (range 101.0–269.5 × 109/L). Median (Q1, Q3) average weekly romiplostim dose was 3.62 (1.99, 6.08) μg/kg. Summary/conclusions: This is the largest prospective study in adult ITP reported to date. The data reported here are similar to those reported for previous romiplostim studies, with romiplostim able to safely induce a rapid platelet response in adult ITP patients with low platelet counts or bleeding symptoms. Romiplostim is an important, well-tolerated, treatment option for adult ITP patients, which significantly increases and maintains platelet counts. Adverse Event Subject Incidence Platelet Response Disclosures: Janssens: Amgen: Consultancy; Roche: Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Tarantino:Cangene corporation: Research Funding; Baxter: Research Funding; Talecris: Honoraria, Speakers Bureau; Up-to-date: Patents & Royalties; The Bleeding and Clotting Disorders Institute: Board Member. Bird:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Boccia:Amgen: Equity Ownership, Honoraria, Speakers Bureau. Lopez-Fernandez:Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kozak:Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Steurer:Amgen: Honoraria. Dillingham:Amgen Limited: Employment, Equity Ownership. Lizambri:Amgen: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2312-2312 ◽  
Author(s):  
Ann Janssens ◽  
Francesco Rodeghiero ◽  
David Anderson ◽  
Beng Chong ◽  
Zoltan Boda ◽  
...  

Abstract Introduction Reticulin is a normal and common component of the bone marrow stroma. In clinical trials of adults with chronic ITP treated with the thrombopoietin mimetic romiplostim, a small number of cases of reticulin and/or collagen in bone marrow were reported. However, bone marrow biopsies were not systematically performed in these trials. Here, we report a multicenter study of adult ITP patients that evaluated bone marrow biopsies for reticulin and collagen pre- and post-treatment with romiplostim. Methods Eligible ITP patients had platelet counts <50x109/L, received ≥1 prior ITP therapy, and no collagen in baseline bone marrow biopsies (ie, before romiplostim). Three cohorts of patients were scheduled for biopsies after 1 (Cohort 1), 2 (Cohort 2), or 3 years of romiplostim, dosed to maintain platelet counts at 50–200x109/L. Bone marrow biopsies were also performed if patients discontinued early or failed to achieve/maintain a response to romiplostim, defined as platelet counts ≤20x109/L for 4 consecutive weeks at the maximum romiplostim dose of 10 µg/kg. Reticulin and collagen formation were measured using the modified Bauermeister scale (0 no reticulin; 1 occasional fine fibers/foci fine fiber network; 2 fine fiber network; 3 diffuse fiber network, scattered coarse fibers; 4 diffuse coarse fiber network with areas of collagenization). Collagen was detected by trichrome staining and reticulin by silver staining. Cohort 1 biopsy samples were reread as the modified Bauermeister scale had not been applied as specified in the study protocol. All samples were read by 2 hematopathologists at a central bone marrow laboratory with grading discrepancies reviewed by an independent bone marrow panel. Data cutoff for this analysis was August 10, 2012. Results Of the 50 patients enrolled in Cohort 1 (54% female, mean age 55.5 years, range 20–86 years), 39 patients received romiplostim and had bone marrow biopsies (Table). Mean (SD) dose was 3.8 (2.9) µg/kg. No patients with evaluable results developed collagen. No patients had an increase ≥2 grades from baseline in reticulin. Of the 50 patients enrolled in Cohort 2 (76% female, mean age 48.6 years, range 19–83 years), 39 patients received romiplostim and had bone marrow biopsies (Table). Mean (SD) dose was 4.1 (3.2) µg/kg. Again, of the patients with evaluable results, none developed collagen. Two patients had a 2-grade increase in reticulin (1 patient: baseline grade 0 to 2 at year 2; 1 patient: baseline grade 1 to 3 at end of treatment). The safety profile was similar to previous trials. In Cohort 1, 3 patients died (not attributed to romiplostim); causes were fungal sepsis in a patient with longstanding corticosteroid use, cerebral hemorrhage, and pulmonary hemorrhage in a patient with pulmonary thrombosis treated with acenocumarol. In Cohort 2, 2 patients died (not attributed to romiplostim); causes were acute renal failure, in a patient with a medical history of chronic renal insufficiency, and suicide. There were no neutralizing antibodies to romiplostim or thrombopoietin in the 2 cohorts. Summary/Conclusion There was no evidence of collagen formation after 2 years of romiplostim treatment. The incidence of increase in reticulin was low, consistent with results of previous romiplostim studies. This ongoing study will provide additional data on bone marrow changes with up to 3 years of romiplostim treatment. At completion of year 1 treatment, discontinuations included withdrew consent (n=5), non-responders (n=4), died (n=3), adverse event (n=1, severe joint pain), administration decision (n=1). At completion of year 2 treatment, discontinuations included withdrew consent (n=6), non-responders (n=2), declined biopsy (n=2), adverse events (n=2, dermatitis and suspected non-Hodgkins lymphoma), died (n=1), required alternate therapy (n=1). Disclosures: Janssens: Amgen, GSK, Mundipharma, Roche: Membership on an entity’s Board of Directors or advisory committees. Rodeghiero:Amgen, GSK: Honoraria; Amgen, Eisai, GSK, LFB, Suppremol: Membership on an entity’s Board of Directors or advisory committees. Chong:Amgen, GSK: Research Funding. Pabinger:CSL Behring: Research Funding; Amgen, Baxter, Bayer, Boehringer Ingelheim, CSL Behring, Pfizer: Honoraria; Amgen, Baxter, Bayer, Boehringer Ingelheim, CSL Behring, Pfizer: Membership on an entity’s Board of Directors or advisory committees. Cervinek:Alexion, Amgen, GSK: Consultancy. Wang:Amgen: Employment, Equity Ownership. Lopez:Amgen: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 328-328
Author(s):  
James B. Bussel ◽  
Xuena Wang ◽  
Melissa Eisen

Abstract Background In adults, ITP (characterized by platelet counts <100x109/L) is typically chronic, with remission reported infrequently ≥3 y post-diagnosis (Sailer, Haematol 2006). The TPO-mimetic romiplostim increases platelet counts and reduces use of concomitant ITP medications in chronic ITP. While often perceived as a long-term treatment, dose adjustment rules allow romiplostim to be discontinued when hemostatic platelet counts are reached, as reported in Amgen trials (pivotal trials, 2011 EHA, 2011 ASH) and case reports. Methods Data from 8 romiplostim trials (4 phase 3, 2 single-arm, and 2 extension trials) were examined for cases in which patients receiving romiplostim subsequently had ≥26 consecutive wks of platelet counts ≥50x109/L without romiplostim or any other ITP medications. The number of evaluable patients could not be calculated as many trials had dosing rules that did not allow for the reduction of romiplostim in patients with platelet counts <400x109/L (making remission unlikely), treatment durations varied by study, and follow-up data were not always available. Results Twenty-seven patients had ≥26 wk of platelet counts ≥50x109/L without romiplostim or any other ITP medications (Table; data from 4 of these patients were presented at ASH 2011). These patients had characteristics of median (Q1, Q3) time since ITP diagnosis of 2.1 (0.5, 4.2) y, with 17/27 having ITP >1 y, mean (SD) baseline platelet count of 20.9 (15.41) x109/L, median (Q1, Q3) age of 49.0 (36.0, 67.0) y, and mean (SD) maximum dose prior to remission of 4.6 (3.6) µg/kg. Of the 27 patients, 12 (44%) were splenectomized at baseline and 15 (56%) were male. Patients had from 40 to 276 cumulative wks of romiplostim with doses ranging from 0.1 to 4.3 µg/kg. Prior to romiplostim treatment, minimum platelet counts ranged from 1-37x109/L and individual average platelet counts ranged from 1-152x109/L. On treatment, minimum (1-182x109/L) and average (121-654x109/L) platelet counts ranged widely. The median (Q1, Q3) time to remission was 7.1 (1.9, 12.7) months. Only 3 patients (3, 6, 15) had bleeding of grade 3; the remainder had either bleeding of grade 1 or 2 or none. Conclusions The patient population who entered clinical remission (platelet counts ≥50x109/L for 26 wks) after treatment with romiplostim generally had: ITP of less than 5 y duration, a wide range of ages (23-78 y), about equal proportions of men and women, were as likely to be splenectomized as not, and no significant bleeding. Therefore, it is difficult to predict which patients would have this response. Reporting of these cases was not predefined, so a prospective assessment, such as the phase 2 single-arm study currently underway (NCT01143038), will provide a more comprehensive evaluation of remission with romiplostim. Potential mechanisms for the phenomenon of remission, both in early and late stages of ITP, may involve T-regulatory cell function, increased numbers/activity of natural killer T-cells, or increased B-regulatory cell activity. Disclosures: Bussel: Amgen: Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; Genzyme: Research Funding; IgG of America: Research Funding; GSK: Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Ligand: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Immunomedics: Research Funding; Eisai: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Shionogi: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Sysmex: Research Funding; Portola: Consultancy. Wang:Amgen: Employment, Equity Ownership. Eisen:Amgen: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4131-4131 ◽  
Author(s):  
Trinayan Kashyap ◽  
Irfana Muqbil ◽  
Amro Aboukameel ◽  
Boris Klebanov ◽  
Ramzi Mohammad ◽  
...  

Abstract Background: XPO1 (exportin-1/CRM1) mediates nuclear export of proteins containing leucine-rich amino-acid consensus sequences. XPO1 cargo proteins include many of the major tumor suppressor proteins (p53, IkB, pRB, FOXOs) and their export leads to the inactivation of cell cycle checkpoints. Overexpression of XPO1 has been reported to correlate with poor cancer prognosis. The Selective Inhibitor of Nuclear Export (SINE) compound, selinexor, binds covalently to the cargo pocket on XPO1, inhibits nuclear export which leads to cell cycle arrest and specific cancer cell death. Selinexor is currently in advanced clinical trials for patients with solid and hematological malignancies including patients with relapsed/refractory Diffuse Large B-Cell Lymphoma (DLBCL) (NCT02227251). Using preclinical models, we recently demonstrated that proteasome inhibitors (PI) can re-sensitize multiple myeloma that acquired resistance to selinexor. Here, we aimed to find if treatment with selinexor and bortezomib is beneficial for the treatment of DLBCL. Methods: DLBCLcell lines were treated with selinexor in combination with bortezomib. Cell viability was examined using standard viability assays after 72 hours of treatment. Whole cell protein lysates were evaluated by immunoblotting. NF-κB transcriptional activity was analyzed using an ELISA assay. WSU-DLCL2 cells were grown as sub-cutaneous tumors in ICR SCID mice. Tumor bearing mice were divided into 4 groups and were administered either vehicle, sub-maximum tolerated doses of selinexor (10 mg/kg p.o. twice a week, M, Th), bortezomib (1 mg/kg i.v. twice a week, M, TH) and the combination of selinexor (10 mg/kg p.o. twice a week) plus bortezomib (1 mg/kg i.v. twice a week). Results: The combination treatment of selinexor with bortezomib synergistically killed DLBCL cells compared to the single agents alone. Co-treatment with bortezomib enhanced selinexor mediated nuclear retention of IκB-α. Selinexor plus bortezomib treatment decreased NF-κB transcriptional activity. Finally, the combination of selinexor with bortezomib showed superior anti-tumor efficacy in the combination group compared to single agent treatments in WSU-DLCL2 xenograft model. Conclusions: Based on our results, inhibition of NF-κB transcriptional activity through forced nuclear retention of IκB appears to be an important mechanism underlying the synergistic effects of selinexor plus bortezomib in many different cell lines including DLBCL. The superior efficacy of selinexor plus bortezomib combination both in vitro and in vivo when compared to single agents along provides a rational for conducting clinical trials with these combinations in DLBCL patients. Disclosures Kashyap: Karyopharm Therapeutics: Employment, Equity Ownership. Klebanov:Karyopharm Therapeutics: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics: Employment, Equity Ownership. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Landesman:Karyopharm Therapeutics: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1882-1882 ◽  
Author(s):  
Samuel A Danziger ◽  
Mark McConnell ◽  
Jake Gockley ◽  
Mary Young ◽  
Adam Rosenthal ◽  
...  

Abstract Introduction The multiple myeloma (MM) tumor microenvironment (TME) strongly influences patient outcomes as evidenced by the success of immunomodulatory therapies. To develop precision immunotherapeutic approaches, it is essential to identify and enumerate TME cell types and understand their dynamics. Methods We estimated the population of immune and other non-tumor cell types during the course of MM treatment at a single institution using gene expression of paired CD138-selected bone marrow aspirates and whole bone marrow (WBM) core biopsies from 867 samples of 436 newly diagnosed MM patients collected at 5 time points: pre-treatment (N=354), post-induction (N=245), post-transplant (N=83), post-consolidation (N=51), and post-maintenance (N=134). Expression profiles from the aspirates were used to infer the transcriptome contribution of immune and stromal cells in the WBM array data. Unsupervised clustering of these non-tumor gene expression profiles across all time points was performed using the R package ConsensusClusterPlus with Bayesian Information Criterion (BIC) to select the number of clusters. Individual cell types in these TMEs were estimated using the DCQ algorithm and a gene expression signature matrix based on the published LM22 leukocyte matrix (Newman et al., 2015) augmented with 5 bone marrow- and myeloma-specific cell types. Results Our deconvolution approach accurately estimated percent tumor cells in the paired samples compared to estimates from microscopy and flow cytometry (PCC = 0.63, RMSE = 9.99%). TME clusters built on gene expression data from all 867 samples resulted in 5 unsupervised clusters covering 91% of samples. While the fraction of patients in each cluster changed during treatment, no new TME clusters emerged as treatment progressed. These clusters were associated with progression free survival (PFS) (p-Val = 0.020) and overall survival (OS) (p-Val = 0.067) when measured in pre-transplant samples. The most striking outcomes were represented by Cluster 5 (N = 106) characterized by a low innate to adaptive cell ratio and shortened patient survival (Figure 1, 2). This cluster had worse outcomes than others (estimated mean PFS = 58 months compared to 71+ months for other clusters, p-Val = 0.002; estimate mean OS = 105 months compared with 113+ months for other clusters, p-Val = 0.040). Compared to other immune clusters, the adaptive-skewed TME of Cluster 5 is characterized by low granulocyte populations and high antigen-presenting, CD8 T, and B cell populations. As might be expected, this cluster was also significantly enriched for ISS3 and GEP70 high risk patients, as well as Del1p, Del1q, t12;14, and t14:16. Importantly, this TME persisted even when the induction therapy significantly reduced the tumor load (Table 1). At post-induction, outcomes for the 69 / 245 patients in Cluster 5 remain significantly worse (estimate mean PFS = 56 months compared to 71+ months for other clusters, p-Val = 0.004; estimate mean OS = 100 months compared to 121+ months for other clusters, p-Val = 0.002). The analysis of on-treatment samples showed that the number of patients in Cluster 5 decreases from 30% before treatment to 12% after transplant, and of the 63 patients for whom we have both pre-treatment and post-transplant samples, 18/20 of the Cluster 5 patients moved into other immune clusters; 13 into Cluster 4. The non-5 clusters (with better PFS and OS overall) had higher amounts of granulocytes and lower amounts of CD8 T cells. Some clusters (1 and 4) had increased natural killer (NK) cells and decreased dendritic cells, while other clusters (2 and 3) had increased adipocytes and increases in M2 macrophages (Cluster 2) or NK cells (Cluster 3). Taken together, the gain of granulocytes and adipocytes was associated with improved outcome, while increases in the adaptive immune compartment was associated with poorer outcome. Conclusions We identified distinct clusters of patient TMEs from bulk transcriptome profiles by computationally estimating the CD138- fraction of TMEs. Our findings identified differential immune and stromal compositions in patient clusters with opposing clinical outcomes and tracked membership in those clusters during treatment. Adding this layer of TME to the analysis of myeloma patient baseline and on-treatment samples enables us to formulate biological hypotheses and may eventually guide therapeutic interventions to improve outcomes for patients. Disclosures Danziger: Celgene Corporation: Employment, Equity Ownership. McConnell:Celgene Corporation: Employment. Gockley:Celgene Corporation: Employment. Young:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Reiss:Celgene Corporation: Employment, Equity Ownership. Davies:MMRF: Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; TRM Oncology: Honoraria; Abbvie: Consultancy; ASH: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria. Copeland:Celgene Corporation: Employment, Equity Ownership. Fox:Celgene Corporation: Employment, Equity Ownership. Fitch:Celgene Corporation: Employment, Equity Ownership. Newhall:Celgene Corporation: Employment, Equity Ownership. Barlogie:Celgene: Consultancy, Research Funding; Dana Farber Cancer Institute: Other: travel stipend; Multiple Myeloma Research Foundation: Other: travel stipend; International Workshop on Waldenström's Macroglobulinemia: Other: travel stipend; Millenium: Consultancy, Research Funding; European School of Haematology- International Conference on Multiple Myeloma: Other: travel stipend; ComtecMed- World Congress on Controversies in Hematology: Other: travel stipend; Myeloma Health, LLC: Patents & Royalties: : Co-inventor of patents and patent applications related to use of GEP in cancer medicine licensed to Myeloma Health, LLC. Trotter:Celgene Research SL (Spain), part of Celgene Corporation: Employment, Equity Ownership. Hershberg:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Dervan:Celgene Corporation: Employment, Equity Ownership. Ratushny:Celgene Corporation: Employment, Equity Ownership. Morgan:Takeda: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 690-690 ◽  
Author(s):  
Srdan Verstovsek ◽  
Alessandro M. Vannucchi ◽  
Alessandro Rambaldi ◽  
Jason R. Gotlib ◽  
Adam J. Mead ◽  
...  

Abstract Introduction: Myeloid/lymphoid neoplasms (MLNs) with rearrangement of FGFR1 on chromosome band 8p11 are rare but aggressive neoplasms characterized by heterogeneous presentation with myeloid and/or lymphoid proliferation, extramedullary involvement, and rapid progression to blast phase (Strati P, et al., Leuk Lymphoma. 2018;59:1672-1676). FGFR1 gets constitutively activated through fusion genes involving various partner genes, most frequently ZMYM2-FGFR1 or BCR-FGFR1 as consequence of a t(8;13)(p11;q12) or a t(8;22)(p11;q11), respectively. Chemotherapy is usually ineffective, effective targeted treatment has not been described, and allogeneic hematopoietic stem cell transplant (alloHSCT) is the only potentially curative option. Pemigatinib, a selective, potent, oral inhibitor of FGFR1, 2, and 3, has shown efficacy in patients with FGF/FGFR-activated tumors, including cholangiocarcinoma and urothelial carcinoma. We report interim results from the ongoing fight-203 study (NCT03011372) of pemigatinib in patients with FGFR1-rearranged MLNs. Methods: Fight-203 is a phase 2, open-label study enrolling patients ≥ 18 years of age with FGFR1-rearranged MLN. Patients enrolled in the study must have progressed on ≥ 1 prior treatment and be ineligible for alloHSCT. Patients receive a daily oral dose of pemigatinib 13.5 mg on a 21-day cycle (2 weeks on, 1 week off) until disease progression or unacceptable toxicity. The primary endpoint is overall clinical benefit rate, which includes complete clinical (CR) or partial clinical response (PR), and either complete or partial cytogenetic response (CCyR, PCyR). Secondary endpoints include duration of response/benefit, progression-free survival, overall survival, and safety/tolerability. Efficacy is assessed by evaluation of bone marrow histomorphology changes, standard cytogenetic and FISH evaluation of the FGFR1 rearrangement, and PET/CT scan. Results: At data cutoff (July 23, 2018), 14 patients were enrolled. Ten patients who had ≥ 1 response assessment were included in the analysis (Table). Patients received an average of 6.9 cycles of pemigatinib (range, 2-12 cycles). Median number of prior lines of therapy was 3 (range, 0-5), including 2 patients who received alloHSCT. Eight patients (80%) had a major CyR, including 6 patients with CCyR and 2 with PCyR. Eight patients (80%) had a CR or PR in bone marrow, peripheral blood, and extramedullary disease. One patient died of progression to myeloid blast crisis, 2 patients were bridged to alloHSCT, and 7 patients are ongoing. The most common treatment-emergent adverse events (AEs) were hyperphosphatemia (n=7 [70%]), diarrhea (n=5 [50%]) and anemia (n=5 [50%]); hyperphosphatemia was managed with diet and phosphate binders. Nine events in 4 patients (40%) were grade 3/4; 2 of these events (diarrhea and leukopenia) in 2 patients were related to pemigatinib. There were no drug-related AEs leading to dose interruption, dose reduction, or discontinuation. Conclusions: Pemigatinib showed promising efficacy, with an 80% major CyR rate accompanied by complete or partial remission, and was generally well tolerated by patients with FGFR1-rearranged MLN. The protocol was amended to allow continuous dosing, and the study is currently enrolling. Disclosures Verstovsek: Celgene: Membership on an entity's Board of Directors or advisory committees; Italfarmaco: Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Gotlib:Blueprint Medicines: Consultancy, Honoraria, Research Funding; Deciphera: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Gilead: Consultancy, Research Funding; Promedior: Research Funding; Kartos: Consultancy; Incyte: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Mead:Celgene: Research Funding; Bristol-Myers Squibb: Consultancy; Evotek: Research Funding; ARIAD: Consultancy; Cell Therapeutics: Consultancy; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Elstar: Research Funding. Hochhaus:Bristol-Myers Squibb: Research Funding; Novartis: Research Funding; Incyte: Research Funding; Takeda: Research Funding; Pfizer: Research Funding. Kiladjian:AOP Orphan: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees. Hernandez Boluda:Incyte: Consultancy; Novartis: Consultancy. Asatiani:Incyte: Employment, Equity Ownership. Lihou:Incyte: Employment, Equity Ownership. Zhen:Incyte: Employment, Equity Ownership. Reiter:Incyte: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1266-1266 ◽  
Author(s):  
Tomasz Knurowski ◽  
Karen Clegg ◽  
Nigel Brooks ◽  
Fay Ashby ◽  
Neil A Pegg ◽  
...  

Background CCS1477 is a first in class potent, selective and orally bioavailable inhibitor of the bromodomains of p300 and CBP, two closely related histone acetyl transferases with oncogenic roles in haematological malignancies. In pre-clinical studies, CCS1477 was found to be a potent inhibitor of cell proliferation in acute myeloid leukaemia (AML) multiple myeloma (MM) and non-Hodgkin lymphoma (NHL) cell lines. In primary patient AML blast cells CCS1477 inhibited proliferation through a combination of cell cycle arrest at the G1/S transition and an induction of differentiation (up-regulation of CD11b and CD86). CCS1477 has significant anti-tumour activity, inducing tumour regressions in xenograft models of AML and MM. These effects were accompanied by significant reductions in tumour MYC and IRF4 expression. Additionally, there are molecular features of certain haematological malignancies that are likely to increase the sensitivity to p300/CBP inhibition with CCS1477. For example, in B-cell lymphomas there are frequent loss of function mutations in CBP that are associated with heightened sensitivity to pre-clinical inhibition of corresponding non-mutated p300. CCS1477 represents a novel and differentiated approach to inhibiting cell proliferation and survival and offers a potential new therapeutic option for patients who have relapsed or are refractory to current standard of care therapies in AML, MM or NHL. Study Design and Methods This study is the first time that CCS1477 is being dosed in patients with haematological malignancies. The Phase I/IIa study aims to determine the maximum tolerated dose (MTD) and/or recommended Phase II dose (RP2D) and schedule(s) of CCS1477 and investigate clinical activity of CCS1477 monotherapy in patients with haematological malignancies. This study will also characterise the pharmacokinetics (PK) of CCS1477 and explore potential biological activity by assessing pharmacodynamic and exploratory biomarkers. The trial aims to enrol approximately 90 patients and is currently recruiting in the UK with plans to open additional sites in the USA. Key inclusion criteria include patients with confirmed (per standard disease specific diagnostic criteria), relapsed or refractory haematological malignancies (AML, MM and NHL). Patients must have received standard therapy which for the majority of therapeutic indications is at least 2 prior lines of therapy. Single dose and steady state pharmacokinetics will be determined in all patients. AML response will be measured in bone marrow samples. Myeloma response will be evaluated according to the 'International Myeloma Working Group Response Criteria' based on changes in M protein in blood and/or urine, changes in serum free light chains if measurable, and changes on imaging and/or bone marrow if applicable and according to the guidelines. In NHL patients, tumour assessments will be done for measurable disease, non-measurable disease, and new lesions on CT (or magnetic resonance imaging [MRI]) and/or combined with visual assessment of [18F]2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) for response assessment per recent International Working Group consensus criteria (RECIL 2017), until progression The study will begin with two parallel monotherapy dose-escalation arms; Arm 1: Relapsed or refractory NHL and MM; Arm2: Relapsed or refractory AML/high-risk MDS. Once a recommended phase 2 dose/schedule is reached, three monotherapy expansion arms will be opened in AML/high-risk MDS (15 patients), MM (15 patients) and NHL (30 patients). Blood samples along with bone marrow biopsies and aspirates will be collected for exploratory biomarker analysis to understand mechanisms of response to treatment or disease progression. This will include the analysis of tumour-specific and circulating biomarkers, such as tumour DNA, mRNA, proteins or metabolites. In NHL patients, analysis of CBP (and p300) mutations will be undertaken to allow retrospective correlation with tumour response and to determine if loss of function mutations in the genes for either proteins can be utilised as response predictive biomarkers in future studies. Disclosures Clegg: CellCentric Ltd: Employment, Equity Ownership. Brooks:CellCentric Ltd: Employment, Equity Ownership. Ashby:CellCentric Ltd: Employment, Equity Ownership. Pegg:CellCentric Ltd: Employment, Equity Ownership. West:CellCentric Ltd: Employment, Equity Ownership. Somervaille:Novartis: Consultancy. Knapper:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Daiichi Sankyo: Honoraria; Jazz: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Tolero: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees. Davies:ADCT Therapeutics: Honoraria, Research Funding; MorphoSys AG: Honoraria, Membership on an entity's Board of Directors or advisory committees; BioInvent: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharma: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding; Karyopharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Honoraria, Research Funding; GSK: Research Funding; Pfizer: Honoraria, Research Funding; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Research Funding; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5196-5196
Author(s):  
Marsha Crochiere ◽  
Boris Klebanov ◽  
Erkan Baloglu ◽  
Ori Kalid ◽  
Trinayan Kashyap ◽  
...  

Abstract Introduction: SINE are a family of small molecules that selectively inhibit nuclear export by forming a slowly reversible covalent bond with Cysteine 528 (Cys528) in the cargo binding pocket of Exportin 1 (XPO1/CRM1). SINE binding to XPO1 leads to forced nuclear retention and activation of major tumor suppressor proteins (TSPs) such as p53, FOXO, pRB and IkB, resulting in selective death of cancer cells. Selinexor is an orally bioavailable SINE compound currently in human phase I and II clinical trials for advanced hematological and solid cancers. Oral selinexor demonstrates maximal pharmacokinetic exposure at 1-2 hours in humans with associated increases in pharmacodynamic markers of XPO1 inhibition in 2-4 hours that last for up to 48 hours. The goal of this study was to develop a binding assay that would enable quantification of XPO1 occupancy in PBMCs from patients following oral administration of selinexor. Methods: To measure the binding of SINE to XPO1, biotinylated leptomycin B (LMB) was utilized. Biotinylated LMB binds covalently and irreversibly to Cys528 in the cargo-binding site of free XPO1 with activity confirmed to be similar to that of unmodified LMB in cytotoxicity assays. To measure SINE binding to XPO1 in vitro, cancer cell lines and PBMCs from normal human donors were treated with SINE compounds prior to treatment with biotinylated LMB. Any XPO1 that did not bind SINE instead binds to biotinylated LMB and can be quantified. In in vivo studies, mice were treated with selinexor, followed by collection of PBMCs for treatment with biotinylated LMB. After incubation with biotinylated LMB, cells were harvested, lysed, and protein lysates were subjected to pull-down experiments with streptavidin-conjugated beads followed by immunoanalysis of XPO1. Results: To evaluate selinexor-XPO1 binding kinetics in vitro, MM.1S, AML2, AML3, and HEL cells were treated with 0 - 10 µM of SINE compounds and unbound XPO1 was pulled down from cell lysates treated with biotinylated LMB. Immunoanalysis showed that 50% XPO1 occupancy with selinexor was achieved at 0.07 µM in MM.1S, 0.1 µM in AML2, 0.03 µM in AML3, and 0.12 µM in HEL cells. Selinexor-XPO1 occupancy experiments using human PBMCs isolated from donor whole blood showed 50% XPO1 occupancy at 0.05 µM. In mice, 50% XPO1 occupancy in PMBCs was achieved after 4 hours treatment with 1.2 mg/kg (3.6 mg/m2) selinexor, while 90% XPO1 occupancy was achieved at 8.1 mg/kg (24.3 mg/m2). Mice treated with a single dose of selinexor from 1.5 to 10 mg/kg for 4-96 hours revealed sustained, dose dependent XPO1 occupancy in PBMCs for up to 72 hours. Conclusions: We have developed a sensitive and robust assay to measure selinexor binding to XPO1 that can be used to evaluate drug exposure following treatment with oral selinexor in preclinical and clinical studies. Studies are ongoing to determine whether there is a correlation between XPO1 occupancy (pharmacodynamics measurement) with disease response in patients with solid and hematological malignancies. Disclosures Crochiere: Karyopharm: Employment. Klebanov:Karyopharm Therpeutics: Employment. Baloglu:Karyopharm: Employment. Kalid:Karyopharm Therapeutics: Employment. Kashyap:Karyopharm Therapeutics: Employment. Senapedis:Karyopharm: Employment. del Alamo:Karyopharm: Employment. Rashal:Karyopharm Therapeutics: Employment. Tamir:Karyopharm: Employment. McCauley:Karyopharm Therapeutics: Employment, Equity Ownership. Carlson:Karyopharm Therapeutics: Employment. Savona:Karyopharm: Consultancy, Equity Ownership; Gilead: Consultancy; Incyte: Consultancy; Celgene: Consultancy. Kauffman:Karyopharm Therapeutics, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Shacham:Karyopharm Therapeutics, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Landesman:Karyopharm Therapeutics: Employment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2509-2509
Author(s):  
Gretchen Johnston ◽  
Haley E. Ramsey ◽  
Kristy Stengel ◽  
Shilpa Sampathi ◽  
Pankaj Acharya ◽  
...  

Drugs targeting chromatin-modifying enzymes have entered clinical trials for myeloid malignancies, including INCB059872, a selective irreversible inhibitor of Lysine-Specific Demethylase 1 (LSD1). LSD1 is a component of the CoREST complex, in which it associates with histone deacetylases 1 and 2, the transcriptional co-repressor, mSin3A or mSin3B, and the REST corepressor (RCOR1), so a role in gene expression was expected. While initial studies of LSD1 inhibitors have suggested these compounds may be used to induce differentiation of acute myeloid leukemia, the mechanisms underlying this effect and dose-limiting toxicities are not well understood. Here, we have used precision nuclear run-on sequencing (PROseq) and single-cell RNA-sequencing (scRNAseq) to show that INCB059872 de-represses GFI1/GFI1B-regulated genes to promote a myeloid differentiation gene signature in AML cells while stalling maturation of megakaryocyte progenitor cells. Within 3 days of treatment with INCB059872, the majority of THP-1, which contain an the MLL-translocation, undergo myeloid differentiation. RNAseq analysis indicated that 24h drug treatment upregulated genes involved in hematopoietic cell lineage, which is consistent with the differentiation. In addition, PROseq was used to measure the effects of INCB059872 on nascent transcription at genes and enhancers, as this is one of the best methods to define enhancer activity. In THP-1 cells after 24h treatment, there were 203 genes with at least a 1.5-fold increase in transcription, while there are nearly 1300 enhancers meeting this threshold. Upregulated genes include those associated with myeloid cell differentiation, such as CSF1R and CD86. Given that LSD1 catalyzes the removal of mono- and di-methyl marks from histone H3, we expected that INCB059872 would cause a buildup of histone methylation. Surprisingly, ChIPseq for H3K4me2 and H3K4me1 showed only subtle changes in these marks after 48h drug treatment in THP-1. Only a handful of LSD1i-induced enhancers overlapped with detectable changes in H3K4 methylation. However, our PROseq data is consistent with the increases in H3K27 acetylation seen with OG86 (a compound that disrupts the LSD1:GFI1 interaction) at GFI1 binding sites (PMID: 29590629). Indeed, motif analysis of INCB059872-upregulated enhancers identified the GFI1 recognition sequence as the most highly enriched. Moreover, siRNA inhibition of key components of LSD1-containing chromatin remodeling complexes pinpointed the CoREST complex as mediating the THP-1 myeloid differentiation effects of INCB059872. To investigate on-target thrombocytopenia seen with LSD1 inhibitors in preclinical studies, we analyzed the bone marrow of wild-type mice treated daily with INCB059872 for 0, 4, or 6 days before harvesting and sorting lin-bone marrow cells for scRNA-seq. Notably, one of the most highly upregulated genes in treated cells was Gfi1b. Unsupervised clustering identified 22 clusters, corresponding to unique subpopulations (Fig. 1A). While the distribution of cells into different progenitor populations was mostly unaffected by drug treatment, these data revealed a striking increase in the proportion of cells from treated mice assigned to a megakaryocyte stem/progenitor cluster. Cells within this expanded cluster expressed stem cell markers such as MYCN and PBX1, but also expressed VWF (Fig. 1B). Thus, LSD1 inhibition caused accumulation of megakaryopoiesis-biased stem cells that failed to mature into efficient platelet producers. Finally, we used scRNAseq to analyze bone marrow from an AML patient who responded to treatment with INCB059872 plus azacytidine (AZA). A pre-treatment bone marrow sample was divided into separate cultures to study the effects of INCB059872, AZA, or the combination. Remarkably, unsupervised clustering of patient cells assigned the majority of INCB059872 and combination-treated cells to clusters that were not found in control- or AZA-treated samples. Cells exposed to INCB059872 had upregulated GFI1 and GFI1B, as well as differentiation-related genes that were also observed in AML cell lines. Overall, these data indicate that INCB059872 affects gene expression with kinetics consistent with a loss of CoREST activity to stimulate differentiation of AML blasts, but the inactivation of GFI1/GFI1B impairs megakaryocyte maturation likely explaining thrombocytopenia seen in preclinical models. Disclosures Stubbs: Incyte Corporation: Employment, Equity Ownership. Burn:Incyte: Employment, Equity Ownership. Hiebert:Incyte Corporation: Research Funding. Savona:Karyopharm Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Selvita: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sunesis: Research Funding; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer Ingelheim: Patents & Royalties; AbbVie: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document