A Lymphoma-Associated Mutation in BAFF-R Drives Constitutive PI3K Signaling and Increased Expression of Pro-Survival Genes

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2642-2642
Author(s):  
Frank J Secreto ◽  
Michelle K Manske ◽  
Tammy Price-Troska ◽  
Steven C. Ziesmer ◽  
Stephen M Ansell ◽  
...  

Abstract Abstract 2642 BAFF is essential for B cell maturation, and a lack of either BAFF or its primary receptor, BAFF-R, results in a severe depletion of T2 marginal zone and follicular B cells. Elevated serum BAFF levels have been correlated with an increased risk of developing non-Hodgkin's lymphoma (NHL), along with a more aggressive phenotype. A growing body of genetic evidence points toward an association between the development of human disease and variation in genes encoding BAFF and its receptors. Recently, we characterized a novel lymphoma-associated mutation in TNFRSF13C, the gene encoding BAFF-R. This mutation (BAFF-R H159Y) encodes a His159Tyr substitution in the C-terminus of BAFF-R adjacent to the TRAF3 binding motif. Signaling through BAFF-R H159Y results in increased NF-κB activity, elevated immunoglobulin production and increased association with TRAF2, TRAF3 and TRAF6 compared to wild type (WT) BAFF-R. We have detected this mutation in 6% of total NHL cases (n=129), and in 10% of follicular lymphoma (FL) cases (n=41) evaluated thus far. We previously reported that BAFF-R H159Y expressing mouse B cells exhibited significantly more resistance to Fas ligand (FasL) induced apoptosis compared to their cells expressing BAFF-R WT, and we propose here that BAFF-R H159Y mediated increases in PI3K activity may explain such an enhanced anti-apoptotic response. In this study we now show that BAFF stimulated HEK 293 cells stably expressing BAFF-R H159Y not only display significantly increased Akt phosphorylation when compared to BAFF-R WT expressing cells, but also demonstrate robust Akt phosphorylation in the absence of BAFF. BAFF-R H159Y-dependent Akt activation also led to activation of the downstream Akt targets mTOR and GSK3β and their phosphorylation was inhibited following treatment with the PI3- kinase inhibitor wortmannin. We next examined the impact of the BAFF-R H159Y mutation on expression of BAFF-target genes. Quantitative PCR analyses revealed that BAFF-R H159Y cells exhibited a pattern of gene expression indicative of promoting cell survival, displaying significantly higher levels of BCL2, BCL2L1 and PIN1, while down-regulating expression of the pro-apoptotic gene BIM. We recently reported that TRAF6 associates with BAFF-R, and that such binding is more pronounced in cells expressing BAFF-R H159Y. In order to investigate the role TRAF6 plays in mediating BAFF-R-dependent PI3K activity, we silenced TRAF6 expression in HEK 293 and Karpas 422 lymphoma cells using TRAF6 shRNA. Reduced TRAF6 protein expression resulted in a parallel decrease in BAFF-R WT mediated phosphorylation of mTOR in Karpas 422 cells and phosphorylation of both Akt and GSK3β was markedly reduced in BAFF-R H159Y expressing HEK 293 cells. Interestingly, TRAF6 knock-down did not affect NF-kB2 activation in either Karpas 422 or HEK BAFF-R expressing cells suggesting that Akt does not play a role in BAFF-R mediated activation of non-canonical NF-kB. Finally, preliminary co-precipitation studies indicate that Akt can be recruited to BAFF-R itself, and our initial observations suggest that such an association is significantly reduced in cells expressing BAFF-R H159Y. Taken together, these studies suggest that the BAFF-R H159Y mutation confers enhanced BAFF-R-dependent PI3K signaling and pro-survival gene expression independent of BAFF. Moreover, such enhanced P13K activation is partly dependent upon TRAF6, and decreased recruitment of Akt to BAFF-R H159Y may function to increase the amount of this PI3K target for activation. Thus, BAFF-R H159Y likely contributes to BAFF signaling irregularities in NHL patients harboring this mutation, and may predispose individuals to developing lymphoma regardless of their serum BAFF concentration. Disclosures: No relevant conflicts of interest to declare.

2006 ◽  
Vol 105 (3) ◽  
pp. 346-351 ◽  
Author(s):  
Chia-Sheng Chen ◽  
Nae-Jing Chen ◽  
Li-Wei Lin ◽  
Chia-Chang Hsieh ◽  
Guang-Wei Chen ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2474-2474
Author(s):  
Mary Risinger ◽  
Jesse Rinehart ◽  
Scott Crable ◽  
Anna Ottlinger ◽  
Richard Winkelmann ◽  
...  

Abstract The KCl cotransporter (KCC) mediates volume reduction in normal reticulocytes and exaggerated KCC activity in sickle red blood cells (SS RBC) (Joiner et al, Blood109:1728, 2007) contributes to pathological dehydration that potentiates sickling. Three separate genes (KCC1, KCC3, KCC4) are expressed in RBC (Crable et al, Exp. Hem.33:624, 2005). KCC1 and KCC3 proteins have been shown to interact in ex vivo expression systems (Simard et al, JBC282(25):18083, 2007), and co-expression of an N-terminal truncation of KCC1 reduces KCC activity mediated by full-length KCC1 or KCC3 (Casula et al. JBC276:41870, 2001), suggesting functional interaction. We show here via western blot analysis that SS RBC membranes contain more KCC1 protein (relative to KCC3) than AA RBC, independent of the reticulocytosis of sickle blood. Immunoprecipitation of solubilized SS RBC membranes with KCC3-specific antibody yielded a band at 125 kD on SDS PAGE which contained KCC1, as identified by western blotting with KCC1-specific antibody and by TOF mass spectroscopy. The effect of co-expression of KCC1 and KCC3 on KCC activity was assessed by measuring NEM-stimulated, Cl-dependent, (ouabain + bumetanide)-insensitive Rb uptake in HEK 293 cells. The Flip-In T-rex HEK 293 cell line (Invitrogen) containing a tetracycline-response promoter was transfected with a pcDNA5a plasmid containing KCC3a cDNA. Recombination of the plasmid with the integrated tet-promoter construct inserts the KCC3a gene under control of a tetracycline-responsive promoter. These cells were subsequently transduced with a retroviral vector (SF-91. Hildinger et at, Gene Ther. 5:1575, 1998) containing KCC1 cDNA linked to a GFP cassette. Control cells contained SF-91 vector lacking KCC1. Cells were selected for GFP expression and grown in the absence (un-induced, no KCC3a expression) or presence of tetracycline (induced, KCC3a expression). From this binary matrix, four types of cells were obtained: Cells with no additional KCC expression, representing endogenous KCC activity; cells with only KCC1 or KCC3a expression; cells with both KCC1 and KCC3a expression. Western blots indicated similar KCC1 expression in cells with KCC1 only and [KCC1 + KCC3] and similar KCC3 expression in cells with KCC3 only and [KCC1 + KCC3]. Thus, the expression of neither isoform was affected by the presence of the other. KCC activity in cells overexpressing KCC1 only was similar to endogenous activity in HEK 293 cells; i.e., transport activity of KCC1 alone was minimal. Cells overexpressing KCC3 only had a 5-fold increase in KCC activity over endogenous levels. When KCC1 was co-expressed with KCC3 in [KCC1 + KCC3] cells, an additional 50% increase in KCC activity was observed (p < 0.05 by paired t-test, N=4), despite similar levels of KCC3 expression by western blot analysis. This synergistic effect was dependent on the cytoplasmic N-terminus of KCC1, as it was not seen when the first 39 amino acids of KCC1 were removed. Interestingly, removal of the entire cytoplasmic N-terminal domain (117 aa) produced an inhibitory effect when co-expressed with KCC3a in HEK cells, as previously reported in Xenopus oocytes (Casula et al.). These data indicate that KCC1 and KCC3 interact structurally and functionally in RBC membranes, and provide another potential mechanism for regulation of KCC activity via multimeric associations between KCC isoforms. Thus, KCC activity could be modulated not only by transcriptional mechanisms and post-translational modification (phosphorylation), but also by altering the ratios of KCC isoforms or the kinetics of their association. We speculate that higher levels of KCC1 protein relative to KCC3 in SS RBC membranes could account for higher KCC activity in these cells relative to AA RBC.


2020 ◽  
Author(s):  
Ulli Heydasch ◽  
Renate Kessler ◽  
Jan-Peter Warnke ◽  
Klaus Eschrich ◽  
Nicole Scholz ◽  
...  

AbstractTumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells.Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered.Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0241092
Author(s):  
Ulli Heydasch ◽  
Renate Kessler ◽  
Jan-Peter Warnke ◽  
Klaus Eschrich ◽  
Nicole Scholz ◽  
...  

Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells. Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered. Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


2005 ◽  
Vol 21 (1) ◽  
pp. 14-33 ◽  
Author(s):  
Tatiana K. Zagranichnaya ◽  
Xiaoyan Wu ◽  
Arpad M. Danos ◽  
Mitchel L. Villereal

Gene expression profiles were generated using cDNA microarray technology for clones of human embryonic kidney (HEK)-293 cells selected to have either high or low levels of store-operated Ca2+ entry (SOCE). For five high clones, three low clones, and control HEK-293 cells, duplicate Affymetrix U133A human gene arrays were run after extraction of total RNA from cells growing in the presence of serum. Of the ∼22,000 genes represented on the microarray, 58 genes had readings at least twofold higher, while 32 genes had readings at least twofold lower, in all five high SOCE clones compared with control HEK-293 cells. In the low SOCE clones, 92 genes had readings at least twofold higher, while 58 genes had readings at least twofold lower, than in HEK-293 cells. Microarray results were confirmed for 18 selected genes by real-time RT-PCR analysis; for six of those genes, predicted changes in the low SOCE clone were confirmed by an alternative method, monitoring mRNA levels in HEK-293 with SOCE decreased by expression of small interfering (si)RNA to canonical transient receptor potential protein-1. Genes regulated by SOCE are involved in signal transduction, transcription, apoptosis, metabolism, and membrane transport. These data provide insight into the physiological role of SOCE. In addition, a potential regulator of SOCE, insulin receptor substrate (IRS)-2, has been identified. A reduction of IRS-2 levels by siRNA methods in two high clones dramatically reduced SOCE, whereas overexpression of IRS-2 in a low SOCE clone elevated SOCE.


2011 ◽  
Vol 31 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Prasad N. Paradkar ◽  
Eng Eong Ooi ◽  
Brendon J. Hanson ◽  
Duane J. Gubler ◽  
Subhash G. Vasudevan

DENV (dengue virus) induces UPR (unfolded protein response) in the host cell, which strikes a balance between pro-survival and pro-apoptotic signals. We previously showed that Salubrinal, a drug that targets the UPR, inhibits DENV replication. Here, we examine the impact on UPR after direct or ADE (antibody-dependent enhanced) infection of cells with DENV clinical isolates. THP-1 cells in the presence of subneutralizing concentration of humanized antibody 4G2 (cross-reactive with flavivirus envelope protein) or HEK-293 cells (human embryonic kidney 293 cells) were infected with DENV-1–4 serotypes. UPR gene expression was monitored under these infection conditions using real-time RT–PCR (reverse transcription–PCR) and Western blots to analyse serotype-dependent variations. Subsequently, in a blinded study, strain-specific differences were compared between DENV-2 clinical isolates obtained from a single epidemic. Results showed that THP-1 cells were infected efficiently and equally by DENV-1–4 in the ADE mode. At 48 hpi (h post infection), DENV-1 and -3 showed a higher replication rate and induced higher expression of several UPR genes such as BiP (immunoglobulin heavy-chain-binding protein), GADD34 (growth arrest DNA damage-inducible protein 34) and CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein]. The ADE infection of THP-1 cells with epidemic DENV-2 high-UPR-gene-expressing strains appears to correlate with severe disease; however, no such correlation could be made when the same viruses were used to infect HEK-293 cells. Our finding that UPR gene expression in THP-1 cells during ADE infection correlates with dengue disease severity is consistent with a previous study [Morens, Marchette, Chu and Halstead (1991) Am. J. Trop. Med. Hyg. 45, 644–651] that showed that the growth of DENV 2 isolates in human peripheral blood leucocytes correlated with severe and mild dengue diseases.


2007 ◽  
Vol 404 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Heather J. Lee ◽  
Hee-Chang Mun ◽  
Narelle C. Lewis ◽  
Michael F. Crouch ◽  
Emma L. Culverston ◽  
...  

The calcium-sensing receptor (CaR) mediates feedback control of Ca2+o (extracellular Ca2+) concentration. Although the mechanisms are not fully understood, the CaR couples to several important intracellular signalling enzymes, including PI-PLC (phosphoinositide-specific phospholipase C), leading to Ca2+i (intracellular Ca2+) mobilization, and ERK1/2 (extracellular-signal-regulated kinase 1/2). In addition to Ca2+o, the CaR is activated allosterically by several subclasses of L-amino acids, including the aromatics L-phenylalanine and L-tryptophan. These amino acids enhance the Ca2+o-sensitivity of Ca2+i mobilization in CaR-expressing HEK-293 (human embryonic kidney) cells and normal human parathyroid cells. Furthermore, on a background of a physiological fasting serum L-amino acid mixture, they induce a small, but physiologically significant, enhancement of Ca2+o-dependent suppression of PTH (parathyroid hormone) secretion. The impact of amino acids on CaR-stimulated ERK1/2, however, has not been determined. In the present study, we examined the effects of L-amino acids on Ca2+o-stimulated ERK1/2 phosphorylation as determined by Western blotting and a newly developed quantitative assay (SureFire). L-Amino acids induced a small, but significant, enhancement of Ca2+o-stimulated ERK1/2. In CaR-expressing HEK-293 cells, 10 mM L-phenylalanine lowered the EC50 for Ca2+o from approx. 2.3 to 2.0 mM in the Western blot assay and from 3.4 to 2.9 mM in the SureFire assay. The effect was stereoselective (L>D), and another aromatic amino acid, L-tryptophan, was also effective. The effects of amino acids were investigated further in HEK-293 cells that expressed the CaR mutant S169T. L-Phenylalanine normalized the EC50 for Ca2+o-stimulated Ca2+i mobilization from approx. 12 mM to 5.0 mM and ERK1/2 phosphorylation from approx. 4.6 mM to 2.6 mM. Taken together, the data indicate that L-phenylalanine and other amino acids enhance the Ca2+o-sensitivity of CaR-stimulated ERK1/2 phosphorylation; however, the effect is comparatively small and operates in the form of a fine-tuning mechanism.


2019 ◽  
Author(s):  
Harmonie Dehaene ◽  
Viviane Praz ◽  
Philippe Lhôte ◽  
Maykel Lopes ◽  
Winship Herr

AbstractTwelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often owing to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin (vitamin B12) metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.


BMB Reports ◽  
2009 ◽  
Vol 42 (5) ◽  
pp. 265-270 ◽  
Author(s):  
Soo-Hyoung Lee ◽  
Young-Jin Kim ◽  
Sang-Hoon Kwon ◽  
Young-Hee Lee ◽  
Soo-Young Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document