Characterization of the Role of the Tumor Suppressor BIN1 as a Potential Mediator of the AHI-1 Oncogene in Human Cutaneous T-Cell Lymphomas

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5229-5229
Author(s):  
Sharmin Esmailzadeh ◽  
Helena Wang ◽  
Xiaoyan Jiang

Abstract Abstract 5229 Cutaneous T-cell lymphomas (CTCLs) represent a group of lymphoproliferative disorders that are characterized by the homing of malignant T-cells to the surface of skin. There are two main types of CTCL: Mycosis Fungoides (MF) and its leukemic variant Sezary Syndrome (SS), which together represent ∼65–70% of all CTCL cases. The precise genetic pathogenesis of these diseases remains largely undetermined. Recently, our research group has demonstrated that AHI-1 (Abelson Helper Integration site-1) oncogene is involved in CTCL. AHI-1 is often the target of provirus insertional mutagenesis in a number of murine leukemias and lymphomas. High expression of AHI-1 is also observed in human leukemia cell lines, with marked upregulation (up to 40 fold) in CTCL lines (Hut78 and Hut102). Moreover, in FACS-purified CD4+CD7− Sezary cells from patients with Sezary Syndrome, AHI-1 has higher expression at both the RNA and protein levels compared to normal CD4+ cells. Furthermore, stable suppression of endogenous AHI-1 in Hut78 cells using small interfering RNA (AHI-1/sh4), reduces autocrine production of interleukin-2 (IL-2), IL-4 and tumor necrosis factor-alpha, and normalizes their transforming activity both in vitro and in vivo. Thus, lymphomagenic activity of Hut78 cells is partially dependent on the expression of AHI-1. Several differentially expressed genes that may play critical roles in AHI-1-mediated leukemic transformation in Hut78 cells have recently been identified through microarray analysis. One candidate is BIN1 (Bridging integrator 1), a tumor suppressor gene which is inactivated or deleted in various cancers. BIN1 protein interacts directly with c-MYC oncogene and inhibits c-MYC–mediated transactivation and transformation. Overexpression of BIN1 increases cell death and decreases cell proliferation in transformed cells. Furthermore, a recent study demonstrated that BIN1 sustains cancer cell sensitivity to some chemotherapy drugs. However, the role of BIN1 in regulation of normal hematopoiesis and lymphomagenesis remains unknown. In our study, BIN1 was shown to be up-regulated at both RNA and protein levels in AHI-1/sh4 cells compared to control Hut78 cells and these data were further confirmed at the mRNA level in primary CD4+CD7− SS cells. It has also been demonstrated that overexpression or suppression of AHI-1 mediate expression changes of BIN1, suggesting that the BIN1 is a potential co-operator of the AHI-1 oncogene. To investigate the tumor suppressor activity of BIN1 in Sezary cells and its potential molecular connection to AHI-1, full-length BIN1 was overexpressed in Hut78 (BIN1/Hut78) and AHI-1/sh4 cells using a lentiviral vector. Increased transcript levels and protein expression of BIN1 were confirmed in transduced cells compared to controls by Q-RT-PCR and Western analysis, respectively. Interestingly, significant reduction in cell proliferation was observed in BIN1/Hut78 cells compared to controls using the 3H- Thymidine uptake assay (>20% reduction in radioactive signal, p= 0.01). These results were further confirmed by using the colony forming cell (CFC) assay and observing a 40% reduction in colony numbers in BIN1/Hut78 cells compared to controls. Furthermore, a significant increase in the number of apoptotic cells was observed in BIN1/Hut78 cells compared to controls after culturing the cells for 48 hours in serum-free conditions using 7-amino-actinomycin D and PE-conjugated AnnexinV antibody staining (∼17% increase, p=0.03). No significant difference was observed in BIN1-transduced AHI-1/sh4 cells compared to controls, possibly due to high expression of endogenous level of BIN1 in these cells. To further investigate the effect of BIN1 on chemoresistance, Hut78 and BIN1/Hut78 cells were treated with different dosages of chemotherapeutic drugs (e.g. Etoposide) and the number of viable cells was counted after specific time points using the Trypan blue exclusion assay. Significant reduction in the number of viable cells was observed in BIN1/Hut78 cells compared to controls after 24 hours of drug treatment (∼20% reduction in cell viability, p=0.03). These findings suggest anti-proliferative and pro-apoptotic roles for BIN1 in human CTCL cells, and that restoration of BIN1 could potentially mediate the chemoresistance of these cells. Disclosures: No relevant conflicts of interest to declare.

2022 ◽  
Vol 23 (2) ◽  
pp. 936
Author(s):  
Denis Miyashiro ◽  
Bruno de Castro e Souza ◽  
Marina Passos Torrealba ◽  
Kelly Cristina Gomes Manfrere ◽  
Maria Notomi Sato ◽  
...  

Sézary syndrome is an aggressive leukemic variant of cutaneous T-cell lymphomas, characterized by erythroderma, lymphadenopathy, and peripheral blood involvement by CD4+ malignant T-cells. The pathogenesis of Sézary syndrome is not fully understood. However, the course of the disease is strongly influenced by the tumor microenvironment, which is altered by a combination of cytokines, chemokines, and growth factors. The crosstalk between malignant and reactive cells affects the immunologic response against tumor cells causing immune dysregulation. This review focuses on the interaction of malignant Sézary cells and the tumor microenvironment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2517-2517
Author(s):  
Sharmin Esmailzadeh ◽  
Youwen Zhou ◽  
Xiaoyan Jiang

Abstract Cutaneous T-cell lymphomas (CTCLs) represent a group of lymphoproliferative disorders that are characterized by homing of malignant T-cells to the surface of skin. There are two main types of CTCL: Mycosis Fungoides (MF) and its leukemic variant Sezary Syndrome (SS), which together represent about 65-70% of all CTCL cases. The precise genetic pathogenesis of these diseases remains largely undetermined. Recently, our research group has demonstrated that AHI-1 (Abelson Helper Integration site-1) oncogene is involved in CTCL. Expression of AHI-1 is increased in human leukemia cell lines, with marked upregulation (up to 40 fold) in CTCL lines (Hut78 and Hut102). Moreover, in FACS-purified CD4+CD7- Sezary cells from patients with Sezary Syndrome, AHI-1 expression is higher at both the RNA and protein levels compared to normal CD4+ cells. Furthermore, stable suppression of endogenous AHI-1 in Hut78 cells using small interfering RNA, normalizes their transforming activity both in vitro and in vivo. Thus, lymphomagenic activity of Hut78 cells is partially dependent on the expression of AHI-1. Interestingly, BIN1 (Bridging integrator 1) was identified through microarray analysis as one of the genes that may be involved in AHI-1-mediated leukemic transformation in CTCL cells. BIN1 is a nucleocytosolic adaptor protein with more than ten isoforms; some isoforms, including the BIN1 isoform (+10, +13), act as tumor suppressors, whereas the BIN1 (+12A) behaves as a cancer-related isoform in solid tumor models. However, the role of BIN1 in regulation of normal hematopoiesis and lymphomagenesis remains unknown. We have recently demonstrated that transcript levels of BIN1 isoforms are significantly lower in patients with MF or SS compared to controls. Four isoforms of BIN1 have been identified in Hut78 and primary CD4+CD7- Sezary cells. To investigate the role of BIN1 in CTCL, the BIN1 isoforms (+10, +13) and BIN1 (+12A) lentiviral constructs were transduced into two CTCL cell lines, Hut78 and HH cells. Overexpression of BIN1 isoforms led to a significant reduction in cell proliferation, as assessed by colony forming cell assays and 3H-Thymidine uptake assays (2-3 fold, p<0.05). Furthermore, a significant increase in spontaneous and specific apoptosis was observed in BIN1-transduced cells, with and without exogenous FAS-ligand (2-3 fold, p<0.05). Interestingly, a significant reduction in protein expression of c-FLIP (inhibitor of the FAS-mediated apoptosis pathway) and upregulation of downstream cleaved caspase-8 and caspase-3 was demonstrated in BIN1-transduced cells, suggesting that BIN1 isoforms induce apoptosis by downregulating the expression of c-FLIP, which leads to activation of the FAS-mediated apoptosis pathway. These findings show anti-proliferative and pro-apoptotic roles for BIN1 isoforms in human CTCL cells. In addition, subcellular fractionation and confocal microscopy further indicated that both the BIN1 (+10, +13) and BIN1 (+12A) isoforms are mainly located in the nucleus in Hut78 and HH cells. Furthermore, to investigate the effects of overexpression of BIN1 isoforms on the ability to induce tumors in vivo, we tested their leukemogenic potential by injecting transduced HH cells into non-obese diabetic/severe-combined immunodeficiency (NOD/SCID) mice. Mice injected subcutaneously with either parental HH or control empty vector cells (2 x 107/per mouse), showed local tumor formation in 6 of 6 mice within 4 days post-injection. The local tumors enlarged progressively and were often 1.5–2 cm in diameter by 3 weeks after injection. In contrast, no local tumors formed in mice given injections of equal numbers of BIN1-transduced HH cells after 14 days, in 12 out of 12 mice. Tumor formation was only observed in BIN1-transduced HH cells after 3 weeks post-injection. However, the local tumors were significantly smaller in BIN1-transduced HH cells compared to controls (∼4-fold). These findings further indicate that the two BIN1 isoforms have tumor suppressor activities in NOD/SCID mice and can significantly delay tumor formation and reduce tumor size in vivo. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2006 ◽  
Vol 20 (9) ◽  
pp. 1593-1601 ◽  
Author(s):  
A Ringrose ◽  
Y Zhou ◽  
E Pang ◽  
L Zhou ◽  
A E-J Lin ◽  
...  

2004 ◽  
Vol 112 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Arnaud Cirée ◽  
Laurence Michel ◽  
Sophie Camilleri-Bröet ◽  
Francette Jean Louis ◽  
Michèle Oster ◽  
...  

2000 ◽  
Vol 279 (1) ◽  
pp. C248-C256 ◽  
Author(s):  
Liu Hua Wei ◽  
Aaron T. Jacobs ◽  
Sidney M. Morris ◽  
Louis J. Ignarro

The objectives of this study were to determine whether rat aortic smooth muscle cells (RASMC) express arginase and to elucidate the possible mechanisms involved in the regulation of arginase expression. The results show that RASMC contain basal arginase I (AI) activity, which is significantly enhanced by stimulating the cells with either interleukin (IL)-4 or IL-13, but arginase II (AII) expression was not detected under any condition studied here. We further investigated the signal transduction pathways responsible for AI induction. AI mRNA and protein levels were enhanced by addition of forskolin (1 μM) and inhibited by H-89 (30 μM), suggesting positive regulation of AI by a protein kinase A pathway. Genistein (10 μg/ml) and sodium orthovanadate (Na3VO4; 10 μM) were used to investigate the role of tyrosine phosphorylation in the control of AI expression. Genistein inhibited, whereas Na3VO4enhanced the induction of AI by IL-4 or IL-13. Along with immunoprecipitation and immunoblot analyses, these data implicate the JAK/STAT6 pathway in AI regulation. Dexamethasone (Dex) and interferon (IFN)-γ were investigated for their effects on AI induction. Dex (1 μM) and IFN-γ (100 U/ml) alone had no effect on basal AI expression in RASMC, but both reduced AI induction by IL-4 and IL-13. In combination, Dex and IFN-γ abolished AI induction by IL-4 and IL-13. Finally, both IL-4 and IL-13 significantly increased RASMC DNA synthesis as monitored by [3H]thymidine incorporation, demonstrating that upregulation of AI is correlated with an increase in cell proliferation. Blockade of AI induction by IFN-γ, H-89, or genistein also blocked the increase in cell proliferation. These observations are consistent with the possibility that upregulation of AI might play an important role in the pathophysiology of vascular disorders characterized by excessive smooth muscle growth.


2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document