scholarly journals BAG3 contributes to HGF-mediated cell proliferation, migration, and invasion via the Egr1 pathway in gastric cancer

2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.

2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuhong Dai ◽  
Ning Li ◽  
Ming Zhou ◽  
Yue Yuan ◽  
Ding Yue ◽  
...  

AbstractThe treatment of patients with advanced-stage osteosarcoma represents a major challenge, with very few treatments currently approved. Although accumulating evidence has demonstrated the importance of lncRNAs in osteosarcoma, the current knowledge on the functional roles and molecular mechanisms of lncRNA endogenous born avirus-like nucleoprotein (EBLN3P) is limited. At present, the expressions of EBLN3P and miR-224-5p in osteosarcoma tissues were quantified by reverse transcription-quantitative PCR assay, and the expression of Ras-related protein 10 (Rab10) in osteosarcoma tissues was quantified by immunohistochemistry and western-blotting. The bioinformatics prediction software ENCORI was used to predict the putative binding sites of EBLN3P, Rab10 and miR-224-5p. The regulatory role of EBLN3P or miR-224-5p on cell proliferation, migration and invasion ability were verified by Cell Counting Kit-8, wound healing and Transwell assays, respectively. The interaction among EBLN3P, miR-224-5p and Rab10 were testified by luciferase. The increased expression of EBLN3P and Rab10 and decreased expression of miR-224-5p were observed in osteosarcoma tissues and cell lines. Besides, the overexpression of EBLN3P or knockdown of miR-224-5p were revealed to promote the proliferation, migration and invasion of osteosarcoma cells. Bioinformatics analysis and luciferase assay revealed that EBLN3P could directly interacted with miR-224-5p to attenuate miR-224-5p binding to the Rab10 3′-untranslated region. Furthermore, the mechanistic investigations revealed activation of the miR-224-5p/Rab10 regulatory loop by knockdown of miR‐372-3p or overexpression of Rab10, thereby confirming the in vitro role of EBLN3P in promoting osteosarcoma cell proliferation, migration and invasion. To the best of our knowledge, the present study is the first to demonstrate that EBLN3P may act as a competitive endogenous RNA to modulate Rab10 expression by competitive sponging to miR-224-5p, leading to the regulation of osteosarcoma progression, which indicates a possible new approach to osteosarcoma diagnosis and treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haibo Yao ◽  
Qinshu Shao ◽  
Yanfei Shao

Objective. To explore the relationship between CTCFL and DPPA2 and validate the positive role of CTCFL/DPPA2 in cell malignant behaviors in gastric cancer. Methods. We predicted gastric cancer-related transcription factors and corresponding target mRNAs through bioinformatics. Levels of CTCFL and DPPA2 were assessed via qRT-PCR and western blot. In vitro experiments were utilized to assay the cell biological behaviors. CHIP was utilized for the assessment of the targeted relationship between CTCFL and DPPA2. Results. CTCFL and DPPA2 were both highly expressed in gastric cancer cells, and high CTCFLL and DPPA2 could promote cell malignant behaviors. CHIP validated that DPPA2 was a target of CTCFL. In addition, high DPPA2 rescued the repressive impact of CTCFL silencing on the cell proliferation, migration, and invasion in gastric cancer. Conclusion. The transcription factor CTCFL fosters cell proliferative, migratory, and invasive properties via activating DPPA2 in gastric cancer.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chun-Wei Peng ◽  
Ling-Xiao Yue ◽  
Yuan-Qin Zhou ◽  
Sai Tang ◽  
Chen Kan ◽  
...  

Abstract Background miR-100 has been reported to closely associate with gastric cancer (GC) initiation and progression. However, the underlying mechanism of miR-100-3p in GC is still largely unclear. In this study, we intend to study how miR-100-3p regulates GC malignancy. Methods The expression levels of miR-100-3p in vitro (GES-1 and GC cell lines) and in vivo (cancerous and normal gastric tissues) were examined by quantitative real-time PCR (qRT-PCR). MTT and PE/Annexin V analyses were responsible for measurement of the effects of miR-100-3p on GC cell proliferation and apoptosis. Transwell assay with or without matrigel was used to examine the capacity of migration and invasion in GC cells. The interaction of miR-100-3p with bone morphogenetic protein receptor 2 (BMPR2) was confirmed through transcriptomics analysis and luciferase reporter assay. qRT-PCR and Western blot analyses were applied to determine the expression of ERK/AKT and Bax/Bcl2/Caspase3, which were responsible for the dysfunction of miR-100-3p. Results miR-100-3p was down-regulated in GC cell lines and cancerous tissues, and was negatively correlated with BMPR2. Loss of miR-100-3p promoted tumor growth and BMPR2 expression. Consistently, the effects of miR-100-3p inhibition on GC cells were partially neutralized by knockdown of BMPR2. Over-expression of miR-100-3p simultaneously inhibited tumor growth and down-regulated BMPR2 expression. Consistently, over-expression of BMPR2 partially neutralized the effects of miR-100-3p over-expression. Further study demonstrated that BMPR2 mediated the effects downstream of miR-100-3p, which might indirectly regulate ERK/AKT and Bax/Bcl2/Caspase3 signaling pathways. Conclusion miR-100-3p acted as a tumor-suppressor miRNA that down-regulated BMPR2, which consequently inhibited the ERK/AKT signaling and activated Bax/Bcl2/Caspase3 signaling. This finding provided novel insights into GC and could contribute to identify a new diagnostic and therapeutic target.


2021 ◽  
Author(s):  
Bingtian Liu ◽  
Ling Qiang ◽  
Bingxin Guan ◽  
Zhipeng Ji

Abstract Background: Recently, kinesin family member 21B (KIF21B) has been reported to be an oncogene in non-small cell lung cancer and hepatocellular carcinoma. However, the functional role and related molecular mechanisms underlying gastric cancer (GC) pathogenesis remain largely uncovered. Methods: The expression of KIF21B was investigated by analysis of Oncomine microarray gene expression datasets and clinical specimens. The association between KIF21B and miR-132-3p was assessed by luciferase reporter assay. CCK-8 assay and transwell assay were performed to analyze the functional role of miR-132-3p/KIF21B in GC cells. Related protein expression levels were evaluated by immunohistochemistry and western blot analysis.Results: We first found that the expression of KIF21B was upregulated in GC tissues compared with adjunct normal tissues. Knockdown of KIF21B significantly suppressed the proliferation, migration and invasion in GC cell lines (AGS and SNU-5). KIF21B was confirmed as the target of miR-132-3p in GC cells. Moreover, miR-132-3p was down-regulated and inversely correlated with KIF21B expression in GC tissues. Further functional experiments demonstrated that overexpression of KIF21B remarkedly reversed the suppressive effects of miR-132-3p overexpression on GC cell proliferation, migration and invasion. Furthermore, miR-132-3p overexpression downregulated the protein levels of Wnt1, c-Myc, β-catenin, PCNA and N-cadherin, and upregulated E-cadherin expression in GC cells, which were all alleviated after KIF21B overexpression. Conclusions: In summary, our findings provide the first evidence that down-regulation of KIF21B by miR-132-3p suppresses cellular functions in GC via regulating Wnt/β-catenin signaling.


Author(s):  
Jian Zhang ◽  
ZhenFeng Shi ◽  
JinXing Huang ◽  
XiaoGuang Zou

This study aimed to investigate the pivotal role of cystatin B (CSTB) in the development of gastric cancer and to explore its possible regulatory mechanism. Human gastric cancer SGC-7901 cells as a model in vitro were transfected with plasmid PCDNA3.1-CSTB and siRNA-CSTB using Lipofectamine 2000. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to determine the relative expression of CSTB and PI3K/Akt/mTOR pathway-related protein. Moreover, MTT assay, Transwell assay, and flow cytometry were used to assess cell proliferation, migration, and apoptosis, respectively. The results showed that CSTB was significantly downregulated in SGC-7901 cells compared with gastric epithelial cells. CSTB was successfully overexpressed and suppressed after cells were transfected with pc-CSTB and si-CSTB, respectively. Moreover, cell viability and migration were significantly decreased after being transfected with pc-CSTB when compared with the control group, while being obviously increased after transfection with si-CSTB. However, cell apoptosis was significantly induced after being transfected with pc-CSTB, while being obviously suppressed after transfection with si-CSTB. Besides, the expression levels of p-PI3K, p-Akt, and p-mTOR proteins were all significantly decreased in the pc-CSTB transfection group when compared with the control group, while being increased in the si-CSTB transfection group. Our findings suggest that CSTB downregulation may promote the development of gastric cancer by affecting cell proliferation and migration, and the PI3K/Akt/mTOR signaling pathway was activated in this process. CSTB may serve as a potential therapeutic target for gastric cancer.


2004 ◽  
Vol 78 ◽  
pp. 741-742
Author(s):  
I Rama ◽  
M Riera ◽  
J Torras ◽  
J M Cruzado ◽  
I Herrero-Fresneda ◽  
...  

2021 ◽  
Author(s):  
Bo Cao ◽  
Huan Deng ◽  
Hao Cui ◽  
Ruiyang Zhao ◽  
Hanghang Li ◽  
...  

Abstract Background Phosphoglucomutase 1 (PGM1) acts as an important regulator in glucose metabolism. However, the role of PGM1 in gastric cancer (GC) remains unclear. This study aims to investigate the role of PGM1 and develop novel regimens based on metabolic reprogramming in GC. MethodsCorrelation and enrichment analysis of PGM1 was conducted based on The Cancer Genome Atlas database. Data derived from the Kaplan-Meier Plotter database were analyzed for correlations between PGM1 expression and survival time of GC patients. CCK-8, EdU, flow cytometry assays, generation of subcutaneous tumor and lung metastasis mouse models were used to determine growth and metastasis in vitro and in vivo. Cell glycolysis was detected by a battery of glycolytic indicators, including lactate, pyruvic acid, ATP production and glucose uptake. Fatty Acid Synthase (FASN) activity and detection of lipid regulators levels by western blot were used to reflect on the cell lipid metabolism. ResultsCorrelation and enrichment analysis suggested that PGM1 was closely associated with cell proliferation and metabolism. PGM1 was overexpressed in GC tissues and cell lines. High PGM1 expression served as an indicator of shorter survival for specific subpopulation of GC patients, which was also correlated with some clinicopathological features, including T stage and TNM stage. Under low glucose conditions, knockdown of PGM1 significantly suppressed cell proliferation and glycolysis levels, whereas lipid metabolism was enhanced. Orlistat, as a drug that was designed to inhibit FASN activity for obesity treatment, effectively induced apoptosis, suppressed FASN activity. However, orlistat conversely increased glycolytic levels in GC cells. Orlistat exhibited more significant inhibitive effects on GC progression after knockdown of PGM1 under glucose deprivation due to combination of glycolysis and lipid metabolism. ConclusionsDownregulation of PGM1 expression under glucose deprivation synergistically enhanced anti-cancer effects of orlistat. This combination application may serve as a novel strategy for GC treatment.


2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1749-1761
Author(s):  
Xin Cao ◽  
Xianfeng Meng ◽  
Peng Fu ◽  
Lin Wu ◽  
Zhen Yang ◽  
...  

Abstract Osteosarcoma (OS) is a highly metastatic primary malignant tumor. CircRNA hsa_circ_0028173 (circATP2A2) has been uncovered to be related to the advancement of OS. However, the biological role of circATP2A2 in OS has not been validated. circATP2A2 and MYH9 were upregulated while miR-335-5p was downregulated in OS. OS patients with high circATP2A2 expression displayed a shorter overall survival and the area under curve of circATP2A2 was 0.77, manifesting that circATP2A2 might be a diagnostic and prognostic biomarker. circATP2A2 silencing repressed OS cell proliferation and glycolysis in vivo and constrained OS cell proliferation, glycolysis, migration, and invasion in vitro. circATP2A2 regulated MYH9 expression through sponging miR-335-5p. MiR-335-5p inhibitor reversed the repressive effect of circATP2A2 knockdown on OS cell malignancy and glycolysis. MYH9 overexpression overturned miR-335-5p upregulation-mediated OS cell malignancy and glycolysis. circATP2A2 accelerated OS cell malignancy and glycolysis through upregulating MYH9 via sponging miR-335-5p, offering a promising target for OS treatment.


Sign in / Sign up

Export Citation Format

Share Document