Expanded Natural Killer (NK) Cells for Immunotherapy: Fresh and Made to Order

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1912-1912
Author(s):  
Susann Szmania ◽  
Natalia Lapteva ◽  
Tarun K. Garg ◽  
Joshuah D Lingo ◽  
Amy D Greenway ◽  
...  

Abstract Abstract 1912 Introduction Remarkable increases in the dose and activity of NK cells can be achieved by co-culture with the HLA class I deficient cell line K562 that has been genetically modified to express membrane-bound IL15 and the co-stimulatory molecule 41BB-ligand (K562-mb15-41BBL; Fujisaki et al. Cancer Res. 2009;69:4010–4017). We are conducting a clinical trial utilizing these ex-vivo expanded NK cells (ENK) which are produced at the Center for Cell and Gene Therapy (CAGT) at Baylor and then shipped to the University of Arkansas for Medical Sciences (UAMS) for infusion to high-risk relapsed multiple myeloma (MM) patients using the NHLBI-PACT mechanism. Here we report on the characteristics of the ENK cell products sent fresh versus frozen. Methods Apheresis products were collected from MM patients or healthy donors (HD), cryopreserved, and then shipped to CAGT for GMP grade production, as described (Lapteva et al. Cytotherapy 2012; in press). Briefly, mononuclear cells from thawed and ficolled apheresis products were cultured in Stem Cell Growth Medium (CellGenix) supplemented with 10% fetal bovine serum and 10 U/mL IL2 with stimulator cells at a ratio of 1 NK cell to 10 irradiated K562-mb15-41BBL cells (developed at St. Jude Children's Research Hospital, Memphis, TN). Cells were harvested on day 8–9; products from HD were CD3-depleted. Clinical-grade products were shipped to UAMS overnight either cryopreserved in a dry shipper (n=7) or fresh in 5% human serum albumin on cold packs at 1–11°C (n=4). Cell purity, expression of activating molecules, and viability by 7AAD exclusion was assessed by flow cytometry. Standard 4h chromium-release assays were used to assess potency against K562 cells at a 20:1 ENK: K562 ratio. Student's t-Test was used to determine significance. Results From 0.9–1.5×107 starting NK cells, the total number of ENK cells produced was 5.4×109 (range 1.8–24×109). The fold NK-cell expansion was significantly lower for MM patients (n=5, median 22, 12–70 fold) than for HD (n=6, median 95, 31–160 fold; p<0.05). At harvest, median CD3+/CD56+ NK cell purity was 70% (52–88); CD3 depletion of HD products increased CD3+/CD56+ purity to 93% (86–95) resulting in a median CD3+/CD56- T cell content of 0.02% (0.04–1.02). Overall, median viability was 93% (67–98) and potency (defined as lysis of K562 cells at a 20:1 E:T ratio) was 74% (26–92). One product derived from a patient with 21% CD138+ MM cells in the apheresis collection had low expansion (12-fold), viability (66.7%) and potency (26%). For cryopreserved products, viability immediately after thawing was acceptable (median 94%, 75–99) but recovery of viable cells varied from 61% to 100% and thawed ENK failed to lyse K562 cells unless rested overnight. Further, recovery was extremely poor after overnight incubation (median 16%, 10–21). We therefore validated shipment of fresh ENK products. In contrast with frozen NK cells, the median recovery for fresh clinical products post-shipping was 101% (87–151). We confirmed that NK purity, viability, potency and expression of the key activating molecules NKG2D, NKp30, NKp44 and CD226 were retained up to 48h after transfer. ENK further increased by 34% after 72h in vitro incubation in the presence of IL2. Significant in vivo expansion of ENK was observed after infusion of fresh ENK cell products (n=3) but not after infusion of thawed products (n=3, see separate abstract). An additional advantage was that the fresh cells arrived ready to infuse and changes in release criteria relying on rapid and in process testing significantly reduced the time from apheresis collection to ENK infusion, an important consideration when treating high-risk MM patients who can experience rapid disease progression. Conclusion We conclude that large numbers of clinical grade ENK cells can be generated from both MM patient and HD derived apheresis products by co-culture with IL2 and K562-mb15-41BBL although less vigorous expansion was observed with patient-derived cells. Upon thawing, cryopreserved ENK cells exhibited inferior recovery and potency, and survived poorly during further in vitro culture. In contrast, freshly formulated and shipped ENK cells have excellent recovery and retain cytolytic ability. Robust in vivo expansion was only seen after infusion of fresh ENK cells. Production assistance by CAGT allowed for the rapid implementation of a novel therapy utilizing fresh ENK cells for poor prognosis MM patients. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1117-1117 ◽  
Author(s):  
Maximillian Rosario ◽  
Rizwan Romee ◽  
Stephanie E Schneider ◽  
Jeffrey W Leong ◽  
Ryan P Sullivan ◽  
...  

Abstract NK cells are innate lymphoid cells that mediate anti-leukemia responses. The ability of MHC-haploidentical NK cells to recognize and eliminate AML blasts have been established in the setting of stem cell transplantation and early phase adoptive NK cell immunotherapy trials. However, the optimal approach to prepare human NK cells for maximal anti-leukemia capacity is unclear. As one form of innate NK cell memory, cytokine-induced memory-like (CIML) NK cells are induced by a brief (16 hour) pre-activation of human NK cells with the combination of IL-12, IL-15, and IL-18, while control NK cells from the same donor are activated by IL-15 only. In published work, this combined IL-12, IL-15, and IL-18 pre-activation results in enhanced proliferation and augmented IFN-gamma responses to cytokine or activating receptor-based re-stimulation following a rest period of 1 – 6 weeks. We hypothesized that CIML NK cells exhibit improved anti-leukemia properties compared to control NK cells from the same individual. Purified primary human CIML NK cells [both CD56bright and CD56dim subsets] produce more IFN-gamma, compared to control NK cells, upon re-stimulation with K562 cells or primary AML blasts after 7 days of rest (p<0.05 and p<0.001, N=5). CIML NK cells also exhibit higher granzyme B protein expression (p<0.01; N=8), and increased cytotoxicity against K562 leukemia targets in vitro (p<0.001, 2.5:1 and 5:1 E:T ratios). We next established a NOD-SCID-gamma-c-/- (NSG) xenograft model to investigate primary human CIML NK cell responses in vivo, with survival supported by low dose IL-2 administered every other day. Seven days following injection of 4 million NK cells / mouse, human CIML NK cells traffic to the bone marrow, spleen, liver and blood, and exhibited better in vivo expansion and persistence, compared to control NK cells (p=0.05 in the blood and bone marrow). Further, the characteristic enhanced functionality of CIML compared to control NK cells when restimulated with K562 targets was retained when assessed ex vivo 7 days post-transfer (p<0.05). Next, we investigated the ability of CIML versus control NK cells from the same donor to clear K562 AML cells in vivo. First, luciferase expressing K562 cells (1 million / mouse) were engrafted into sub-lethally irradiated (250 cGy) NSG mice. On day 3 after K562 challenge, primary human CIML or control NK cells from the same donor (4 million / mouse) were injected, which were supported in vivo using low dose IL-2. CIML NK cells exhibited significantly improved in vivo leukemia clearance as evidenced by whole mouse bioluminescence imaging (see Figure, P=0.03, N=7 mice per group). Thus, human CIML NK cells exhibit enhanced in vitro and in vivo anti-leukemia effects, compared to control NK cells. Based on these findings, a first-in-human phase 1 study of CIML NK cells in relapsed/refractory AML is currently underway. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 659-659 ◽  
Author(s):  
Jan Davidson-Moncada ◽  
Noriko Sato ◽  
Robert F Hoyt ◽  
Robert N Reger ◽  
Marvin Thomas ◽  
...  

Abstract Adoptive transfer of allogeneic or autologous natural killer (NK) cells is now being developed for therapy of both hematological and solid malignancies. The efficacy of NK immunotherapy to mediate anti-tumor effects will ultimately be dependent on their ability to traffic and home to the tumor microenvironment. Recent data suggest expanded NK cells are ineffective at homing to the bone marrow (BM) and lymph nodes (LN) where hematological malignancies reside. A variety of techniques to maintain and/or enforce expression of homing receptors in NK cells are now being explored in preclinical models to improve their localization to the BM and LN. Historically, xenogeneic human into mouse or mouse into mouse models have been utilized for preclinical development of adoptive NK transfer. These experiments often use fluorescent dye-labeled NK cells and require repeated invasive biopsies, which can be confounded by sampling error, or the requirement for post mortem analysis. Here we present a method to track in real time and in vivo adoptively infused zirconium-89 (89Zr) labelled NK cells by PET imaging. A rhesus macaque (RM) model was used for these preclinical experiments as RM and human NK cells have similar expansion kinetics, and have greater similarity than mice in their phenotype, function, and homing receptors and ligands. PBMCs collected from the PB of 13 RMs were enriched for NK cells by CD3+ T-cell depletion and were then expanded for 14 days by culturing with irradiated human EBV-LCL cells in X-VIVO 20 media containing 10% human AB serum and 500 IU/μl of human IL-2. RM NK cells expanded a mean 145±41 fold and contained >99% pure CD3- and CD56+ cells. The phenotype and tumor cytotoxicity of RM NK cells were similar to NK cells expanded from humans (n=3) using similar expansion cultures; at a 10:1 E:T ratio, 67% and 73% of K562 cells were lysed by RM and human NK cell respectively. To label NK cells, 89Zr was conjugated to oxine, which readily permeabilized the cellular membrane and was retained in the cells. Expanded NK cells from both humans and RM showed no changes in CD16 or CD56 expression for up to 6 days following radiolabeling. Human and RM NK cell viability 0 to 24 hours following radiolabelling was 60-100% then declined to 20-30% after 6 days. 89Zr retention by both human and RM NK cells was 75-80% in the first 24 hours of culture but gradually declined with time, decreasing to 20-30% after 7 days of culture. Culturing radiolabeled human NK cells for 24-36 hours with different cellular populations including Ramos and Raji cell lines and normal human PBMCs revealed no significant transfer of radioactivity (max 2% above baseline), establishing that 89Zr was not transferred from labeled to unlabeled cells. Oxine labeling did not alter the cytotoxicity of human or RM NK cells vs K562 cells compared to unlabeled controls. 89Zr-oxine labeling of expanded RM NK cells is currently being used to quantify NK cell trafficking and survival following adoptive transfer in autologous macaques. In these experiments, RM recipients of adoptively infused 89Zr labeled NK cells receive concurrent deferoxamine to chelate and then enhance renal excretion of any free 89Zr that is released from dead cells. In the experiments shown below, 13 x 107 autologous ex vivo expanded 89Zr-labeled RM NK cells were injected IV into a 5.7 kg RM and tracked by sequential PET/CT imaging for 7 days. Up to 1-hour post infusion, most NK cell activity was restricted to the lungs. By 4 hours, NK cells began to traffic from the lungs to the liver and spleen. By 2 days, NK cells were no longer detectable in the lungs and resided largely in the liver and spleen, where they remained for the remainder of the 7 day imaging period. During the entire observation period, little to no NK cell radioactivity was detected in the LN or BM. In conclusion, 89Zr oxine labelling of NK cells followed by PET/CT imaging represents a powerful tool to track the in vivo fate of adoptively transferred NK cells. The RM model presented here provides a method to evaluate and optimize various strategies aimed at altering the phenotype of NK cells, with the goal of improving their homing to the BM and LN where hematological cancers reside. These preclinical in vitro and in vivo data suggest this technology could be safely extended to humans and could be applied to other cellular populations besides NK cells. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3928-3928
Author(s):  
Michele Levin ◽  
Janet Ayello ◽  
Frances Zhao ◽  
Andrew Stier ◽  
Lauren Tiffen ◽  
...  

Abstract Abstract 3928 Background: NK cells play a role in reducing relapse in hematological malignancy following AlloSCT (Dunbar et al, Haematologica, 2008). NK cell limitations include lack of tumor recognition and/or limited numbers of viable and functional NK cells (Shereck/Cairo et al, Ped Bld Can, 2007). NK ACI provide safe and effective therapy against tumor relapse; yet NK cells are limited to specific cancer types and not all patients demonstrate optimal response (Ruggieri et al. Science, 2002; Ljunggren et al. Nat Rev Immuno, 2007). To circumvent these limitations, methods to expand and activate PBMNCs with genetically engineered K562 cells expressing membrane bound IL-15 and 41BB ligand (K562-mbIL15-41BBL [modK562]; Imai/Campana et al, Blood, 2005) have shown to significantly increase NK cells in number and maintain heterogeneous KIR expression (Fusaki/Campana et al BJH, 2009). We have shown that CB NK cells can be activated/expanded and exhibit enhanced cytolytic activity when cultured in a cytokines/antibody cocktail (Ayello/Cairo et al, BBMT, 2006; Exp Heme, 2009). Objective: To evaluate CBNK expansion, activation, cytolytic mechanism and function against Burkitt lymphoma (BL) tumor target and its influence on NK cell mediated in-vitro and in-vivo cytotoxicity in NOD-SCID mice following stimulation with modK562 cells (generously supplied by D.Campana, St Jude's Children's Hospital, Memphis, Tx). Methods: Following 100GY irradiation, modK562cells were incubated 1:1 with CBMNCs in RPMI+IL-2 (10IU/ml) for 7 days in 5%CO2, 37°C. NK activation marker (LAMP-1), perforin and granzyme B were determined by flow cytometry. Cytotoxicty was determined via europium assay at 20:1 E:T ratio with Ramos (BL) tumor targets (ATCC). The mammalian expression construct (ffLucZeo-pcDNA (generously supplied by L.Cooper, MD, PhD) was transfected to BL cells using lipofectin and selected by zeocin for stable transfection. Six week old NOD-SCID mice received 5×106 BL cells subcutaneously. Upon engraftment, xenografted NOD-SCID mice were divided in 5 groups: injected with PBS (control), BL only, 5×106 wildtype (WT) K562 expanded (E) CBNK cells, modK562 expanded (E) CB NK cells (5×106) and modK562 expanded (E) CBNK cells (5×107). Ex-vivo ECBNK cells were injected weekly for 5 weeks and xenografted NOD-SCID mice were monitored by volumetric measurement of tumor size (Tomayko/Reynolds, Can Chemother Pharmac, 1989), bioluminescent imaging (Inoue et al Exp Heme, 2007) and survival. The survival distribution for each group was estimated using the Fisher exact test. Results: On Day 0, NK cells (CD56+/3-) population was 3.9±1.3%. After 7 days, modK562 expanded CBNK cells was significantly increased compared to WTK562 and media alone (72±3.9 vs 43±5.9 vs 9±2.4%, p<0.01). This represented a 35-fold or 3374±385% increase of the input NK cell number. This was significantly increased compared to WTK562 (1771±300%, p<0.05). ModK562 ECBNK cells demonstrated increased perforin and granzyme B expression compared to WTK562 (42±1.5 vs 15±0.5%,p<0.001; 22±0.5 vs 11±0.3%,p<0.001, respectively). Cytotoxicity was against BL tumor targets was significantly increased (42±3 vs 18±2%,p<0.01), along with NK activation marker expression, CD107a (p<0.05). At 5 weeks, in-vivo studies demonstrated increased survival of NOD-SCID mice receiving both 5×106 and 5×107 modK562 ECBNK cells when compared to those with no treatment (p=0.05, p=0.0007, respectively). There was no difference in survival when comparing mice that received 5×106 vs 5×107 modK562 ECBNK cells (p=0.0894) at 5 weeks. Tumor volume of mice receiving either dose of modK562 ECBNK cells was significantly less than those receiving WTK562 ECBNK cells (1.92±0.57 and 0.37±0.05 vs 3.41±0.25, p=0.0096 and p=0.0001, respectively). Conclusions: CBMNCs stimulated and expanded with modK562 cells results in significant expansion of CBNK cells with enhanced in-vitro cytotoxicity, significant receptor expression of NK activation marker (LAMP-1), and perforin and granzyme B. Furthermore, modK562 ECBNK cells leads to increased survival and lower tumor burden of NOD-SCID mice xenografted with BL. Future directions include modK562 ECBNK cells to be genetically modified to express chimeric antigen receptor CD20 (MSCV-antiCD20-41BB-CD3 ζ) against CD20+ hematologic malignancies for future studies to evaluate whether targeting enhances in-vitro and in-vivo cytotoxicity. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
FANG ZHOU ◽  
Darise Farris

Thrombotic thrombocytopenic purpura (TTP) is a rare life-threaten vascular autoimmune disease. There is no effective method to treat it in clinical trials since pathogenesis of TTP has not been fully elucidated. Here we investigate the role of NK cells in relapse development of TTP. Our results showed that the frequencies of CD3 − CD56 dim CD16 − and CD3 − CD56 bri CD16 − NK cells are increased in TTP patients with a history of relapse. Expression of CD107a, granzyme A and IFN-γ by CD3 − CD56 dim NK cells following in vitro stimulation with PMA/ionomycin / monensin is improved in the relapse group, compared with those on NK cells derived from TTP patients without relapse development. NK cells isolated from TTP patients with a history of relapse indicated stronger cytotoxicity to target K562 cells than those of NK cells derived from TTP patients without relapse development, suggesting prior activation of NK cells in vivo . Treatment with anti-human CD16 antibody up-regulates cytotoxicity of NK cells derived from TTP patients without relapse development. However, Anti-human CD16 antibody treatment does not affect cytotoxicity of NK cells isolated from TTP patients with a history of relapse, suggesting inability of CD16-mediated signaling in NK cells derived from TTP patients with relapse development. These data provide evidence of altered NK cell activation and/or licensing in TTP patients with a history of relapse modulated by CD16-mediated signaling and a new avenue of investigation into mechanisms of TTP immunopathogenesis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4714-4714 ◽  
Author(s):  
Su Su ◽  
Dawn M Betters ◽  
Muthalagu Ramanathan ◽  
Keyvan Keyvanfar ◽  
Aleah Smith ◽  
...  

Abstract Abstract 4714 The development of an efficient method to genetically modify natural killer (NK) cells could be used to characterize NK cell differentiation, acquisition of self-tolerance, tumor trafficking in vivo, as well as to manipulate NK cells to enhance their activity against infectious diseases and tumors. Although HIV-1 based lentiviral vectors (LVs) have been used to efficiently transfer genes into human T-cells, little data exists on LV transduction of either fresh or in vitro expanded human NK cells or its effects on NK cell phenotype and cytolytic function. In this study, we used an HIV-based LV expressing enhanced green fluorescence protein (EGFP) driven by a murine stem cell virus long terminal repeat (MSCV-LTR) promoter to transduce CD3− and CD56+ and/or CD16+ human NK cells that were either resting, IL-2 activated, or expanded in vitro using an irradiated EBV-LCL feeder cell line. We observed that resting NK cells were difficult to transduce with LVs, even at high multiplicities of infection (MOI), with transduction efficiencies (TE) in the range of only 3–14%. The efficiency of LV transduction improved when the NK cells were pre-stimulated in vitro with IL-2: TE improved to 21±0.2% in NK cells cultured for 24 hours in media containing IL-2 (200 U/mL) and 28.7±12.9% in NK cells that underwent in vitro expansion over 9 days prior to transduction using irradiated EBV-LCL feeder cells and media containing IL-2 (200U/mL). Subsequently, we evaluated incremental MOIs (3-200) to optimize LV transduction of expanded NK cells; optimal transduction was achieved using a spinoculation protocol at a MOI of 25 which resulted in the highest transduction efficiencies with the least amount of cell death. Increasing the MOI above this level resulted in a small increase in transduction, but was offset by an increase in NK cell apoptosis/death. Using a one-round, non-spinoculation protocol and an MOI of 30, we obtained a median transduction efficiency of 29% (range 16–41) with excellent retention of NK cell viability. This optimized protocol was used to transduce expanded NK cells with a LV vector encoding an shRNA targeting a region of the NK cell inhibitory receptor transcript NKG2A. Following transduction, surface expression of NKG2A decreased significantly on expanded NK cells compared to non-transduced expanded NK cells and “scramble transduced” LV controls; at a MOI of 10, the MFI of NKG2A on expanded human NK cells decreased 35% compared to non-transduced and LV transduced scramble controls (median MFI 428, 673, 659 in shRNA, non-transduced and scramble LV control transduced NK cells respectively). A comparison of transduction efficiencies using LVs expressing EGFP driven by MSCV-LTR, EF1a, and Ubi promoters showed MSCV-LTR mediated the highest level of gene expression in expanded NK cells. Transduced NK cells maintained stable EGFP transgene expression in vitro, which peaked 5 days following LV transduction and remained stable for an additional 9 days. The phenotype of lentiviral transduced NK cells was similar to non-transduced NK cells. Specifically, expression of CD56, CD16, granzyme A and B, perforin, the inhibitory receptors NKG2A, KIR3DL1, KIR3DL2, and KIR2DL1/DL2, and the activating receptors NKG2D, NCRs NKp46, and NKp30 were not altered in either fresh or expanded NK cells following LV transduction, although we did observe a significant reduction in NKp44 expression in LV transduced cells (22% compared to 50% on untransduced NK cells; 0.02). Furthermore, NK cell function, as assessed by cytokine production and cytotoxicity vs tumor targets was not altered in LV transduced NK cells. A 51Cr release cytotoxicity assay showed GFP+ NK cells, flow sorted following LV transduction of expanded NK cells, had similar cytotoxicity against K562 cells and human renal cell carcinoma cells (RCC) compared to non-transduced expanded NK cell controls (figures). In conclusion, we show that an HIV-1 based lentiviral vector driven by a MSCV-LTR, mediated efficient and stable gene transfer in IL-2 activated and in vitro expanded human NK cells. This study provides valuable insights for methods to optimize the long-term expression of LV transduced genes in human NK cells which could be used to improve their anti-tumor function in vivo. Target: K562 cells Target: RCC cell line Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 89 (12) ◽  
pp. 6264-6274 ◽  
Author(s):  
Kieran Seay ◽  
Candice Church ◽  
Jian Hua Zheng ◽  
Kathryn Deneroff ◽  
Christina Ochsenbauer ◽  
...  

ABSTRACTNatural killer (NK) cells with anti-HIV-1 activity may inhibit HIV-1 replication and dissemination during acute HIV-1 infection. We hypothesized that the capacity of NK cells to suppress acutein vivoHIV-1 infection would be augmented by activating them via treatment with an interleukin-15 (IL-15) superagonist, IL-15 bound to soluble IL-15Rα, an approach that potentiates human NK cell-mediated killing of tumor cells.In vitrostimulation of human NK cells with a recombinant IL-15 superagonist significantly induced their expression of the cytotoxic effector molecules granzyme B and perforin; their degranulation upon exposure to K562 cells, as indicated by cell surface expression of CD107a; and their capacity to lyse K562 cells and HIV-1-infected T cells. The impact of IL-15 superagonist-induced activation of human NK cells on acutein vivoHIV-1 infection was investigated by using hu-spl-PBMC-NSG mice, NOD-SCID-IL2rγ−/−(NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMCs) which develop productivein vivoinfection after intrasplenic inoculation with HIV-1. IL-15 superagonist treatment potently inhibited acute HIV-1 infection in hu-spl-PBMC-NSG mice even when delayed until 3 days after intrasplenic HIV-1 inoculation. Removal of NK cells from human PBMCs prior to intrasplenic injection into NSG mice completely abrogated IL-15 superagonist-mediated suppression ofin vivoHIV-1 infection. Thus, thein vivoactivation of NK cells, integral mediators of the innate immune response, by treatment with an IL-15 superagonist increases their anti-HIV activity and enables them to potently suppress acutein vivoHIV-1 infection. These results indicate thatin vivoactivation of NK cells may represent a new immunotherapeutic approach to suppress acute HIV-1 infection.IMPORTANCEEpidemiological studies have indicated that NK cells contribute to the control of HIV-1 infection, andin vitrostudies have demonstrated that NK cells can selectively kill HIV-1-infected cells. We demonstrated thatin vivoactivation of NK cells by treatment with an IL-15 superagonist that potently stimulates the antitumor activity of NK cells markedly inhibited acute HIV-1 infection in humanized mice, even when activation of NK cells by IL-15 superagonist treatment is delayed until 3 days after HIV-1 inoculation. NK cell depletion from PBMCs prior to their intrasplenic injection abrogated the suppression ofin vivoHIV-1 infection observed in humanized mice treated with the IL-15 superagonist, demonstrating that activated human NK cells were mediating IL-15 superagonist-induced inhibition of acute HIV-1 infection. Thus,in vivoimmunostimulation of NK cells, a promising therapeutic approach for cancer therapy, may represent a new treatment modality for HIV-1-infected individuals, particularly in the earliest stages of infection.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 582-582 ◽  
Author(s):  
Nicolai Wagtmann ◽  
Pascale Andre ◽  
Stefan Zahn ◽  
Pieter Spee ◽  
Nicolas Anfossi ◽  
...  

Abstract In patients with acute myeloid leukemia (AML), haplo-identical stem cell transplantation (SCT) can lead to expansion and activation of Killer Immunoglobulin-like Receptor (KIR)-HLA class I mismatched NK cells, resulting in reduced rates of leukemia relapse and no graft-versus-host disease (Ruggeri et al. Science 2002). However, this SCT is not available to the majority of AML patients who are elderly. To explore the feasibility of achieving similar NK-mediated anti-leukemia activity by a pharmacological approach, we generated fully human anti-KIR mAbs that block the interactions of inhibitory KIR2DL receptors with their HLA-C ligands, thereby enhancing NK activity. Here we describe one such therapeutic candidate anti-KIR mAb, designated 1-7F9. As distinct HLA-C allotypes are recognized by KIR2DL1 or −2/3, only mAbs that cross-react with these KIRs would be expected to work in the entire population. Hence, 1-7F9 was initially selected based on its ability to bind soluble, recombinant KIR2L1, −2 and −3. By Biacore analysis, the bivalent affinities for KIR2DL1 and −3 were 0.43 × 10−9 M and 0.025 × 10−9 M, respectively. In experimental systems and in normal human blood, 1-7F9 bound KIR2DL1, −2 and −3, and −2DS1 and −2, but not to KIR2DS3 or −4. 1-7F9 dose-dependently inhibited the binding of soluble KIR2DL1-Fc to cell surface HLA-Cw4. 1-7F9 augmented the lysis of 721.221-Cw4 B-EBV cells by an NK cell line transfected with KIR2DL1 (YTS-2DL1) from 5% lysis in absence of mAb to a maximal 55% lysis at 5 ug/ml of mAb, but did not affect lysis by KIR-negative NK cells. Lysis of PHA-stimulated blasts and primary AML blasts by autologous IL-2 activated NK cells (E:T=6:1) was 10 and 15%, respectively, in absence of mAb vs 80% and 55% in presence of 1-7F9. Incubation of IL-2 activated blood mononuclear cells with 1-7F9 resulted in expression of the activation marker CD107 on about 10% of KIR2D-positive NK cells, which increased to 20% upon addition of HLA-C-positive B-EBV targets, suggesting that 1-7F9 preferentially induces activation of NK cells in presence of transformed cells. The isotype of 1-7F9 is IgG4; accordingly, it did not cause depletion of KIR positive cells in vitro or in vivo in KIR-transgenic mice despite long-lived KIR-occupancy. As KIR are not found in mice, in vivo activity was tested in a NOD-SCID mouse model where inoculation of in vitro-expanded NK cells (80% of NK cells KIR2D-positive) and autologous human B-EBV cells (E:T=1:3) resulted in death of all mice by day 26. A single injection of 1-7F9 (125 ug/mouse) resulted in long-term survival, with 100% of treated mice alive beyond day 60; in contrast, 60 ug/mouse of the mAb was ineffective. Similarly, ex vivo pre-incubation of NK cells with 1-7F9 (37,3 ug/106 NK cells) prior to inoculation in mice resulted in elimination of the autologous transformed B cells in vivo and survival of 100% of the treated animals. These data show that 1-7F9 augments NK-mediated tumor killing in vitro and in vivo, and that it exhibits long-lived KIR binding in vivo, providing a preclinical basis for initiating phase 1 clinical trials with the mAb.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3876-3876
Author(s):  
Caroline Veuillen ◽  
Jerome Rey ◽  
Rémy Castellano ◽  
Florence Orlanducci ◽  
Françoise Mallet ◽  
...  

Abstract Abstract 3876 Chronic lymphocytic leukemia (CLL) remains an incurable disease except after allogenic transplantation. Natural killer (NK) cells are one of the main effectors of immune surveillance involved in tumor control. Alterations of NK cells functions have been well characterized in myeloid malignancies. However the role of NK cells in immune escape of CLL in less known and controversial. Here we describe extensive phenotypic and functional characterization of NK cells and primary CLL cells and their interactions in vitro and in vivo. Twenty eight untreated CLL patients, twenty four age-matched healthy donors and ten AML patients were enrolled in the study. We have previously shown that expression and function of NK cell-triggering receptors is defective in AML. We then assessed the phenotypic and functional properties of NK cells from CLL patients. Unlike the results found in AML, no significant differences were observed in term of activating receptors, NKp46, DNAM-1, NKG2D, 2B4 and CD16. Only the natural cytotoxicity receptor (NCR) NKp30 was weakly decreased compared to healthy donors (p=0.0107). There wasn't any difference in the expression of inhibitory receptors CD158a, b, e, ILT2 and NKG2A. Looking at the spontaneous NK-mediated cytotoxicity, CLL NK cells displayed a cytolytic activity similar to that of healthy donors against K562 cell line. To further evaluate the functional consequences of the decreased expression of NKp30, mAb redirected killing assays was performed against P815 cell lines. The NK cells killing was slightly lower in CLL patients compared to healthy donors when anti-NKp30 was used although no difference could be observed with anti-NKp46 and anti-CD16. All these results supported that NK cells cytotoxicity should be effective in CLL. We then studied the susceptibility of CLL B cells to allogenic NK killing both in vitro and in vivo. Unlike AML cells and K562 cells, CLL cells were resistant to NK cytotoxicity mediated by resting cells. Exogenous stimulation of allogenic NK cells with IL2 and IL15 restored partially CLL killing, which was nevertheless still lower than AML blasts and K562 cells killing (p=0.0288 and <0.0001 respectively). Murine xenotransplantation model using NOD/SCID g null (NSG) mice allowed us to study the anti-leukemic capacity of purified NK cells after activation with IL2. We didn't observe any clearance of CLL cells after allogenic NK cell injection while CLL and NK cells were checked to be present in blood, bone marrow, spleen and liver. These experiments confirmed the CLL resistance to NK-mediated killing. To investigate the potential mechanisms of this resistance, we analyzed the surface expression of ligands for activating and inhibitory NK receptors on CLL cells. CLL cells displayed poor expression of ligands for activating NK receptors MICA/B, ULBP1-3, PVR, nectin-2 and CD54. Interestingly, this profile of surface expression was similar to that of normal B cells except a slight increase of ULBP3 expression on CLL cells. Regarding ligands for inhibitory NK receptors, HLA-class I molecules were significantly down-regulated while HLA-E tended to be up-regulated on CLL cells compared to normal B cells. Finally, we tested ADCC in order to overcome the resistance of CLL cells to NK killing: the presence of rituximab increased significantly CLL lysis. Of note, priming of NK cells with IL2+IL15 still increased CLL cytotoxicity (p<0.0001). Our findings demonstrate that primary CLL cells are resistant to NK mediated killing. This defect is mainly due to the lack of ligands for NK receptors on CLL cells surface leading to deficient triggering of NK cells. However NK cells of CLL patients are fully competent. Attempts to optimize NK cell therapy for treatment of CLL will require overcoming the low immunogenicity of B-CLL cells. Our xenograft model provides the tools for such preclinical development. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 132-132 ◽  
Author(s):  
Jeremiah Oyer ◽  
Sarah B. Gitto ◽  
Sara Khederzadeh ◽  
Kari Shaver ◽  
Dean A. Lee ◽  
...  

132 Background: NK cells can kill malignant cells to provide innate immunity against tumors. Due to their low abundance in blood, a focus is to expand NK cells ex vivo having enhanced anti-tumor cytotoxicity to be used as a treatment. Our group has pioneered a cell-free method using plasma membrane (PM) particles derived from K562 cells expressing 41BBL and membrane-bound IL-21 (K562.mb21) which were developed for NK cell expansion. Compared to feeder cell based methods for NK cell expansion, PM21-particles improve safety and allow for potential wide-spread dissemination, and also allows direct in vivo use. Exosomes, vesicles naturally secreted by cells, may yet be another novel feeder cell free way for NK cell expansion and may have further advantageous therapeutic dimensions. Methods: EX21-exosomes and PM21-particles were prepared from K562.mb21 cells and characterized by Nanosight and Western blot analysis. CD3-depleted PBMCs were cultured with EX21 for 14 days, NK cell amounts were monitored and media changed every 2-3 days. In vitro cytotoxicity against K562 cells were comparatively assessed for EX21-NK cells and PM21-NK cells. In vivo anti-tumor efficacy of EX21- and PM21-NK cells was assessed in NSG mice implanted ip with SKOV3_luc ovarian tumor cells (1 x 106 cells seeded for 4 days). SKOV3-bearing mice were treated with vehicle, or two doses of EX21-NK cells or PM21-NK cells (1 x 107, in 5 day intervals), and with or without in vivo administration of EX21 (10 µg, 3x/week) or PM21-particles (600 µg, 3x/week). All groups were injected ip with IL-2 (10 KU, 3x/week). Survival analysis was performed with a Log-rank (Mantel-Cox) test. Results: NK cells cultured with EX21 expanded 530 fold (344-710) over 14 days compared to 735 fold (667-802) in presence of PM21-particles. Treatment of SKOV3 engrafted NSG mice with NK cells, expanded with either EX21 or with PM21, allowed significant ( < 0.0001) increase in survival compared to untreated animals (41-44 vs 29 days post treatment). Ip delivery of EX21 to SKOV3 bearing mice had no effect on survival in either untreated control or EX21-NK cell treated groups. Conclusions: EX21 efficiently expands NK cells and EX21-NK cells have equal anti-tumor effect as PM21-NK cells, both in vitro and in vivo.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5727-5727
Author(s):  
Nadine Khalifé-Saleh ◽  
Meriem Hasmim ◽  
Yanyan Zhang ◽  
Khalil Saleh ◽  
Jean-Henri Bourhis ◽  
...  

Abstract Adoptive transfer of allogeneic natural killer (NK) cells represents a promising treatment approach against acute myeloid leukaemia (AML). Success of this NK cell immunotherapy is dependent on obtaining high numbers of functional NK cells that have the potential to survive in vivo. The use of umbilical cord blood (UCB) CD34+ cells as a source of allogenic NK cells is an interesting method that can generate a readily available, non-invasive, off the shelf cellular product. We developed a cytokine-based culture method for the generation of NK cell products derived from CD34+hematopoietic progenitor cells (HPC) isolated from fresh UCB units. Immuno-phenotyping of ex vivo expanded NK cells showed typical inhibitory and activating NK receptors except for CD16 and the KIR receptors. UCB-derived NK cells displayed good cytolytic activity against NK-sensitive K562 cells with a percentage of specific lysis varying from 30 to 50%. Cytolysis was directly correlated to CD94 expression since CD94-sorted NK cells were responsible for all the in vitro cytolytic function of differentiated NKs against K562 cells. There was an inconstant susceptibility of patient-derived primary AML cells to UCB-derived NK lysis in vitro with a specific lysis ranging from 0 to 25%. We further characterized UCB-derived NK cells by investigating their toxicity, biodistribution, and anti-leukemic potential in vivo. As adoptive transfer of NK cells is an attractive approach for treating refractory leukemia, immune deficient mice were engrafted with a patient derived AML strain resistant to NK-mediated lysis and doxorubicin. After successful engraftment and randomization, leukemic mice were injected with either UCB- derived NK cells or NK cells from healthy donors (NKhds) or doxorubicin, with one control group that didn't receive any treatment. Mice were sacrificed after 2 weeks of treatment and leukemia load along with NK distribution were evaluated by flow cytometry in the blood, bone marrow (BM) and spleen. There was no evidence of toxicity of UCB-derived or healthy donors NK cells in mice. Both types of cells were preferentially found in the blood and in the spleen, even though NKhds reached much higher levels than UCB-derived NKs. As for treatment efficacy, none of our treatment showed anti-leukemic potential based on the absence of decrease of leukemic cells in BM, blood, and spleen. In vivo microenvironment didn't overcome resistance of the patient derived AML cell to NK lysis or to doxorubicin. Remarkably, all of the UCB derived NK cells founded in vivo expressed the CD94 whereas not more than 20% of the injected cells were positive for this marker. Whether it was by in vivo selection or by in vivo differentiation must be investigated. Interestingly, a small cell population with CD56 and CD34 double staining was distinguished in UCB-derived NK and NK healthy donor treated leukemic mice suggesting in vivo interaction between leukemic and NK cells. Further characterization of this population may help to understand the molecular mechanism of leukemic recognition by NK cells and resistance of leukemic cells to cytolysis. In conclusion, UCB-derived NK generation is feasible. Investigation of the role of CD94 in these cells is needed, as cell sorting by CD94 selection in addition to the CD56 could be an interesting approach in the future to select highly functional expanded NK cells before therapeutic use. Furthermore, infusion of UCB-derived NK cells into immune-deficient mice is achievable and non-toxic. However, in vivo environment didn't overcome primary in vitro resistance of AML cells despite an established interaction. Additional elucidation of AML resistance mechanisms to NK lysis is mandatory before therapeutic application. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document