Molecular Genetic Characterization of 3'-Deletion of MLL Gene in Infant Acute Leukemia.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2498-2498
Author(s):  
Grigory Tsaur ◽  
Olga Plekhanova ◽  
Alexander Popov ◽  
Tatyana Gindina ◽  
Yulia Olshanskaya ◽  
...  

Abstract Abstract 2498 Background. MLL gene rearrangements are associated with unfavorable outcome in infant acute lymphoblastic leukemia (ALL) and have intermediate prognosis in infant acute myeloid leukemia (AML). Application of fluorescence in-situ hybridization (FISH) allows detecting not only conventional MLL rearrangements, but also concurrent 3'-deletion of MLL gene. However, detailed characteristics of infant leukemia carrying 3' MLL deletion remain unclear. Aim. To investigate molecular genetic features of MLL-rearranged infant acute leukemia with concurrent 3' MLL deletion. Methods. 64 patients (27 boys and 37 girls) aged from 1 day to 11 months (median 6.6 months) including 44 ALL patients, 18 AML patients, 1 patient with acute bilineage leukemia and 1 patient with acute undifferentiated leukemia were enrolled in the current study. Chromosome banding analysis was done according to standard procedure. FISH analysis using LSI MLL Dual Color, Break Apart Rearrangement Probe (Abbott Molecular, USA) was performed on at least 200 interphase nuclei and on all available metaphases. Presence of MLL rearrangements was detected by FISH, reverse-transcriptase PCR. In 29 cases long-distance inverse PCR was additionally performed. In case of MLL rearrangement presence standard FISH pattern was defined as simultaneous detection of 3 different fluorescent signals: 1 fused (orange) signal, 1 green signal derived from 3' part of MLL gene, 1 red signal from 5' end of MLL (1F1G1R). MLL rearrangements with concurrent 3' MLL deletion led to 1F1R FISH pattern formation due to lack of green signal. Results. FISH revealed MLL rearrangements in 73% of ALL cases that was higher than frequency of 11q23 translocations detected by conventional cytogenetics — 55%. In MLL-positive cases we found 38 patients (81%) with standard FISH pattern, 7 ones (15%) with concurrent 3'-deletion of MLL gene and 2 (4%) with complex MLL rearrangements. Among patients with 3' MLL deletions there were 1 case with 5' MLL duplication (1F2R) and 1 case with 5' MLL triplication (1F3R). Frequency of 3'-deletions were similar in ALL and AML patients (13% and 15%, respectively). We did not find more than one FISH pattern in bone marrow blast cells of each patient with 3' MLL deletion. In this cohort of patients all blast cells carried concurrent 3'-deletion of MLL gene. Moreover, percentage of blast cells carrying MLL rearrangements did not differ significantly between patients with standard FISH pattern (median 97%, range 22–100%) and 3'-deletion (median 83%, range 13–99%) (p=0.206). 3'-deletion of MLL was not associated with breakpoint position in MLL gene and type of translocation partner gene. MLL translocation partner genes detected in patients with 3' deletions were as follows AF4(n=2), MLLT3(n= 3), MLLT10(n=2). None of the patients with 3'-deletions had reciprocal fusion gene. Initial patients' characteristics (age, sex, WBC count, immunophenotype, CNS-status, type of MLL partner gene) and treatment response parameters (day 8 peripheral blood blast cell count, day 15 bone marrow status, day 36 remission achievement, minimal residual disease status at time point 4) did not differ significantly between 2 groups. Although cumulative incidence of relapse was lower in patients with 3'-deletion as compared to patients with standard FISH pattern (0.31±0.04 and 0.55±0.01, respectively), difference between these two groups was not statistically significant (p=0.359). Conclusion. In our work we characterized rare subgroup of infant MLL-rearranged acute leukemia carrying concurrent 3' MLL deletion. Our data provide additional information of molecular genetic features of acute leukemia in children younger than one year. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1350-1350
Author(s):  
Grigory Tsaur ◽  
Claus Meyer ◽  
Alexander Popov ◽  
Olga Plekhanova ◽  
Anatoly Kustanovich ◽  
...  

Abstract Background Infant acute leukemia is characterized by high incidence of MLL gene rearrangements. Purpose To evaluate the distribution of MLL genomic DNA breakpoints and their relation to several diagnostic parameters among infant acute leukemia. Methods 72 infants with MLL-rearranged acute lymphoblastic leukemia (ALL) (n=52), acute myeloid leukemia (AML) (n=19) and mixed phenotype acute leukemia (n=1) were included in this study based on the availability of DNA material at diagnosis. In the observed group there were 28 boys (39%) and 44 girls (61%) with median age of 4.9 mo (range 0.03-11.9). Genomic DNA breakpoint detection in MLL gene and translocation partner genes (TPG) was performed by long-distance inverse PCR (LDI-PCR). Exon-intron numbering of MLL gene was done according to I. Nilson et al, 1996. Results Majority of ALL cases (n=28; 54%) was characterized by presence of MLL-AF4 fusion gene (FG), less frequently MLL-MLLT1 (n=12; 23%), MLL-MLLT3 (n=7; 13%) and others were found (Table 1). The most common breakpoint location within MLL gene in ALL patients was intron 11, detected in 25 cases (48%). The highest variability of MLL breakpoints was found in MLL-AF4-positive patients: only 11 of 28 (39%) had breakpoints in intron 11. The most stable pattern of MLL genomic DNA breakpoints was observed in MLL-MLLT1-positive patients: 8 of 12 (67%) had breakpoints in intron 11. In AML patients two the most prevalent FGs were MLL-MLLT3 (n=7, 37%) and MLL-MLLT10 (n=5, 26%). The remaining ones are listed in Table 1. The most frequent breakpoints location was intron 8 (8 out of 19, 42%). The most stable pattern was revealed for MLL-MLLT10 FG: MLL breakpoints in 4 of 5 (80%) cases were found in intron 9 (Table 1). ALL patients who had breakpoints in intron 11 were significantly younger (median 3.0 mo, range 0.03-11.6) than all others (median 5.6 mo, range 0.7-11.9) (p=0.025) and than patients with MLL breakpoints in intron 9 (median 6.6 mo, range 3.1-11.9) (p=0.017). For AML cases we did not find any relation between age and breakpoints locations. Distribution of MLL DNA breakpoints was similar in boys and girls and did not depend on type of TPG. Genetic recombinations involving MLL gene predominantly resulted in reciprocal chromosomal translocations (n=62; 86%). Beside them, 6 (11%) insertions were identified in all MLL-MLLT10-positive cases and MLL-SEPT6-positive one. In 11 (15%) patients we found breakpoints within the regions located from 0.7 Kb to 25.4 Kb 3' of the first exon of TPGs (MLLT1 n=9; EPS15 n=1; MYO1F n=1), however fusion transcripts at cDNA level were identified and sequenced in all these cases, indicating a spliced fusion mechanism. 3-way translocations were found in 5 patients and in 1 case we found combination of insertion with interstitial deletion of chromosome 11. The list of reciprocal genes involved in these 6 cases was as follows: CEP164, DNAH6, DCPA1, MCL1 as well as non-coding regions of 2q21.2 and 2p21. We also analyzed breakpoints in TPGs. Except above mentioned spliced fusion cases, the remaining 3 breakpoints in MLLT1 as well as 3 of 4 breakpoints in EPS15 and all breakpoints in MLLT11 were within intron 1 of corresponding genes. In AF4 the major breakpoint region included intron 3 (n=19), intron 4 (n=6) and intron 5 (n=2). We also revealed 2 rare breakpoints in intron 6 and 10. In MLLT3 the most frequent breakpoint location was intron 5 (n=12), additionally 2 cases in intron 5 were identified. In MLLT10 two separate breakpoint locations were found: intron 3 (n=1) and intron 8 (n=3) in combination with intron 9 (n=1). We estimated prognostic significance of MLL breakpoint locations in 31 cases of infant ALL treated by MLL-Baby protocol. 3-year cumulative incidence of relapse was remarkably higher in patients with breakpoints in intron 11 (n=18) in comparison to patients with breakpoint localized from intron 7 to exon 11, inclusively (n=13) (0.85±0.01 and 0.57±0.02, respectively), although difference between these two groups did not achieve statistical significance (p=0.261). Median follow-up time in the observed group was 30 months (range 6–42). Conclusion In the current study we estimated clinical and prognostic significance of MLL and TPG genomic DNA breakpoints in infant acute leukemia. Our data provide additional information of molecular genetic features of MLL-rearranged infant acute leukemia. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e21000-e21000
Author(s):  
A. Fauzdar ◽  
A. Mahajan ◽  
D. Jain ◽  
M. Mishra ◽  
V. Raina

e21000 Background: Chromosome abnormalities of leukemia cells have important prognostic significance in childhood acute lymphoblastic leukemia (ALL). B-cell precursor acute lymphoblastic leukemia (BCP-ALL) ETV6/RUNX1 (alias TEL/AML1) is most frequent i.e. 15 - 35% in the children with 2 - 18 age group. We report two new cases with Pre B- cell ALL without ETV6/RUNX1 rearrangement, showing amplification of AML1 gene detected by FISH analysis. Methods: Bone marrow samples were analyzed for chromosomal abnormalities with conventional G-banding techniques and interphase fluorescence in situ hybridization (FISH) using probes to detect BCR/ABL t(9;22)(q34-q11) fusion, cryptic TEL/AML1 t(12:21)(p13-q22) and MLL rearrangement for del 11q23. Results: In first case a 3-year girl with four copies of AML (RUNX1) gene were observed in 95% of the cell with normal two copies of TEL (ETV6) gene in both interphase and metaphase FISH. We observed BCR-ABL negative translocation and no MLL gene rearrangement in all the interphase cells after doing FISH. We got a normal 46XX karyotype from bone marrow with conventional cytogenetics (CC) in the same patient. In second case, a 4-year male we observed four copies of AML and two copies of TEL gene in more than 80% of cells. In this patient, we got BCR-ABL negative translocation and three copies of MLL gene without any rearrangement through FISH. We got normal 46XY karyotype in the same patient through CC. Conclusions: In both the patients, we observed hyperdiploidy detected with four copies of RUNX1 gene showing tetrasomy of chromosome 21 detected with metaphase FISH analysis whereas G-banding shows normal diploidy. Bone marrow karyotype in combination with molecular cytogenetic techniques like FISH should be done for improvement in sensitivity and accurate cytogenetic analysis in childhood ALL patients for proper identification of prognostic group for optimum treatment. This is one of the few reported studies worldwide for amplification of RUNX1 gene from Indian subcontinent in childhood BCP-ALL. No significant financial relationships to disclose.


2021 ◽  
Vol 6 (3) ◽  
pp. 162-169
Author(s):  
O. A. Vynnytska ◽  
◽  
O. I. Dorosh ◽  
L. Ya. Dubey ◽  
N. V. Dubey

The correlation analysis between the number of blast cells in bone marrow and peripheral blood was performed, and the dependence of blast percentage on the presence of molecular genetic translocations (AF4/MLL, BCR/ABL1, TEL/AML, E2A/PBX1) in patients with acute lymphoblastic leukemia (ALL) under the conditions of ALLIC-BFM 2009 cytostatic therapy was researched. The purpose of the study was to establish a relationship between the number of blast cells in bone marrow and peripheral blood depending on the presence of molecular genetic translocations for early detection of induction treatment by ALLIC BFM 2009. Materials and methods. The survey group consisted of 105 children aged 12 months to 16 years (median age was 6 years). Among those surveyed were 62 boys (59.0%) and 43 girls (41.0%). All patients were diagnosed with acute lymphoblastic leukemia. Results and discussion. Correlation analysis revealed a high degree of correlation between the number of blast cells in the bone marrow and peripheral blood, as the correlation coefficient (r) is 0.87. It is shown that the increase in the number of blast cells depends on the presence of chromosomal translocations. The highest number of blasts was observed in patients with BCR/ABL1 and E2A/PBX1 translocations, in whom the content of blasts in bone marrow was 97 and 96%, respectively, and in peripheral blood - 67 and 73%, respectively. It was found that treatment under the ALLIC BFM 2009 program leads to a decrease in the number of blast cells in the bone marrow and blood with minimal values on the 33rd day of treatment. It has been shown that the highest levels of blast cells during chemotherapy are observed in patients with chromosomal translocations BCR/ABL1 and E2A/PBX1. In patients with AF4/MLL translocation, the efficacy of therapy was the highest because no blast cells in the bone marrow were visualized on day 33 of treatment. The study of the primary response of patients with acute lymphoblastic leukemia to induction treatment according to the ALLIC BFM 2009 program revealed the dependence of the level of blast cells of bone marrow and blood on the type of chromosomal aberration. Patients with BCR/ABL1 and E2A/PBX1 have the highest resistance to chemotherapy with molecular genetic translocations, and patients with AF4/MLL and TEL/AML have the lowest resistance, as evidenced by the presence and absence of blast cells in the peripheral blood, respectively. Conclusion. Establishing the relationship between cytogenetic and molecular genetic features of the tumour clone will help determine the degree of malignancy of the process, as well as the risk group for the course of the disease. Determining the dependence of acute leukemia on molecular genetic translocations will make it possible to further modify the treatment program


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 607
Author(s):  
Igor B. Kovynev ◽  
Sergei E. Titov ◽  
Pavel S. Ruzankin ◽  
Mechti M. Agakishiev ◽  
Yuliya A. Veryaskina ◽  
...  

Introduction: The standard treatment of acute leukemias (AL) is becoming more efficacious and more selective toward the mechanisms via which to suppress hematologic cancers. This tendency in hematology imposes additional requirements on the identification of molecular-genetic features of tumor clones. MicroRNA (miRNA, miR) expression levels correlate with cytogenetic and molecular subtypes of acute leukemias recognized by classification systems. The aim of this work is analyzing the miRNA expression profiles in acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL) and hematopoietic conditions induced by non-tumor pathologies (NTP). Methods: A total of 114 cytological samples obtained by sternal puncture and aspiration biopsy of bone marrow (22 ALLs, 44 AMLs, and 48 NTPs) were analyzed by real-time PCR regarding preselected 25 miRNAs. For the classification of the samples, logistic regression was used with balancing of comparison group weights. Results: Our results indicated potential feasibility of (i) differentiating ALL+AML from a nontumor hematopoietic pathology with 93% sensitivity and 92% specificity using miR-150:miR-21, miR-20a:miR-221, and miR-24:nf3 (where nf3 is a normalization factor calculated from threshold cycle values of miR-103a, miR-191, and miR-378); (ii) diagnosing ALL with 81% sensitivity and 81% specificity using miR-181b:miR-100, miR-223:miR-124, and miR-24:nf3; and (iii) diagnosing AML with 81% sensitivity and 84% specificity using miR-150:miR-221, miR-100:miR-24, and miR-181a:miR-191. Conclusion: The results presented herein allow the miRNA expression profile to de used for differentiation between AL and NTP, no matter what AL subtype.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3920-3920 ◽  
Author(s):  
Claus Meyer ◽  
Bruno Lopes ◽  
Aurélie Caye-Eude ◽  
Hélène Cavé ◽  
Chloé Arfeuille ◽  
...  

Abstract Chromosomal rearrangements of the MLL gene are responsible for 5-10% of all acute leukemias, biphenotypic leukemias and myelodysplastic syndromes. The large number of known MLL fusions (>80) renders a precise diagnosis a demanding task. Even though all MLL rearrangements are associated with high-risk acute leukemia, the outcome (poor or very poor) is influenced by the partner gene. The applied diagnostic methods (LDI-PCR and multiplex PCR) allows the identification of MLL fusion genes at the nucleotide level, providing important information on the genetics of leukemia patients, and patient-specific biomarkers. These biomarkers are used for monitoring of minimal residual disease in acute leukemia patients during and after therapy. Thus, the identification of MLL gene fusions is necessary for rapid clinical decisions to determine the best therapy regimen. We have developed a customized NGS panel for MLL diagnostics to utilize state of the art technology at DCAL. With this new tool, the whole MLL gene is analyzed in contrast to the LDI-PCR where only the main MLL breakpoint cluster region (BCR-1) is covered. The first results of the NGS analysis of 84 patients identified MLL breakpoints located outside the main BCR-1 of MLL. Furthermore, a novel MLL partner gene USP2 was identified in 16 patients. All MLL-USP2 positive patients had a breakpoint located outside BCR-1 and within a newly defined breakpoint cluster region BCR-2. The BCR-2 site was also used in 2 other patients with MLL-AFF1 and one patient with MLL-MLLT3. These findings reveal USP2 as a new entity for MLL rearrangements affecting indifferently children aged 3 months to 10 years old (mean 30 months) with no gender bias (M/F=1.3). Interestingly, only 5/16 affected children were below 1 year of age at diagnosis and thus treated according to the Interfant trial. Clinical presentation as well as outcome associated with this new entity deserves further investigation to define whether those patients should be allocated, as other MLL-rearranged ones, in high-risk treatment groups. More MLL patients should also be analyzed to get a better idea of the frequency of breakpoints within BCR-2, especially the frequency of MLL-USP2 fusions. Indeed, standard FISH analysis and CGH array do not permit reliable detection of this fusion, explaining why they remained undetected so far. The biology of this novel MLL rearrangement also deserves further investigation, considering that USP2 is the only MLL partner fused exclusively to BCR-2. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4473-4473
Author(s):  
Jun He ◽  
Zi-xing Chen ◽  
Yong-quan Xue ◽  
Jin-lan Pan ◽  
Hai-long He ◽  
...  

Abstract The rearrangement of MLL gene is reported in 70%~80% of infant and in 5%~10% of older children (under the age of 15) with acute leukemia (AL). The biological features associated with alterations in MLL gene are hyperleukocytosis, CD10−/CD19+ phenotype and very poor prognosis. To explore the MLL rearrangement in details in our AL children patients and obtain more information on the relationship between the MLL gene abnormality and clinical outcomes. The following study has been conducted. A total of 298 patients with AL attended The Affiliated Children’s Hospital of Soochow University, including 16 cases with MLL rearrangements, were recruited in this study. Of the cohort, 11 were diagnosed as ALL, 5 were AML. 9 of 16 patients were in infant age (up to 2 year) and the rest were between the age of 2 to 13 years. Fluorescence in situ hybridization (FISH) analysis using LSI MLL dual color probe. Multiplex reverse transcriptase- polymerase chain reaction (multiplex RT-PCR) were used to discriminate 13 different fusion transcripts. These results were analyzed together with R banding karyotyping and immunolphenotyping determined by flow cytometry. We have found MLL rearrangements in 16 cases of childhood AL which were accounted for 5.4% of 298 AL patients, and 56.3% of infant AL. Among 106 cases analyzed by multiplex RT-PCR, MLL gene rearrangement was found in 11 cases, including MLL/AF4 fusion gene in 2, MLL/AF6 fusion gene in 1, MLL/AF6, MLL/ELL combined with MLL/AFX or HOX11 in one of each, MLL/AF9 in 2, MLL/AF10 in 1, MLL/ELL in 2. MLL partial tandem duplication in 1. In addition an activated HOX11 gene was found in 1 case.. In 27 cases assayed by FISH, MLL gene rearrangements have been detected in 9 cases (36.0%). In 16 patients with MLL gene rearrangements, 14 (87.5%) exhibited clonal chromosome abnormalities involved chromosome 11 in 11 cases, presenting as t(4;11) in 2, t(6;11), t(8;11), t(7;8;11), and t(9;11) in one of each, respectively, trisomy 11 in 2 and 11q- in 3 cases. Among these 16 patients, 11 were B-ALL, including Pro-B and Pre-B ALL; 5 of AML-M5, 3 of these 5 M5 patients were CD7+ and CD2+. Of these 16 patients 8 received chemotherapy and 7 of them achieved complete remission, while the other 8 patients eventually gave up treatment. Our results demonstrated that multiplex RT-PCR combined with FISH provided a more accurate and sensitive method for detection of MLL gene rearrangements, including chromosome translocation, deletion and duplication. Our findings lead to the detection of novel rearrangements at molecular genetic level. These findings regarding the MLL rearrangement provide most important information in guiding therapy and predicting prognosis in childhood AL. Besides our results also provide evidence in support of the value of 11q23/MLL in WHO classification categories.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2537-2537
Author(s):  
Grigory Tsaur ◽  
Alexander Popov ◽  
Elena Fleishman ◽  
Olga Sokova ◽  
Anna Demina ◽  
...  

Abstract Abstract 2537 Background. MLL gene rearrangements are the most common genetic events in infant leukemia. Up to date more than 100 various MLL rearrangements were described. Purpose. To evaluate the distribution of MLL rearrangements among infants (aged from 1 to 365 days) with both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Methods. 174 infants (117 ALL and 57 AML cases) were included in the current study. 11q23/MLL rearrangements were detected by chromosome banding analysis (CBA), fluorescence in-situ hybridization (FISH) and reverse-transcriptase PCR (RT-PCR). CBA was done according to standard procedure. FISH analysis using LSI MLL Dual Color, Break Apart Rearrangement Probe (Abbott Molecular, USA) was performed on at least 200 interphase nuclei and on all available metaphases. RT-PCR was performed as previously described (A. Borkhardt et al.,1994, N. Palisgaard et al., 1998, J. van Dongen et al., 1999). In 39 cases genomic DNA breakpoint was detected in MLL and translocation partner genes by long-distance inverse PCR (LDI-PCR). Exon-intron numbering of MLL gene was done according to I. Nilson et al, 1996. Results. 11q23/MLL rearrangements were revealed in 74 ALL patients (63.2%). Among this group MLL-AF4 was detected in the majority of cases (53.5%), less frequently were found MLL-MLLT1, MLL-MLLT3, MLL-MLLT10 and others (fig. 1a). Children with ALL under 6 months of age had significantly higher incidence of MLL rearrangements in comparison with older infants (84.0% vs. 47.8%, p<0.001). MLL-positive patients more frequently had BI-ALL and less frequently BII-ALL than infants without these rearrangements (p<0.001 for both). Fusion gene transcripts were sequenced in 26 MLL-rearranged ALL cases. Depending on breakpoint position within MLL and partner genes we detected 7 different types of MLL-AF4 fusion gene transcript, 3 types of MLL-MLLT1, 2 types of MLL-EPS15. The most common fusion site within MLL gene in ALL patients was exon 11, detected in 14 cases (53.8%). It was confirmed by LDI-PCR, that in addition to common breakpoint location in MLL gene (18 out of 27 cases in intron 11, 4 cases in intron 9) allowed to reveal less frequent breakpoint sites, like intron 12 (1 case), intron 10 (3 cases) and intron 7 (1 case). Interestingly, in the last case where LDI-PCR showed presence of MLL-AF4, this fusion gene transcript was not initially found by RT-PCR, because applied primer set did not cover exon 7. Moreover, due to lack of metaphases this patient was primary misclassified as MLL-rearranged, but MLL-AF4-negative. MLL rearrangements were found in 28 AML cases (49.1%). In AML patients the most common MLL rearrangements were MLL-MLLT10 (32% of cases) and MLL-MLLT3 (28%). Other ones were detected less frequently (fig. 1b). In AML patients frequency of MLL rearrangements was similar in children younger and older than 6 months (p=0.904). Among MLL-positive cases AML M5 were detected significantly more often and AML M7 significantly less frequent than in MLL-negative patients (p=0.024 and p=0.001, correspondingly). The most common breakpoint location within MLL gene in AML patients was intron 9, detected in 6 out of 12 cases (50%). Additional chromosomal abnormalities were revealed in 7 out of 21 MLL-positive AML patients with known karyotype (33%), while complex karyotype was detected in 5 cases (24%). Application of LDI-PCR allowed to verify rare MLL rearrangements, including MLL-AFF3 (1 ALL case), MLL-MYO1F (2 AML cases), MLL-SEPT6 (1 AML case), MLL-SEPT9 (1 AML case) In 4 ALL and 3 AML patients MLL rearrangements with concurrent 3'-deletion of MLL gene were found. 3'-deletion of MLL was not associated with breakpoint position in MLL gene and type of translocation partner gene. None of the patients with 3'-deletions had reciprocal fusion gene. Based on LDI-PCR data we assessed several mechanisms of fusion gene formation. Reciprocal translocations were detected in 29 cases, 3-way translocations in 3 cases, inversions in 5 cases, combination of inversion and insertion in 2 cases. Conclusion. In the current study we precisely characterized large cohort of MLL-rearranged infant acute leukemia patients. Combination of all available techniques, including cytogenetics, FISH, RT-PCR and LDI-PCR can lead to detailed verification of every single MLL rearrangement. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 6 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Deepak Khadka ◽  
Ananda Sharma ◽  
Jeevan K Shrestha ◽  
Gauri S Shrestha ◽  
Pun N Shrestha ◽  
...  

Introduction: In some instances, the understanding of the ocular manifestations in childhood leukemia is not only important to establish the diagnosis but also reflects the disease state and prognosis. Objective: To study the ocular manifestations of childhood acute leukemia among the children attending a tertiary-level hospital in Nepal. Materials and methods: A cross-sectional, descriptive study was undertaken at the B.P. Koirala Lions Centre for Ophthalmic Studies (BPKLCOS) and Kanti Children Hospital (KCH), Kathmandu, over a period of one-and-a-half years. Children diagnosed with acute childhood leukemia referred to the BPKLCOS from the Oncology Unit of the KCH and the Emergency Department of the Tribhuvan University Teaching Hospital (TUTH) were included in the study, using a non-probability sampling method. Results:Of the 71 cases with childhood acute leukemia, 55 (77.5%; 95% CI = 66% - 85%) had acute lymphoblastic leukemia(ALL)whereas the other 16 (23%) had acute myeloblastic leukemia (AML). Ocular involvement were seen in 33 cases (46%) and were more frequent in cases of AML as compared to those with ALL (p=0.001, OR 5.0, 95% CI= 1.4 – 17.5). Direct ocular involvement and secondary ocular involvement were observed in 12 (16.9%) and 29 (40.8%) subjects, respectively. Ocular symptoms were present in only 11 cases (15.49%). Cerebro-spinal fluid (CSF) and bone marrow examination in cases with direct ocular involvement showed 10 cases (83.3%) positive for blast cells in the CSF and 6 cases (50%) positive for blast cells in bone marrow. The most common secondary manifestation was retinal haemorrhage, seen in 23 cases (32.4%). Conclusion: In view of the high asymptomatic ocular involvement and the significant visual morbidity, a routine ophthalmic examination is recommended as an integral part of the medical examination in all cases of childhood acute leukemia.DOI: http://dx.doi.org/10.3126/nepjoph.v6i2.11678Nepal J Ophthalmol 2014; 6(12):  pp. 197-204


JMS SKIMS ◽  
2020 ◽  
Vol 23 (2) ◽  
Author(s):  
Faisal R Guru ◽  
Nisar Ahmad Syed ◽  
Shumail Bashir ◽  
Sanudev Sadanandan Vp ◽  
Hashim Kunju Ismail ◽  
...  

Background The complete cytogenetic and immunophenotyping data in children suffering from acute lymphoblastic leukemia (ALL) in Jammu and Kashmir is scarce. To bridge this knowledge gap the present study proposes to evaluate the immunophenotype and cytogenetic profile of pediatric ALL patients treated in our hospital. Material and methods This hospital-based observational study was conducted on 180 pediatric patients aged between 1  to 18 years who had visited the Paediatric unit of the  Department of Medical Oncology at Sher-I -Kashmir Institute of Medical Science, Srinagar ,Jammu and Kashmir between the January 2015 to December 2019. Result Among the study participants, 57.8% were male and 42.2% were female with a mean age of 9.24 years and median of 8 Years. Among the participants, 57.2% were below 10 years of age and 42.8% were above 10years of age. CNS disease was reported in 7.8%  of the study participants.  63.3% patients  had a TLC count of less than 20000. Immunophenotyping data revealed pre-B ALL in 77.8% of children. Cytogenetic study was conducted on 153 patients among them 74.4% had a normal karyotype, 7.2% s had hyperdiploidy and 3.3% had hypodiploidy. The FISH analysis showed that 23.3% of study participants were positive for the TEL-AML study, 11.1% were positive for BCR-ABL analysis and 4.4% of participants were positive for MLL gene analysis. The overall survival in the study population was 78.9% among the study participants. Only the MLL gene rearrangement analysis showed a statistically significant correlation with the survival analysis (P<0.5). Conclusion In summary, the present study reported the complete cytogenetic and immunophenotyping profile of the children suffering from acute lymphoblastic leukemia in Jammu and Kashmir.


Sign in / Sign up

Export Citation Format

Share Document