Immune Tolerance Induction to Factor IX Through B Cell Gene Transfer – Delineating Between Tolerogenic and Immunogenic B Cells.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3156-3156
Author(s):  
Xiaomei Wang ◽  
Babak Moghimi ◽  
Irene Zolotukhin ◽  
Ou Cao ◽  
Roland W Herzog

Abstract Abstract 3156 At present, the most serious complication in hemophilia therapy is the development of neutralizing antibodies (inhibitors) to intravenous administrated recombinant protein, which compromises therapy, creates immune-toxicity, and increases costs. Although inhibitor formation is less frequent in hemophilia B, it is more prevalent in severe hemophilia B patients, often with additional consequences - up to 50% patients with inhibitors to factor IX (F.IX) develop anaphylactic reactions. These further increase risks of morbidity and mortality. Available bypass therapy is expensive and at risk for thrombosis. Clinical immune tolerance induction (ITI) protocols are lengthy, expensive, and are often terminated in hemophilia B due to anaphylactic reactions or nephrotic syndrome. Therefore, effective protocols to induce immune tolerance to F.IX are urgently needed. B cells have been identified as antigen presenting cells with potentially immune suppressive/regulatory roles. Upon gene transfer, primary B cells were found to induce tolerance to the expressed transgene product. Hence, we use autologous gene-modified primary B cells expressing F.IX antigen fused with immunoglobulin-G heavy chain in a murine model of hemophilia B. Our murine hemophilia B model is unique in both developing high-titer inhibitors and fatal anaphylactic reactions to protein replacement therapy. Retroviral transduced B cells, expressing either full-length or shorter version of F.IX, markedly reduced inhibitor titers up to 30-fold and completely prevented fatal anaphylactic reactions. After 7 weeks of treatment with recombinant human F.IX (IV, 1 IU/mouse, once per week), mice receiving control B cells (n=6) had developed inhibitor titers of 23±8 BU, and 50% died after the last injection. Mice tolerized to F.IX by B cell transplant (n=7) had formed <1 BU, essentially undetectable by this assay, and all survived without anaphylactic reactions. We also tested the B cell-based therapy in already primed mice. Animals receiving B cells expressing the F.IX-IgG fusion successfully reversed the inhibitor and total anti-F.IX IgG titers markedly, whereas animals receiving B cells expressing IgG control had insignificant changes of inhibitor/antibody levels. Our data suggested that B cell-based gene therapy is a promising strategy in not only prevention but also treatment of inhibitors against F.IX. Besides retroviral gene transfer, we tested alternative methods such as DNA nucleofection. Interestingly, although achieving higher gene transfer efficiency, nucleofection of the plasmid encoding the retroviral expression cassette increased rather than decreased immune responses to F.IX. This was likely caused by activation of innate immune mediators and inflammatory cytokine expression as indicated by expression array analysis. Among the 29 genes tested, IL-6 and type I IFN were significantly upregulated in nucleofected B cells compared with retroviral infected B cells, which was further confirmed by ELISA. IL-6 and type I IFN are known to abrogate tolerance such as in transplant rejection and anti-tumor immunity. We suspected that the endosomal DNA sensor TLR9 may induce these cytokines in response to nucleofection. Consistent with this hypothesis, using a TLR9 inhibitory oligodeoxynucleotide (ODN 2088), we significantly reduced nucleofection-associated IL-6 and type I IFN production compared to passive ODN control. These data provide insights into the mechanisms that control the immune phenotype of gene-modified primary B cells, which become tolerogenic under conditions of limited innate responses and immunogenic upon activation of inflammatory and IFN I gene expression. Disclosures: Herzog: Genzyme Corp.: Royalties, AAV-FIX technology, Royalties, AAV-FIX technology Patents & Royalties.

2014 ◽  
Vol 22 (6) ◽  
pp. 1139-1150 ◽  
Author(s):  
Xiaomei Wang ◽  
Babak Moghimi ◽  
Irene Zolotukhin ◽  
Laurence M Morel ◽  
Ou Cao ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3975-3975 ◽  
Author(s):  
Amanda M. Brandow ◽  
Rowena C. Punzalan ◽  
Karen Stephany ◽  
Craig Helsell ◽  
Joan C. Gill

Abstract Although only 4–5% of patients with severe Hemophilia B (HB) develop factor IX (FIX) antibodies that cause inactivation of transfused FIX concentrate (conc), about 1/3 of these are associated with life-threatening anaphylactic reactions; immune tolerance induction (ITI) with high-dose FIX conc is often unsuccessful. We present individualized novel approaches to ITI in 2 boys with severe HB and high-responding inhibitors. ELISA assays utilizing recombinant FIX (rFIX) to capture patient IgG followed by detection with subclass specific monoclonal antibodies were developed to evaluate the characteristics of the factor IX inhibitors before, during and following ITI. Patient 1, a 2 yo boy, presented with a subdural hemorrhage; his inhibitor titer was 14 BU. He was treated with recombinant VIIa (rVIIa), 200 mcg/kg followed by 100 mcg/kg q2 hours plus rFIX conc (BeneFix), 1000 U/kg prior to and post subdural hematoma evacuation; a continuous infusion, 40U/kg/hour rFIX conc was started. FIX:C was >100%, so rVIIa was discontinued and the rFIX infusion was continued to maintain FIX:C levels above 50%. Rituximab (375 mg/m2 q week x 4) was started. On the 6th day, he developed anamnesis; plasma FIX:C dropped to the 20% range in spite of increases in his rFIX conc drip to 68 u/kg/hour. Investigation of right leg edema revealed a large thrombus involving the popliteal, iliac and inferior vena cava with pulmonary embolism. In order to remove the inhibitor antibody and achieve plasma FIX levels that would allow safe anticoagulation with heparin, plasmapheresis with an immunoadsorption Protein A sepharose column (Fresenius) was undertaken. FIX:C levels were unexpectedly lower immediately following each cycle. Investigation of FIX: Ag and anti-FIX IgG, IgG1 and IgG4 by ELISA assays before and after each cycle revealed the presence of FIX: Ag and specific anti-FIX IgG in the column eluates. After the 5th cycle, increasing FIX:C levels allowed weaning of the rFIX conc; the thromboses completely resolved. The patient currently is on standard prophylactic doses of rFIX conc with expected recoveries with no evidence of inhibitor. Patient 2 was a 9 year old boy with a high responding anaphylactoid inhibitor; he had severe and frequent hemarthroses treated with rVIIa with variable success resulting in significant hemophilic arthropathy. He had previously received 2 courses of rituximab with recurrence of inhibitor 3 weeks post-therapy. Therefore, in order to suppress T-cell as well as B-cell immune responses, after desensitization with increasing infusions of rFIX conc, he was treated with cyclophosphamide (10 mg/kg IV on days 2, 3 and PO on days 4 and 5) a standard course of rituximab (375 mg/m2 on days 1, 8, 15, 22), IVIG (100 mg/kg on days 2–5) initially, and high dose rFIX conc, 100U/kg/day. He is now maintained on every-other monthly doses of rituximab and replacement doses of IVIG. As FIX levels rose during ITI, rFIX conc was weaned; eight months after initiation of ITI, he has expected recoveries of FIX: C on standard prophylactic doses of rFIX conc. Investigation of the nature of the patient’s inhibitors revealed that both patients had high titer IgG1 and IgG 4 anti-factor IX antibodies that disappeared after ITI. Unlike the persistence of non-inhibitory IgG4 factor VIII antibodies reported in some patients with hemophilia A, in these two patients, there was no detectable FIX-specific pan-IgG, IgG1 or IgG4 following ITI. We conclude that novel approaches to ITI can be successfully undertaken in severe HB patients with high titer factor IX inhibitors.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2137-2137
Author(s):  
Ai-Hong Allan Zhang ◽  
Jonathan Skupsky ◽  
David W. Scott

Abstract Abstract 2137 Poster Board II-114 B-cell depletion using anti-human CD20 monoclonal antibodies has been reported to be effective in autoimmunity and in temporarily eliminating inhibitory antibodies in hemophilia A patients. In the current study, we examined the effect of anti-murine CD20 (αCD20) depletion on the immune response to factor VIII (FVIII) and its influence on an immune tolerance induction (ITI) protocol. Previous studies have shown that IgG subclasses of anti-murine CD20 monoclonal antibody (αCD20) have differential effects on B-cell depletion in the mouse. Thus, IgG1 αCD20 selectively depletes follicular B cells, while sparing marginal zone (MZ) B cells. Combined with evidence that MZ B cells may be tolerogenic antigen-presenting cells, we tested the hypothesis that follicular B-cell depletion using αCD20 IgG1 might favor tolerance induction to human FVIII. Hemophilic (FVIII knockout) mice were primed with physiological doses of recombinant human FVIII by weekly IV injection, followed by αCD20 IgG1 or control IgG1 treatment. Ten days after the αCD20 treatment, the mice were treated with daily high dose (2μg) FVIII IV injections to model ITI in hemophilia A patients. After 4 weekly injections, 70% of the mice developed titers of anti-FVIII IgG as high as 1:12,800. Unlike whole B-cell depletion, subsequent follicular B-cell depletion did not significantly decrease the anti-FVIII IgG titer, compared with mice receiving control IgG1. Repeated high dose FVIII injections to mimic ITI significantly increased the anti-FVIII IgG titer in both groups. However, in the mice that received αCD20 IgG1 treatment, the increase of anti-FVIII IgG levels were significantly lower than that in control IgG1 treated mice. In conclusion, we found that follicular B-cell depletion by αCD20 IgG1 antibody in hemophilia A mice did not switch the immune response to tolerance, but it diminished the immunogenicity of human FVIII in vivo in hemophilic mice. (Supported by NIH R01 HL061883) Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


Rheumatology ◽  
2020 ◽  
Vol 59 (11) ◽  
pp. 3435-3442 ◽  
Author(s):  
Arman Aue ◽  
Franziska Szelinski ◽  
Sarah Y Weißenberg ◽  
Annika Wiedemann ◽  
Thomas Rose ◽  
...  

Abstract Objectives SLE is characterized by two pathogenic key signatures, type I IFN and B-cell abnormalities. How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT). JAK-STAT inhibition is an attractive therapeutic possibility for SLE. We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared with other autoimmune diseases and healthy controls (HD) and related it to disease activity. Methods Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T cells of 21 HD, 10 rheumatoid arthritis (RA), seven primary Sjögren’s (pSS) and 22 SLE patients was analysed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs (peripheral blood mononuclear cells) of SLE patients and HD after IFNα and IFNγ incubation were further investigated. Results SLE patients showed substantially higher STAT1 but not pSTAT1 in B- and T-cell subsets. Increased STAT1 expression in B-cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker. STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ. Conclusion Enhanced expression of STAT1 by B-cell candidates as a key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold a promise to block STAT1 expression and control plasmablast induction in SLE.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2154-2154
Author(s):  
Luo Xiaofeng ◽  
Jocelyn A. Schroeder ◽  
Christina Baumgartner ◽  
Juan Chen ◽  
Jianda Hu ◽  
...  

Abstract Induction of antigen-specific immune tolerance is desirable in autoimmune diseases, transplantation, and gene therapy. Our previous studies have demonstrated that FVIII or FIX expression ectopically targeted to platelets under control of the platelet-specific αIIb promoter results in transgene protein storage in platelet α-granules. Further studies have demonstrated that lentivirus-mediated platelet-specific gene delivery to hematopoietic stem cells (HSCs) not only restores hemostasis but also induces antigen-specific immune tolerance in hemophilic mice. We wanted to explore whether platelet-specific gene transfer can be used as a means of immune tolerance induction. In the current study, we used ovalbumin (OVA) as a non-coagulant protein to further examine the potential of a platelet gene therapy-based immune tolerance induction approach. We constructed a lentiviral vector (LV) in which OVA is driven by the αIIb promoter (2bOVA). Evidence suggests that VWF propeptide can reroute unrelated secreting proteins to a storage pathway. Thus, we designed another vector, 2bVpOVA, which contains VWF propeptide to secure OVA storage in platelet granules. HSCs from wild type B6/CD45.2 mice were transduced with 2bOVA or 2bVpOVA LV and transplanted into B6/CD45.1 recipients preconditioned with 660 cGy total body irradiation. We found that 96% of OVA expression in whole blood was stored in platelets with a level of 51.3 ± 22.5 ng/108 platelets (n = 5) while 4% was detectable in plasma in 2bOVA-transduced recipients at 12-week after transplantation. This distribution is very similar to the results we obtained from the FIX study. In contrast, 98% of OVA was stored in platelets with a level of 3.9 ± 3.3 ng/108 platelets (n = 5) in 2bVpOVA-transduced recipients. The lower total OVA expression level in the 2bVpOVA group could be due to the size effect of transgene expression cassette as the 2bVpOVA cassette is 3-fold larger than the 2bOVA cassette. To investigate whether anti-OVA immune tolerance was established in recipients after platelet-specific OVA gene transfer, 16-weeks post-transplantation, animals were challenged with OVA. The titer of anti-OVA total IgG determined by ELISA assay was 640 ± 101 in the 2bOVA group and 320 ± 0 in the 2bVpOVA group. These titers were significantly lower than that obtained from the untransduced control group (10210 ± 3636), demonstrating that platelet-specific OVA gene delivery to HSCs can suppress the anti-OVA immune response. Of note, the titer of anti-OVA total IgG in the 2bVpOVA group was significantly lower than in the 2bOVA group although the total OVA expression levels in the 2bOVA group is 13-fold higher than in the 2bVpOVA group. The percentage of regulatory T cells in peripheral blood in 2bOVA and 2bVpOVA-transduced recipients was significantly higher than in untransduced control animals. In summary, our data demonstrate that targeting transgene expression and storage in platelet a-granules is a potentially promising approach for inducing immune tolerance. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Ariel Spurrier ◽  
Jamie Jennings-Gee ◽  
Karen Haas

We previously described monophosphoryl lipid A (MPL) and synthetic cord factor, trehalose-6,6-dicorynomycolate (TDCM) significantly increases antibody (Ab) responses to T cell independent type 2 antigens (TI-2 Ags) in a manner dependent on B cell-intrinsic TLR4 expression as well as MyD88 and TRIF adapter proteins. Given the requirement for TRIF in optimal MPL/TDCM adjuvant effects and the capacity of MPL to drive type I IFN production, we aimed to investigate the extent to which adjuvant effects on TI-2 Ab responses depend on type I IFN receptor (IFNAR) signaling. We found IFNAR-/- mice had impaired early TI-2 Ag-induced B cell activation and expansion and that B cell-intrinsic type I IFN signaling on B cells was essential for normal antibody responses to TI-2 Ags, including haptenated Ficoll and the pneumococcal vaccine, Pneumovax23. However, MPL/TDCM significantly increased TI-2 IgM and IgG responses in IFNAR-/- mice. MPL/TDCM enhanced TI-2 Ab production primarily by activating innate B cells (B-1b and splenic CD23- B cells) as opposed to CD23+ enriched follicular B cells. In summary, our study highlights an important role for type I IFN in supporting early B cell responses to TI-2 Ags through B cell-expressed IFNAR, but nonetheless demonstrates an MPL/TDCM adjuvant significantly increases TI-2 Ab responses independently of type I IFN signaling and does so by predominantly supporting increased polysaccharide-specific Ab production by innate B cell populations.


Sign in / Sign up

Export Citation Format

Share Document