Transferred Donor-Derived WT1-Specific CD8+ T-Cell Clones After Hematopoietic Cell Transplantation Mediate Antileukemic Activity and Can Establish Persistent Responses without Toxicity to Normal Tissues in High-Risk Leukemia Patients

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 350-350
Author(s):  
Aude G. Chapuis ◽  
Gunnar B. Ragnarsson ◽  
Hieu Nguyen ◽  
Colette N Chaney ◽  
Jeff Pufnock ◽  
...  

Abstract Abstract 350 Relapse is the leading cause of death following allogeneic hematopoietic cell transplant (HCT) for hematological malignancies. Although evidence suggests that the beneficial donor T cell-mediated graft versus leukemia (GVL) effect can reduce post-HCT relapse rates, this is often mitigated by morbidity and mortality associated with the accompanying graft versus host disease (GVHD). Thus, providing antigen-specific T cells that selectively target leukemia associated antigen (LAA) constitutes a distinct opportunity to promote GVL activity without inducing GVHD. Wilms' Tumor Antigen 1 (WT1) is a non-polymorphic zinc finger transcription factor that plays a key role in cell growth and differentiation. WT1 has a very limited expression in normal tissues, is expressed 10–1000× fold more in leukemia cells compared to normal CD34+ cells, and has been shown to contribute to leukemogenesis. WT1 is expressed in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myeloid leukemia (CML) and acute lymphoid leukemia (ALL). Furthermore, the magnitude of expression of WT1 in leukemic cells correlates with prognosis and clinical aggressiveness. Thus, WT1 constitutes an attractive candidate target for CD8+cytotoxic T-cells (CTL) (Cheever et al. Clin Cancer Res 2009;15(17):5323–5337). In this study, escalating doses of clonal populations of donor-derived CD8+ CTL specific for the HLA A*02:01-restricted WT1126–134 (RMFPNAPYL) epitope were administered to 11 high-risk leukemia patients after allogeneic HCT. The absence of end-organ toxicities or the development of new-onset GVHD demonstrated that the infusions were safe and well-tolerated. As the persistence of transferred cells was limited in some patients, the last four patients received CTL clones primed in the presence of the γc-chain cytokine Interleukin-21 (IL-21), a culture strategy recently shown to confer a less differentiated phenotype to T cells generated in vitro, as a means to increase the ability of transferred cells to survive in vivo and potentially mediate greater anti-leukemic activity (Li, Y et al. J Immunol 2005;175:2261–2269). Four patients, who were treated not in florid relapse (3 in CR and 1 with MRD entering infusions) but were at high risk for relapse post-HCT (40–55% relapse rate at one year post HCT), and received CTL generated in the presence of IL-21 have survived for 22 to 37 months post-HCT without detectable leukemia or relapse, and in the absence of additional anti-leukemic treatment or GVHD (Table 1). In these four patients, transferred CTL remained detectable for 8 to 15 month after T cell infusions (Fig. 1), and maintained/upregulated in vivo phenotypic (CD27, CD28, CD127, CD62L and CCR7) and functional (the ability to produce IL-2 in response to cognate antigen) characteristics associated with long-lived memory CD8 T-cells (Fig. 2). Direct evidence of transient anti-leukemic activity was observed in one patient treated with advanced progressive disease, and of a prolonged response in a patient with minimal residual disease. The results of this study suggest that transfer of donor-derived WT1-specific CTL clones can be accomplished without significant toxicity and can potentially provide therapeutic anti-leukemic activity. Table 1. Clinical Outcomes Figure 1. In vivo persistence of WT1-specific CTL clones and effect on leukemia disease burden Figure 1. In vivo persistence of WT1-specific CTL clones and effect on leukemia disease burden Figure 2. Adoptively transferred WT1-specific CD8+T-cells persisting in vivo exhibit many phenotypic and functional characteristics associated with CD8+central memory cells Figure 2. Adoptively transferred WT1-specific CD8+T-cells persisting in vivo exhibit many phenotypic and functional characteristics associated with CD8+central memory cells Disclosures: No relevant conflicts of interest to declare.

2000 ◽  
Vol 192 (11) ◽  
pp. 1637-1644 ◽  
Author(s):  
Cassian Yee ◽  
John A. Thompson ◽  
Patrick Roche ◽  
David R. Byrd ◽  
Peter P. Lee ◽  
...  

Current strategies for the immunotherapy of melanoma include augmentation of the immune response to tumor antigens represented by melanosomal proteins such as tyrosinase, gp100, and MART-1. The possibility that intentional targeting of tumor antigens representing normal proteins can result in autoimmune toxicity has been postulated but never demonstrated previously in humans. In this study, we describe a patient with metastatic melanoma who developed inflammatory lesions circumscribing pigmented areas of skin after an infusion of MART-1–specific CD8+ T cell clones. Analysis of the infiltrating lymphocytes in skin and tumor biopsies using T cell–specific peptide–major histocompatibility complex tetramers demonstrated a localized predominance of MART-1–specific CD8+ T cells (>28% of all CD8 T cells) that was identical to the infused clones (as confirmed by sequencing of the complementarity-determining region 3). In contrast to skin biopsies obtained from the patient before T cell infusion, postinfusion biopsies demonstrated loss of MART-1 expression, evidence of melanocyte damage, and the complete absence of melanocytes in affected regions of the skin. This study provides, for the first time, direct evidence in humans that antigen-specific immunotherapy can target not only antigen-positive tumor cells in vivo but also normal tissues expressing the shared tumor antigen.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1047-1055 ◽  
Author(s):  
Michael H. Hsieh ◽  
Robert Korngold

In graft-versus-leukemia (GVL) responses, the cellular subsets and effector mechanisms responsible for cytotoxicity against leukemic cells in vivo remain poorly characterized. A murine model of syngeneic GVL that features CD4+ and CD8+T-cell responses against the MMB3.19 myeloid leukemia cell line has been previously described. MMB3.19 expresses high levels of functional Fas and tumor necrosis factor (TNF) receptors that do not transduce proapoptotic signals. Through the use of perforin- and Fas ligand (FasL)-deficient mice, it was demonstrated that CD4+ T cells mediate anti-MMB3.19 effects in vivo primarily through the use of FasL and secondarily through perforin mechanisms. Conversely, CD8+ T cells induce GVL effects primarily through the use of perforin and minimally through FasL mechanisms. Although the in vivo observations of CD8+ T cells were reflective of their in vitro cytotoxic T lymphocyte (CTL) activity, for CD4+ T cells, in vitro responses were dominated by the perforin pathway. In addition, the diminished capacity of T cells from perforin- and FasL-deficient mice to lyse MMB3.19 target cells appeared directly related to their deficient cytotoxic functions rather than to defects in activation because these cells were fully capable of mounting proliferative responses to the tumor cells. These findings demonstrate that GVL responses of T-cell subsets can involve preferential use of different cytotoxic mechanisms. In particular, these findings identify a role for both FasL-employing CD4+CTLs and the more novel perforin-utilizing CD4+ T-cell subset in responses against a myeloid leukemia.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 1916-1923 ◽  
Author(s):  
Nia Tatsis ◽  
Julie C. Fitzgerald ◽  
Arturo Reyes-Sandoval ◽  
Kimberly C. Harris-McCoy ◽  
Scott E. Hensley ◽  
...  

AbstractCD8+ T cell-numbers rapidly expand and then contract after exposure to their cognate antigen. Here we show that the sustained frequencies of transgene product-specific CD8+ T cells elicited by replication-defective adenovirus vectors are linked to persistence of low levels of transcriptionally active adenovirus vector genomes at the site of inoculation, in liver, and lymphatic tissues. Continuously produced small amounts of antigen maintain fully active effector CD8+ T cells, while also allowing for their differentiation into central memory cells. The long-term persistence of adenoviral vectors may be highly advantageous for their use as vaccines against pathogens for which T-cell–mediated protection requires both fully activated T cells for immediate control of virus-infected cells and central memory CD8+ T cells that, because of their higher proliferative capacity, may be suited best to eliminate cells infected by pathogens that escaped the initial wave of effector T cells.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 1047-1055 ◽  
Author(s):  
Michael H. Hsieh ◽  
Robert Korngold

Abstract In graft-versus-leukemia (GVL) responses, the cellular subsets and effector mechanisms responsible for cytotoxicity against leukemic cells in vivo remain poorly characterized. A murine model of syngeneic GVL that features CD4+ and CD8+T-cell responses against the MMB3.19 myeloid leukemia cell line has been previously described. MMB3.19 expresses high levels of functional Fas and tumor necrosis factor (TNF) receptors that do not transduce proapoptotic signals. Through the use of perforin- and Fas ligand (FasL)-deficient mice, it was demonstrated that CD4+ T cells mediate anti-MMB3.19 effects in vivo primarily through the use of FasL and secondarily through perforin mechanisms. Conversely, CD8+ T cells induce GVL effects primarily through the use of perforin and minimally through FasL mechanisms. Although the in vivo observations of CD8+ T cells were reflective of their in vitro cytotoxic T lymphocyte (CTL) activity, for CD4+ T cells, in vitro responses were dominated by the perforin pathway. In addition, the diminished capacity of T cells from perforin- and FasL-deficient mice to lyse MMB3.19 target cells appeared directly related to their deficient cytotoxic functions rather than to defects in activation because these cells were fully capable of mounting proliferative responses to the tumor cells. These findings demonstrate that GVL responses of T-cell subsets can involve preferential use of different cytotoxic mechanisms. In particular, these findings identify a role for both FasL-employing CD4+CTLs and the more novel perforin-utilizing CD4+ T-cell subset in responses against a myeloid leukemia.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 521-521
Author(s):  
Francesco Mazziotta ◽  
Luca Biavati ◽  
Rupkatha Mukhopadhyay ◽  
Hanna A. Knaus ◽  
Ivan M. Borrello ◽  
...  

Abstract Introduction The role of T cells in chemotherapy response and maintenance of remission in acute myeloid leukemia (AML) patients is not fully understood. In solid tumors and chronic infections, exhaustion is a multistep process ranging from less differentiated progenitor exhausted (Tpex) to intermediate and terminally exhausted T cells (Beltra et al. 2020). High frequencies of Tpex correlate with response to immune-checkpoint blockade in solid tumors (Miller et al. 2019). In AML, where the backbone of treatment is chemotherapy, the role of dysfunctional T-cell subsets has yet to be elucidated. Methods Serial bone marrow (BM) samples from 16 AML patients (10 complete responders (Res) and 6 non-responders (NonRes)) at diagnosis and at response assessment after induction chemotherapy and 12 healthy donors (HD) were analyzed by flow cytometry using a 13-color panel. Moreover, we performed single-cell RNA sequencing (scRNAseq) (10X Genomics) on BM samples from 2 HD and 5 AML patients (3 Res, 2 NonRes) at baseline and after chemotherapy. Subsequently, we used a scRNAseq-guided 26-color spectral flow cytometry panel and explored T-cell phenotypes on BM of 22 AML patients (12 Res and 10 NonRes). Custom-made R scripts were employed for high-dimensional flow cytometry and scRNAseq analysis. Results Initial flow-cytometry analysis showed a significant increase in BM PD1 +CD28 + CD8 + T cell subset (p<0.01) in Res vs NonRes at baseline and post-chemotherapy (data not shown). To further investigate these results, we performed 5' VDJ scRNAseq and used gene signatures mapped in two dimensions via UMAP to annotate the T-cell clusters as naive, Tpex, T effector CX3CR1 + (Teff CX3CR1pos), Terminally exhausted 1 (Term_exh1) and Terminally exhausted 2 (Term_exh2) (Fig 1A). Of note, the two most upregulated genes in Tpex were GZMK and IL-7R. We then performed differential abundance analysis to investigate differences in terms of clusters' frequencies across the three conditions (Res, NonRes, HD). At both timepoints Res had an increased frequency of Tpex and Teff CX3CR1pos compared to NonRes. Conversely, Term_exh2 cells were more abundant in NonRes (Fig. 1B). Next, we measured the magnitude of clonal expansion in antigen-experienced CD8 + T cells in Res and NonRes generating an overlay of the position of clonally expanded cells projected onto the UMAP. The most clonally expanded subsets were Tpex and Teff CX3CR1pos in Res (Fig. 1C) and Term_exh2 in NonRes (Fig. 1D) revealing a strong relationship between abundance and clonal expansion of the CD8 + T-cell subsets. Our scRNAseq results were then confirmed at the protein level with spectral flow-cytometry. The FlowSOM algorithm identified a CD8 + GZMK +CD127 + subset to be increased at baseline in Res vs NonRes (Fig. 1E). Remarkably, this cluster was also characterized by the expression of TIGIT, PD1 and TCF-1. These results were subsequently reproduced by manual gating of the GZMK +CD127 + subset which was significantly enriched (p<0.01) in Res vs NonRes (Fig. 1F). Of note, patients with a higher-than-median frequency of GZMK +CD127 +CD8 + T cells experienced significantly (p<0.02) prolonged overall survival after therapy (Fig. 1G). Conclusion Improving our understanding of the immune microenvironment in AML is critical for the rational integration of novel treatment strategies that seek to increase the response rate and/or maintain remission. We identified GZMK +IL7R + CD8 + cells as a distinct entity in the early differentiated CD8 + memory T cell pool that is clonally expanded and more abundant in Res compared to NonRes. This subset has a stem-like signature and may be associated with longer in vivo CD8 + T cell persistence and long-term AML control. An in-depth functional characterization with in vitro experiments and in vivo mouse models is currently ongoing. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Koen A. Marijt ◽  
Lisa Griffioen ◽  
Laura Blijleven ◽  
Sjoerd. H. van der Burg ◽  
Thorbald van Hall

AbstractCancer cells frequently display defects in their antigen-processing pathway and thereby evade CD8 T cell immunity. We described a novel category of cancer antigens, named TEIPP, that emerge on cancers with functional loss of the peptide pump TAP. TEIPPs are non-mutated neoantigens despite their ‘self’ origin by virtue of their absence on normal tissues. Here, we describe the development of a synthetic long peptide (SLP) vaccine for the most immunogenic TEIPP antigen identified thus far, derived from the TAP-independent LRPAP1 signal sequence. LRPAP121–30-specific CD8 T cells were present in blood of all tested healthy donors as well as patients with non-small cell lung adenocarcinoma. SLPs with natural flanking, however, failed to be cross-presented by monocyte-derived dendritic cells. Since the C-terminus of LRPAP121–30 is an unconventional and weakly binding serine (S), we investigated if replacement of this anchor would result in efficient cross-presentation. Exchange into a valine (V) resulted in higher HLA-A2 binding affinity and enhanced T cell stimulation. Importantly, CD8 T cells isolated using the V-variant were able to bind tetramers with the natural S-variant and respond to TAP-deficient cancer cells. A functional screen with an array of N-terminal and C-terminal extended SLPs pointed at the 24-mer V-SLP, elongated at the N-terminus, as most optimal vaccine candidate. This SLP was efficiently cross-presented and consistently induced a strong polyclonal LRPAP121–30-specific CD8 T cells from the endogenous T cell repertoire. Thus, we designed a TEIPP SLP vaccine from the LRPAP1 signal sequence ready for validation in clinical trials.


2002 ◽  
Vol 197 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melanie S. Vacchio ◽  
Richard J. Hodes

Whereas ligation of CD28 is known to provide a critical costimulatory signal for activation of CD4 T cells, the requirement for CD28 as a costimulatory signal during activation of CD8 cells is less well defined. Even less is known about the involvement of CD28 signals during peripheral tolerance induction in CD8 T cells. In this study, comparison of T cell responses from CD28-deficient and CD28 wild-type H-Y–specific T cell receptor transgenic mice reveals that CD8 cells can proliferate, secrete cytokines, and generate cytotoxic T lymphocytes efficiently in the absence of CD28 costimulation in vitro. Surprisingly, using pregnancy as a model to study the H-Y–specific response of maternal T cells in the presence or absence of CD28 costimulation in vivo, it was found that peripheral tolerance does not occur in CD28KO pregnants in contrast to the partial clonal deletion and hyporesponsiveness of remaining T cells observed in CD28WT pregnants. These data demonstrate for the first time that CD28 is critical for tolerance induction of CD8 T cells, contrasting markedly with CD28 independence of in vitro activation, and suggest that the role of CD28/B7 interactions in peripheral tolerance of CD8 T cells may differ significantly from that of CD4 T cells.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2008 ◽  
Vol 118 (1) ◽  
pp. 294-305 ◽  
Author(s):  
Carolina Berger ◽  
Michael C. Jensen ◽  
Peter M. Lansdorp ◽  
Mike Gough ◽  
Carole Elliott ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Anna Cole ◽  
Guillermo Rangel RIvera ◽  
Aubrey Smith ◽  
Megan Wyatt ◽  
Brandon Ware ◽  
...  

BackgroundIL-21 enhances the anti-tumor capacity of adoptively transferred CD8+ T cells, while IL-2 and IL-15 impair T cell immunity by driving their expansion to a more differentiated status. Yet, these cytokines can act on many different immune cells. Given the potency of IL-21, we tested if this cytokine directly augments T cells or rather if it enhances other immune cells in the culture that indirectly improves T cell therapy.MethodsTo test this question, splenocytes from pmel-1 transgenic mice were used, as all CD8+ T cells express a transgenic TCR specific for tumor-antigen gp10025–33 overexpressed on melanoma. We then peptide activated naïve CD8+ T cells enriched or not from the spleen of pmel-1 mice and expanded them in the presence of IL-21 or IL-2 (10 ng/mL) for four days. Expanded pmel-1 from these various cultures were then restimulated with irradiated splenocytes pulsed with gp10025–33 and grown an additional seven days with IL-2 (10 ng/mL), irrespective of their initial cytokine condition. The in vitro memory phenotype, exhaustion profile, and cytokine secretion of these cultures were then assayed. Furthermore, mice bearing B16KVP melanoma tumors were infused with pmel-1 T cells expanded via these various approaches and compared for their relative capacity to engraft, persist, and regress tumor in vivo.ResultsInterestingly, we discovered that IL-21-treated T cells generated from bulk splenocytes are phenotypically and functionally distinct from IL-21-treated isolated T cells. Upon restimulation, IL-21-treated T cells from bulk splenocytes exhibited an exhausted phenotype that was like anergic IL-2-treated T cells. Moreover, few cells expressed CD62L but expressed heightened markers of suppression, including TIM3, PD-1, and EOMES. Moreover, they produced more effector molecules, including granzyme B and IFN-gamma. In vivo IL-21-treated T cells expanded from bulk splenocytes engrafted and persisted poorly, in turn mediating suboptimal regression of melanoma. Conversely, IL-21 dramatically bolstered the engraftment and antitumor activity of T cells only if they were first isolated from the spleen prior to their expansion and infusion into the animal.ConclusionsCollectively, our data shows that IL-21 may improve ACT therapy best when used directly on antitumor CD8+ T cells. Further studies will illuminate the mechanism behind this striking difference and determine whether other cell subsets reactive to IL-21 cause T cell dysfunction and/or reduced bioavailability. These findings are important for defining the best culture conditions in which to use IL-21 for ACT.AcknowledgementsWe would like to acknowledge Emory University, The Winship Cancer Institute, and the Pediatrics/Winship Flow Cytometry Core.Ethics ApprovalAll animal procedures were approved by the Institutional Animal Care and Use Committee of Emory University, protocol number 201900225.


Sign in / Sign up

Export Citation Format

Share Document