The Early Induction of PDL1 On Monocytes by Ivig Suppresses T Cell Activation in Allogeneic Mixed Lymphocyte Reactions

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4111-4111
Author(s):  
Lauriane Padet ◽  
Renée Bazin

Abstract Abstract 4111 Background: Recognition of histocompatibility determinants by allogeneic T cells together with the engagement of co-stimulatory molecules with their ligands expressed on accessory cells (B7:CD28, CD40:CD40L) is essential for the induction of T cell-mediated allograft rejection. In contrast, the PD1:PDL1 negative co-stimulatory pathway plays a critical role in the induction and maintenance of peripheral transplantation tolerance. Despite the use of potent immunosuppressive therapy for the blockade of co-stimulatory pathways, allograft rejection and drug toxicity remain an important problem in transplanted patients. IVIg was first used as a prophylactic agent in these immunocompromised patients to prevent infections, but several studies have suggested that IVIg also improved the rate of graft survival in patients with high risk for rejection. The mechanisms responsible for this anti-inflammatory effect are unclear and remain to be determined. We recently showed, using the allogeneic mixed lymphocyte reaction (MLR) as an in vitro model of allograft rejection and GvHD, that IVIg strongly inhibited T cell activation. In the present study, we sought to determine the mechanisms underlying this inhibition. Methods: For allogeneic MLR, human peripheral blood mononuclear cells (PBMC) from 2 different individuals were mixed together with or without 2 mg/ml of IVIg and incubated for 4 days prior to determination of IL-2 secretion by ELISA as a measure of T cell activation. The expression of TCR, CD3, CD28 and PD1 on T cells and HLA-DR, CD80, CD86 and PDL1 on monocytes was evaluated by flow cytometry. Results: IVIg strongly inhibited IL-2 secretion (>90%; P<0.001) as previously reported. To explain the inhibition of T cell activation in the presence of IVIg, we postulated that the expression of molecules involved in antigen presentation and in different co-stimulatory pathways was modulated by IVIg. We thus evaluated the effect of IVIg on the cell surface expression of various molecules implicated in T cell activation or tolerance, 24 hours after the onset of the MLR. Our results showed no modulation of TCR, CD3, CD28 and PD1 expression on T cells. Similarly, IVIg did not affect the expression of CD86 on monocytes. In contrast, the expression of CD80 was significantly decreased (>30%; P<0.01) on these cells after IVIg treatment. In addition, a strong increase in PDL1 expression (>70%; P<0.05) on monocytes was observed in MLRs done in the presence of IVIg. Finally, the expression of HLA-DR was increased by >60% (P<0.01) and that of CD14 was decreased by >50% (P<0.01) in the presence of IVIg, which is characteristic of the emergence of an anti-inflammatory monocyte population. Conclusion: Altogether, our results suggest that IVIg induces its immunosuppressive effects in allogeneic MLRs by modulating the expression of co-stimulatory molecules on monocytes and by inducing an anti-inflammatory monocyte population. This study contributes to a better understanding of the mechanisms by which IVIg may induce peripheral tolerance and improve graft survival in transplanted patients. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

AbstractHIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.


2002 ◽  
Vol 195 (6) ◽  
pp. 795-800 ◽  
Author(s):  
Qunrui Ye ◽  
Christopher C. Fraser ◽  
Wei Gao ◽  
Liqing Wang ◽  
Samantha J. Busfield ◽  
...  

LIGHT (TNFSF14), a tumor necrosis factor superfamily member expressed by activated T cells, binds to herpes virus entry mediator (HVEM) which is constitutively expressed by T cells and costimulates T cell activation in a CD28-independent manner. Given interest in regulating the effector functions of T cells in vivo, we examined the role of LIGHT-HVEM costimulation in a murine cardiac allograft rejection model. Normal hearts lacked LIGHT or HVEM mRNA expression, but allografts showed strong expression of both genes from day 3 after transplant, and in situ hybridization and immunohistology-localized LIGHT and HVEM to infiltrating leukocytes. To test the importance of LIGHT expression on allograft survival, we generated LIGHT−/− mice by homologous recombination. The mean survival of fully major histocompatibility complex–mismatched vascularized cardiac allografts in LIGHT−/− mice (10 days, P &lt; 0.05) or cyclosporine A (CsA)-treated LIGHT+/+ mice (10 days, P &lt; 0.05) was only slightly prolonged compared with LIGHT+/+ mice (7 days). However, mean allograft survival in CsA-treated LIGHT−/− allograft recipients (30 days) was considerably enhanced (P &lt; 0.001) compared with the 10 days of mean survival in either untreated LIGHT−/− mice or CsA-treated LIGHT+/+ controls. Molecular analyzes showed that the beneficial effects of targeting of LIGHT in CsA-treated recipients were accompanied by decreased intragraft expression of interferon (IFN)-γ, plus IFN-γ–induced chemokine, inducible protein-10, and its receptor, CXCR3. Treatment of LIGHT+/+ allograft recipients with HVEM-Ig plus CsA also enhanced mean allograft survival (21 days) versus wild-type controls receiving HVEM-Ig (mean of 7 days) or CsA alone (P &lt; 0.001). Our data suggest that T cell to T cell–mediated LIGHT/HVEM-dependent costimulation is a significant component of the host response leading to cardiac allograft rejection.


2020 ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

ABSTRACTHIV/SIV infections lead to massive loss of mucosal CD4+ T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (Pbx), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4+ T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although Pbx therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4+ T cell populations, and also suggest that oral Pbx could be a simple therapy to improve anti-inflammatory states in addition to more traditional antivirals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aurélien Azam ◽  
Sergio Mallart ◽  
Stephane Illiano ◽  
Olivier Duclos ◽  
Catherine Prades ◽  
...  

Non-natural modifications are widely introduced into peptides to improve their therapeutic efficacy, but their impact on immunogenicity remains largely unknown. As the CD4 T-cell response is a key factor in triggering immunogenicity, we investigated the effect of introducing D-amino acids (Daa), amino isobutyric acid (Aib), N-methylation, Cα-methylation, reduced amide, and peptoid bonds into an immunoprevalent T-cell epitope on binding to a set of HLA-DR molecules, recognition, and priming of human T cells. Modifications are differentially accepted at multiple positions, but are all tolerated in the flanking regions. Introduction of Aib and Daa in the binding core had the most deleterious effect on binding to HLA-DR molecules and T-cell activation. Their introduction at the positions close to the P1 anchor residue abolished T-cell priming, suggesting they might be sufficient to dampen peptide immunogenicity. Other modifications led to variable effects on binding to HLA-DR molecules and T-cell reactivity, but none exhibited an increased ability to stimulate T cells. Altogether, non-natural modifications appear generally to diminish binding to HLA-DR molecules and hence T-cell stimulation. These data might guide the design of therapeutic peptides to make them less immunogenic.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bridgette J. Connell ◽  
Lucas E. Hermans ◽  
Annemarie M. J. Wensing ◽  
Ingrid Schellens ◽  
Pauline J. Schipper ◽  
...  

Abstract HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.


2005 ◽  
Vol 79 (10) ◽  
pp. 6299-6311 ◽  
Author(s):  
Geoffrey H. Holm ◽  
Dana Gabuzda

ABSTRACT Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4+ and CD8+ T cells. Infection of primary T-cell cultures with ELI6 induced CD4+ T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4+ and CD8+ T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4+ T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8+ T cells was triggered by a soluble factor(s) secreted by CD4+ T cells. HIV-1 virions activated CD4+ and CD8+ T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25+HLA-DR+ T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4+ and CD8+ T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.


1988 ◽  
Vol 168 (3) ◽  
pp. 1145-1156 ◽  
Author(s):  
B E Bierer ◽  
A Peterson ◽  
J C Gorga ◽  
S H Herrmann ◽  
S J Burakoff

T cells may be activated either by the antigen-specific T cell receptor (TCR)-CD3 complex or the cell surface receptor CD2. A natural ligand for CD2 has been found to be lymphocyte function-associated antigen 3 (LFA-3), a widely distributed cell surface glycoprotein. To investigate the interaction of these two pathways, we have expressed the cDNA encoding the human CD2 molecule in a murine T cell hybridoma that produces IL-2 in response to HLA-DR antigens. Expression of the CD2 molecule markedly enhances IL-2 production in response to LFA-3+ antigen-bearing stimulator cells, and this stimulation is inhibited by anti-CD2 and anti-LFA-3 mAb. To further define the role of LFA-3 in antigen-dependent T cell activation, we have studied the ability of the purified ligands of CD2 and the TCR to stimulate the hybridoma. Neither liposomes containing purified HLA-DR antigens nor liposomes containing purified LFA-3 were able to stimulate the parent or the CD2+ hybridoma. However, liposomes containing both purified LFA-3 and HLA-DR, the physiological ligands for CD2 and the TCR, respectively, stimulate IL-2 production by the CD2+ but not the parent hybridoma, suggesting that complementary interactions between the TCR-CD3 complex and the CD2 pathway may regulate lymphocyte activation. To determine whether the CD2/LFA-3 interaction participates in cell-cell adhesion and provides an activation signal, we have constructed a cytoplasmic deletion mutant of CD2, CD2 delta B, in which the COOH-terminal 100 amino acids of CD2 have been replaced with a serine. Hybridomas expressing the CD2 delta B molecule were examined. Deletion of the cytoplasmic domain of CD2 did not alter binding of LFA-3 but eliminated the ability of CD2 to increase the response of the hybridoma to liposomes containing both HLA-DR and LFA-3, demonstrating that adhesion of LFA-3 to CD2 alone was insufficient for activation, and that the cytoplasmic domain was required for LFA-3 stimulation through the CD2 molecule. T cells may be activated by purified LFA-3 binding to CD2 and the TCR interacting with its ligand, and these signals appear to be synergistic for the T cell. These results suggest that the CD2/LFA-3 interaction not only plays a role in cell-cell adhesion but provides a stimulatory signal for T cell activation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rubina Bunjun ◽  
Andreia P. Soares ◽  
Narjis Thawer ◽  
Tracey L. Müller ◽  
Agano Kiravu ◽  
...  

HIV-1 increases susceptibility to pulmonary infection and disease, suggesting pathogenesis in the lung. However, the lung immune environment during HIV infection remains poorly characterized. This study examined T cell activation and the cytokine milieu in paired bronchoalveolar lavage (BAL) and blood from 36 HIV-uninfected and 32 HIV-infected participants. Concentrations of 27 cytokines were measured by Luminex, and T cells were phenotyped by flow cytometry. Blood and BAL had distinct cytokine profiles (p=0.001). In plasma, concentrations of inflammatory cytokines like IFN-γ (p=0.004) and TNF-α (p=0.004) were elevated during HIV infection, as expected. Conversely, BAL cytokine concentrations were similar in HIV-infected and uninfected individuals, despite high BAL viral loads (VL; median 48,000 copies/ml epithelial lining fluid). HIV-infected individuals had greater numbers of T cells in BAL compared to uninfected individuals (p=0.007); and BAL VL positively associated with CD4+ and CD8+ T cell numbers (p=0.006 and p=0.0002, respectively) and CXCL10 concentrations (p=0.02). BAL T cells were highly activated in HIV-infected individuals, with nearly 2-3 fold greater frequencies of CD4+CD38+ (1.8-fold; p=0.007), CD4+CD38+HLA-DR+ (1.9-fold; p=0.0006), CD8+CD38+ (2.8-fold; p=0.0006), CD8+HLA-DR+ (2-fold; p=0.022) and CD8+CD38+HLA-DR+ (3.6-fold; p&lt;0.0001) cells compared to HIV-uninfected individuals. Overall, this study demonstrates a clear disruption of the pulmonary immune environment during HIV infection, with readily detectable virus and activated T lymphocytes, which may be driven to accumulate by local chemokines.


2012 ◽  
Vol 66 (2) ◽  
pp. 146-150 ◽  
Author(s):  
Clive R D Carter ◽  
Ganesha Aravind ◽  
Natuley L Smalle ◽  
June Y Cole ◽  
Sinisa Savic ◽  
...  

AimsCommon variable immunodeficiency (CVID) is a primary antibody immunodeficiency with approximately 20% of patients reporting additional autoimmune symptoms. The primary aim of this study was to compare the levels of activated and regulatory T cells (Treg cells) in CVID patients in an attempt to clarify their possible interactions leading to the generation of autoimmunity.MethodsImmunophenotyping of T cells was performed by flow cytometry using a whole blood approach. Surface expression of human leukocyte antigen HLA class II DR and intracellular levels of granzyme B in T cell subsets were assessed; Treg levels were measured using CD4 CD25, FOXp3 and CTLA-4.ResultsCVID patients had higher levels of granzyme B and HLA-DR on CD8+ T cells compared with control values (mean of 59% vs 30% and 45% vs 21%, respectively). Patients also had reduced levels of Treg cells compared with control values (con mean=3.24% vs pat=2.54%). Patients with autoimmunity (5/23) had a similar level of T cell activation markers to the rest of the patients but with lower Treg cells (mean of 1.1%) and reduced CD25 and CTLA-4 expression. Patients with autoimmunity had a higher ratio of activated to Treg cells compared with patients with no autoimmune symptoms.ConclusionsThese results highlight that reduced levels of Treg cells were associated with elevated levels of activated T cells, suggesting that reduced Treg cells in these patients may have functional consequences in allowing exaggerated T cell responses.


Sign in / Sign up

Export Citation Format

Share Document