scholarly journals Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain

2008 ◽  
Vol 105 (46) ◽  
pp. 18012-18017 ◽  
Author(s):  
Jun Kohyama ◽  
Takuro Kojima ◽  
Eriko Takatsuka ◽  
Toru Yamashita ◽  
Jun Namiki ◽  
...  

Neural stem/progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes, and oligodendrocytes. It has become apparent that intracellular epigenetic modification including DNA methylation, in concert with extracellular cues such as cytokine signaling, is deeply involved in fate specification of NSCs/NPCs by defining cell-type specific gene expression. However, it is still unclear how differentiated neural cells retain their specific attributes by repressing cellular properties characteristic of other lineages. In previous work we have shown that methyl-CpG binding protein transcriptional repressors (MBDs), which are expressed predominantly in neurons in the central nervous system, inhibit astrocyte-specific gene expression by binding to highly methylated regions of their target genes. Here we report that oligodendrocytes, which do not express MBDs, can transdifferentiate into astrocytes both in vitro (cytokine stimulation) and in vivo (ischemic injury) through the activation of the JAK/STAT signaling pathway. These findings suggest that differentiation plasticity in neural cells is regulated by cell-intrinsic epigenetic mechanisms in collaboration with ambient cell-extrinsic cues.

2017 ◽  
Vol 95 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Amber R. Cutter ◽  
Jeffrey J. Hayes

Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.


2015 ◽  
Vol 9 ◽  
pp. BBI.S33124 ◽  
Author(s):  
Peter R. LoVerso ◽  
Christopher M. Wachter ◽  
Feng Cui

The mammalian brain is characterized by distinct classes of cells that differ in morphology, structure, signaling, and function. Dysregulation of gene expression in these cell populations leads to various neurological disorders. Neural cells often need to be acutely purified from animal brains for research, which requires complicated procedure and specific expertise. Primary culture of these cells in vitro is a viable alternative, but the differences in gene expression of cells grown in vitro and in vivo remain unclear. Here, we cultured three major neural cell classes of rat brain (ie, neurons, astrocytes, and oligodendrocyte precursor cells [OPCs]) obtained from commercial sources. We measured transcript abundance of these cell types by RNA sequencing (RNA-seq) and compared with their counterparts acutely purified from mouse brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between the cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and OPCs, indicating that signaling pathways are greatly perturbed in cultured astrocytes. This dataset provides a powerful resource to demonstrate the similarities and differences of biological processes in mammalian neural cells grown in vitro and in vivo at the molecular level.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2186-2186
Author(s):  
Barbara Spitzer ◽  
Olga A Guryanova ◽  
Omar Abdel-Wahab ◽  
Nicole Kucine ◽  
Mazhar Adli ◽  
...  

Abstract Molecular studies have shown that specific somatic mutations impact therapeutic response and overall outcome in acute myeloid leukemia (AML) and have informed the development of molecularly targeted therapies. Previous studies have shown that the FLT3-ITD mutant disease allele predicts a poor prognosis in AML. Despite this important insight and the established role of FLT3-ITD mutations in AML pathogenesis, the impact of this mutation on gene regulation has not been extensively investigated. We hypothesized that transcriptional and epigenetic studies using genetically accurate murine models, cell lines, and primary AML samples would allow us to identify how FLT3 activation induces changes in gene expression and chromatin state. To assess the impact of FLT3-ITD associated FLT3 activation on gene expression, we performed RNA-sequencing studies on two FLT3-ITD cell lines (MOLM-13 and MV4-11) in the presence/absence of AC-220, a potent, specific FLT3 inhibitor. We also treated mice expressing a constitutive FLT3-ITD knock-in allele with AC-220 or vehicle, and performed RNA-sequencing on purified granulocyte-macrophage progenitors (GMPs). We assessed the impact of transient (4-12 hours drug treatment) and chronic (10-14 days) FLT3 inhibition on gene expression; we hypothesized that chronic drug exposure would result in more robust FLT3-mutant gene expression changes. In each case, the effects of FLT3-ITD activation/inhibition on gene expression were compared to RNA-seq data from FLT3-ITD mutant patients from TCGA. We first investigated the impact of short-term and chronic drug exposure on FLT3-ITD dependent gene expression in vitro. Comparison of short-term drug and vehicle treated cells revealed 159 differentially expressed (DE) genes (Benjamini-Hochberg false discovery rate (BH FDR) p < 0.05 and an absolute log2 fold change (FC) > 0.8). By contrast, we found that chronic FLT3 inhibition identified 743 DE genes. Comparison between the acutely and chronically treated cell lines revealed overlap of only 19 genes, suggesting important differences between the acute and steady-state effects of FLT3-inhibition. We found more significant overlap between chronic FLT3-inhibitor gene expression and FLT3-ITD specific gene expression in TCGA, demonstrating that long-term drug exposure more robustly delineates mutant-specific effects on gene expression. We next investigated the impact of short and long term FLT3-inhibition on gene expression in vivo. Analysis of DE genes identified 93 genes in the acutely treated mice vs. vehicle, and 274 genes in chronically treated mice (BH FDR p < 0.05 and absolute log2 FC of > 0.5). Only 12 DE genes were shared between these two perturbations compared with vehicle control. We then compared these gene expression signatures to FLT3-ITD specific gene expression from TCGA; we noted a significant inverse correlation between the signatures of chronic FLT3 inhibition in vivo with FLT3-ITD specific gene expression in TCGA (R2=0.47), but no correlation between the gene expression changes of acute FLT3 inhibition and FLT3-ITD TCGA patients (R2=0.09). We next integrated the FLT3 signatures from our in vivo work and TCGA with ChIP-sequencing for H3K4me3 and H3K27me3 in primary samples with FLT3-ITD compared to normal controls. We found that 3.6% of DE genes in our in vivo system, and 7.2% of DE genes in TCGA, had significant changes in H3K4me3 or H3K27me3. The most common alteration in chromatin state observed with FLT3 activation was an increase in H3K4me3 and transcriptional activation, with a smaller set of genes showing increased H3K27me3 and reduced expression, consistent with FLT3-mediated epigenetic repression. Motif analysis showed that DE loci with significant changes in chromatin state were enriched for ELF5, NF-E2, Pu.1, and Bach1 binding sequences, implicating these transcription factors in mediating FLT3-dependent gene expression effects. By studying the global transcriptional changes that occur with chronic, steady-state FLT3 inhibition in in vitro and in vivo systems, we identified a set of gene expression changes characteristic of FLT3-activation. In addition, integrating changes in gene expression and chromatin state allowed us to identify loci with alterations in epigenetic state in the setting of FLT3-ITD associated FLT3 activation, and to identify candidate transcription factors that mediate FLT3-dependent effects on gene expression. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 8 (3) ◽  
pp. 244-252 ◽  
Author(s):  
David K. Ann ◽  
H. Helen Lin ◽  
Eleni Kousvelari

The results from in vivo transgenic and in vitro transfection studies designed to identify cis-element(s) and trans-factor(s) governing the salivary proline-rich proteins (PRPs), amylase, and parotid secretory protein (PSP) gene expression are utilized as a paradigm to discuss the regulation of salivary-specific gene expression. Particular attention is given to the molecular mechanism(s) underlying the salivary PRP R15 gene regulation. In rodents, the PRPs are selectively expressed in the acinar cells of salivary glands, and are inducible by the β-agonist isoproterenol and by dietary tannins. The results from a series of experiments using chimeric reporter constructs containing different lengths of the R15 distal enhancer region, their mutations, and various expressing constructs are analyzed and discussed. These data suggest that the inducible nuclear orphan receptor NGFI-B may participate in the regulation of salivary acinar-cell-specific and inducible expression of the rat R15 gene via three distinct distal NGFI-B sites. Taken together, a model for the induction of R15 gene expression by Ipr is proposed. However, the exact molecular basis of this NGFI-B-mediated transactivation of cAMP-regulated R15 expression remains to be established.


2004 ◽  
Vol 16 (2) ◽  
pp. 87 ◽  
Author(s):  
Le Ann Blomberg ◽  
Kurt A. Zuelke

Functional genomics provides a powerful means for delving into the molecular mechanisms involved in pre-implantation development of porcine embryos. High rates of embryonic mortality (30%), following either natural mating or artificial insemination, emphasise the need to improve the efficiency of reproduction in the pig. The poor success rate of live offspring from in vitro-manipulated pig embryos also hampers efforts to generate transgenic animals for biotechnology applications. Previous analysis of differential gene expression has demonstrated stage-specific gene expression for in vivo-derived embryos and altered gene expression for in vitro-derived embryos. However, the methods used to date examine relatively few genes simultaneously and, thus, provide an incomplete glimpse of the physiological role of these genes during embryogenesis. The present review will focus on two aspects of applying functional genomics research strategies for analysing the expression of genes during elongation of pig embryos between gestational day (D) 11 and D12. First, we compare and contrast current methodologies that are being used for gene discovery and expression analysis during pig embryo development. Second, we establish a paradigm for applying serial analysis of gene expression as a functional genomics tool to obtain preliminary information essential for discovering the physiological mechanisms by which distinct embryonic phenotypes are derived.


2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


FEBS Letters ◽  
1998 ◽  
Vol 433 (1-2) ◽  
pp. 37-40 ◽  
Author(s):  
Makoto Sawada ◽  
Fumihiro Imai ◽  
Hiromi Suzuki ◽  
Motoharu Hayakawa ◽  
Tetsuo Kanno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document