Atypical E2F Dependent Dysregulation Of Cell Cycling By Microrna-142 Regulates T-Cell Responses and Experimental Graft-Versus-Host Disease

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 136-136 ◽  
Author(s):  
Yaping Sun ◽  
Kay Oravecz-Wilson ◽  
Thomas Saunders ◽  
Ying Wang ◽  
Tomomi Toubai ◽  
...  

Abstract Noncoding microRNAs (miRs) have recently been linked to immune system function. We investigated the role of miR-142, a hematopoietic specific miR, in regulating T cell responses. To understand its specific function in T cell immunity we utilized homologous recombination technology and generated mutant mice bearing a targeted deletion of the miR-142 gene on the B6 background. The homozygous miR-142 knockout (KO) animals were viable, fertile and showed no apparent developmental anomalies. Thymic analyses of the miR142-/- animals demonstrated no significant differences when compared with WT littermate controls in total thymocytes, early thymic progenitors, DP and DN cells. Bone marrow studies demonstrated similar numbers of LSK+ HSCs while analyses of secondary lymphoid organs (spleen and popliteal lymph nodes) demonstrated similar absolute numbers of naïve T cells (CD44low62L+), memory like T cells (CD44hi62L+CCR7- and CD44hi62L-CCR7- cells), CD4+25+Foxp3+ cells, CD69+VLA4+CD3+ cells and weekly peripheral blood examination demonstrated similar lymphocyte counts as the WT littermates. Functional studies, however, demonstrated that when compared with WT T-cells, the KO T-cells showed significantly slower rate of proliferation by CFSE analyses upon stimulation anti-CD3+ and 28+ antibodies (P<0.003). They showed lower IL-2, IFNγ and IL-17 but greater amount of IL-6 production (P<0.001) and demonstrated greater apoptosis (P<0.02). Cell cycling analyses with flow cytometry demonstrated that a significantly greater percent of the miR142-/- T-cells were in the S and G2 phase (P<0.01) when compared with WT T-cells suggesting altered cell cycling. Similar reduction in proliferation, cytokine secretion by the miR142-/- T-cells was also observed upon in vitro stimulation with allogeneic BALB/c DCs. To determine the in vivo relevance of miR142 deficiency in T cells, we next utilized MHC mismatched B6àBALB/c model of allogeneic BMT. BALB/c animals were lethally irradiated (9Gy) and transplanted on day 0 with 5x106 BM from WT B6 animals along with 2x106 splenic CD90+T cells from the WT or miR142-/- donors. The allogeneic animals that received KO T-cells showed significantly less severe clinical, histopathological GVHD (GI tract on days 7 and 21) and mortality (P<0.02). Analyses of donor T cells on day 7 post-BMT demonstrated reduced expansion and IFNγ secretion (P<0.04) but showed no significant differences in the ratio of Treg:conventional T-cells between the WT and KO T-cell allogeneic recipients. To further confirm the specific role of miR142 deficiency, we next treated the WT animals with miR-142 anatgomir (days 1, 3 and 7) and found that it significantly reduced GVHD mortality (P<0.003). The KO T-cells also reduced GVHD mortality in a MHC matched minor mismatched B6→C3H.sw BMT model demonstrating strain independent effects. To further determine the miR142 specific molecular mechanisms we performed extensive bioinformatic analyses. In light of a defect in T cell cycling in miR142-/- T-cells, we focused on the putative miR142 targets that are known to regulate cell cycling. Two of the three bioinformatic programs suggested the following known regulators of cell cycling, EGR2, DAG, all eight E2F transcription factor family (the typical E2F1-6 and atypical E2F7-8) members as putative targets. We next performed DNA microarray analyses to determine differential gene expression patterns in miR142-/- and WT T cells, which demonstrated an increase in the expression (>15x) of only the atypical E2Fs, namely E2F7 and E2F8, but not in any of the other above predicted cell cycle regulating molecules. The increase in the expression of the atypical E2Fs in the miR142-/- T-cells was next confirmed by PCR analyses at baseline (unstimulated) and also sequentially at 6, 12, 24 and 48 hours following in vitro stimulation. Knockdown of E2F7 and E2F8 in miR142-/- T cells with sh-RNA rescued their proliferative responses and corrected the cell cycling defects to the levels comparable to WT T-cells, thus demonstrating that the atypical E2F7 and 8 are critical for miR-142 mediated regulation of T cells. Thus our data show (a) generation of a novel miR142 knockout mouse (b) demonstrate that miR142 regulates T cell responses in vitro and in vivo by targeting atypical E2Fs and (c) suggest that targeting miR142 in vivo with its antagomir might be a novel therapeutic strategy for regulating GVHD. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 318-318 ◽  
Author(s):  
Lequn Li ◽  
Hui Wang ◽  
Vassiliki A. Boussiotis

Abstract Cell cycle re-entry of quiescent T lymphocytes is required for generation of productive T cell responses. Cyclin-dependent kinases (cdk), particularly cdk2, have an essential role in cell cycle re-entry. Cdk2 promotes phosphorylation of Rb and related pocket proteins thereby reversing their ability to sequester E2F transcription factors. Besides Rb, cdk2 phosphorylates Smad2 and Smad3. Smad3 inhibits cell cycle progression from G1 to S phase, and impaired phosphorylation on the cdk-mediated sites renders it more effective in executing this function. In contrast, cdk-mediated phosphorylation of Smad3 reduces Smad3 transcriptional activity and antiproliferative function. Recently, we determined that induction of T cell tolerance resulted in impaired cdk2 activity, leading to reduced levels of Smad3 phosphorylation on cdk-specific sites and increased Smad3 antiproliferative function due to upregulation of p15. We hypothesized that pharmacologic inhibition of cdk2 during antigen-mediated T cell stimulation might provide an effective strategy to control T cell expansion and induce tolerance. (R)-roscovitine (CYC202) is a potent inhibitor of cdk2-cyclin E, which in higher concentrations also inhibits other cdk-cyclin complexes including cdk7, cdk9 and cdk5. It is currently in clinical trials as anticancer drug and recently was shown to induce long-lasting arrest of murine polycystic kidney disease. We examined the effect of roscovitine on T cell responses in vitro and in vivo. We stimulated C57BL/6 T cells with anti-CD3-plus-anti-CD28 mAbs, DO11.10 TCR-transgenic T cells with OVA peptide or C57BL/6 T cells with MHC disparate Balb/c splenocytes. Addition of roscovitine in these cultures resulted in blockade of cell proliferation without induction of apoptosis. Biochemical analysis revealed that roscovitine prevented phosphorylation of cdk2, downregulation of p27, phosphorylation of Rb and synthesis of cyclin A, suggesting an effective G1/S cell cycle block. To determine whether roscovitine could also inhibit clonal expansion of activated T cells in vivo, we employed a mouse model of GvHD. Recipient (C57BL/6 x DBA/2) F1 mice were lethally irradiated and were subsequently infused with bone marrow cells and splenocytes, as source of allogeneic T cells, from parental C57BL/6 donors. Roscovitine or vehicle-control was given at the time of allogeneic BMT and on a trice-weekly basis thereafter for a total of three weeks. Administration of roscovitine protected against acute GvHD resulting in a median survival of 49 days in the roscovitine-treated group compared to 24 days in the control group (p=0.005), and significantly less weight loss. Importantly, roscovitine treatment had no adverse effects on engraftment, resulting in full donor chimerism in the treated mice. To examine whether tolerance had been induced by in vivo treatment with roscovitine, we examined in vitro rechallenge responses. While control C57BL/6 T cells exhibited robust responses when stimulated with (C57BL/6 x DBA/2) F1 splenocytes, responses of T cells isolated from roscovitine-treated recipients against (C57BL/6 x DBA/2) F1 splenocytes were abrogated. These results indicate that roscovitine has direct effects on preventing TCR-mediated clonal expansion in vitro and in vivo and may provide a novel therapeutic approach for control of GvHD.


2005 ◽  
Vol 18 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Thomas M. Bauer ◽  
Lucian P. Jiga ◽  
Jing-Jing Chuang ◽  
Marco Randazzo ◽  
Gerhard Opelz ◽  
...  

2004 ◽  
Vol 72 (12) ◽  
pp. 7240-7246 ◽  
Author(s):  
Marion Pepper ◽  
Florence Dzierszinski ◽  
Amy Crawford ◽  
Christopher A. Hunter ◽  
David Roos

ABSTRACT The study of the immune response to Toxoplasma gondii has provided numerous insights into the role of T cells in resistance to intracellular infections. However, the complexity of this eukaryote pathogen has made it difficult to characterize immunodominant epitopes that would allow the identification of T cells with a known specificity for parasite antigens. As a consequence, analysis of T-cell responses to T. gondii has been based on characterization of the percentage of T cells that express an activated phenotype during infection and on the ability of these cells to produce cytokines in response to complex mixtures of parasite antigens. In order to study specific CD4+ T cells responses to T. gondii, recombinant parasites that express a truncated ovalbumin (OVA) protein, in either a cytosolic or a secreted form, were engineered. In vitro and in vivo studies reveal that transgenic parasites expressing secreted OVA are able to stimulate T-cell receptor-transgenic OVA-specific CD4+ T cells to proliferate, express an activated phenotype, and produce gamma interferon (IFN-γ). Furthermore, the adoptive transfer of OVA-specific T cells into IFN-γ−/− mice provided enhanced protection against infection with the OVA-transgenic (but not parental) parasites. Together, these studies establish the utility of this transgenic system to study CD4+-T-cell responses during toxoplasmosis.


2021 ◽  
Author(s):  
◽  
Dianne Sika-Paotonu

<p>Tumours can be eradicated by T cells that recognise unique tumour-associated antigens. These T cells are initially stimulated by dendritic cells (DCs) that have acquired antigens from tumour tissue. Vaccination strategies that increase the frequencies of tumour-specific T cells by enhancing the activity of DCs are being evaluated in the clinic as novel cancer therapies. Our hypothesis is that existing DC-based vaccination strategies can be improved by stimulating toll-like receptor (TLR) signalling in the DCs, and also by encouraging interactions with iNKT cells, as these two activities are known to enhance DC function. It was also hypothesised that superior T cell responses could be induced by combining these two activities together. We used the TLR 4 agonist monophosphoryl lipid A (MPL) alone and in combination with other TLR agonists to achieve effective activation of bone marrow-derived DCs (BM-DCs) cultured in-vitro, which was characterised by upregulated expression of maturation markers on the cell surface, and enhanced release of pro-inflammatory cytokines. Some TLR agonist combinations provided significantly enhanced activities in this regard, notably the combination of MPL with either the TLR 2 agonist Pam3Cys, or the TLR 7/8 agonist Resiquimod. Although in-vitro activated BM-DCs were unable to induce stronger antigen-specific CD8+ T cell responses after intravenous injection when compared to BMDCs without TLR stimulation, enhanced CD8+ T cell responses were achieved in-vivo with the co-administration of TLR ligands, implying that TLR stimulation needed to act on cells of the host. Further studies identified the langerin-expressing CD8ɑ+ splenic DC subset in the spleen as recipients of antigen that was transferred from injected cells, and that these recipients were participants in the cross-presentation and T cell priming activities driving the CD8+ T cell response after vaccination. Antigen-loaded BM-DCs carrying the NKT cell ligand ɑ-galactosylceramide (ɑ-GalCer) were found to consistently increase antigen-specific CD8+ T cell responses in-vivo, and also cytotoxic responses as seen in cytotoxic killing assays. Again, langerin-expressing CD8ɑ+ splenic DCs were shown to be involved in this response by acquiring antigen and ɑ-GalCer from the injected vaccine BM-DCs. Finally, it was possible to achieve even greater CD8+ T cell responses in-vivo by injecting BM-DCs carrying antigen and ɑ-GalCer, together with timely co-administration of the TLR agonist. These results suggest a reassessment of the activities of DC-based vaccines to include the important role of “courier” to DCs already resident in the host that can be exploited to improve vaccination outcomes.</p>


2021 ◽  
Author(s):  
◽  
Dianne Sika-Paotonu

<p>Tumours can be eradicated by T cells that recognise unique tumour-associated antigens. These T cells are initially stimulated by dendritic cells (DCs) that have acquired antigens from tumour tissue. Vaccination strategies that increase the frequencies of tumour-specific T cells by enhancing the activity of DCs are being evaluated in the clinic as novel cancer therapies. Our hypothesis is that existing DC-based vaccination strategies can be improved by stimulating toll-like receptor (TLR) signalling in the DCs, and also by encouraging interactions with iNKT cells, as these two activities are known to enhance DC function. It was also hypothesised that superior T cell responses could be induced by combining these two activities together. We used the TLR 4 agonist monophosphoryl lipid A (MPL) alone and in combination with other TLR agonists to achieve effective activation of bone marrow-derived DCs (BM-DCs) cultured in-vitro, which was characterised by upregulated expression of maturation markers on the cell surface, and enhanced release of pro-inflammatory cytokines. Some TLR agonist combinations provided significantly enhanced activities in this regard, notably the combination of MPL with either the TLR 2 agonist Pam3Cys, or the TLR 7/8 agonist Resiquimod. Although in-vitro activated BM-DCs were unable to induce stronger antigen-specific CD8+ T cell responses after intravenous injection when compared to BMDCs without TLR stimulation, enhanced CD8+ T cell responses were achieved in-vivo with the co-administration of TLR ligands, implying that TLR stimulation needed to act on cells of the host. Further studies identified the langerin-expressing CD8ɑ+ splenic DC subset in the spleen as recipients of antigen that was transferred from injected cells, and that these recipients were participants in the cross-presentation and T cell priming activities driving the CD8+ T cell response after vaccination. Antigen-loaded BM-DCs carrying the NKT cell ligand ɑ-galactosylceramide (ɑ-GalCer) were found to consistently increase antigen-specific CD8+ T cell responses in-vivo, and also cytotoxic responses as seen in cytotoxic killing assays. Again, langerin-expressing CD8ɑ+ splenic DCs were shown to be involved in this response by acquiring antigen and ɑ-GalCer from the injected vaccine BM-DCs. Finally, it was possible to achieve even greater CD8+ T cell responses in-vivo by injecting BM-DCs carrying antigen and ɑ-GalCer, together with timely co-administration of the TLR agonist. These results suggest a reassessment of the activities of DC-based vaccines to include the important role of “courier” to DCs already resident in the host that can be exploited to improve vaccination outcomes.</p>


2021 ◽  
Vol 9 (9) ◽  
pp. e002754
Author(s):  
Eva Bräunlein ◽  
Gaia Lupoli ◽  
Franziska Füchsl ◽  
Esam T Abualrous ◽  
Niklas de Andrade Krätzig ◽  
...  

BackgroundNeoantigens derived from somatic mutations correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of therapeutic approaches in personalized medicine, although many aspects of their quality and associated immune responses are not yet well understood. In a case study of metastatic malignant melanoma, we aimed to perform an in-depth characterization of neoantigens and respective T-cell responses in the context of immune checkpoint modulation.MethodsThree neoantigens, which we identified either by immunopeptidomics or in silico prediction, were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient’s immune repertoire recognizing these antigens. TCRs were compared in vitro by multiparametric analyses including functional avidity, multicytokine secretion, and cross-reactivity screenings. A xenograft mouse model served to study in vivo functionality of selected TCRs. We investigated the patient’s TCR repertoire in blood and different tumor-related tissues over 3 years using TCR beta deep sequencing.ResultsSelected mutated peptide ligands with proven immunogenicity showed similar binding affinities to the human leukocyte antigen complex and comparable disparity to their wild-type counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs recognizing these antigens demonstrated distinct patterns in functionality and frequency. TCRs with lower functional avidity showed at least equal antitumor immune responses in vivo. Moreover, they occurred at high frequencies and particularly demonstrated long-term persistence within tumor tissues, lymph nodes and various blood samples associated with a reduced activation pattern on primary in vitro stimulation.ConclusionsWe performed a so far unique fine characterization of neoantigen-specific T-cell responses revealing defined reactivity patterns of neoantigen-specific TCRs. Our data highlight qualitative differences of these TCRs associated with function and longevity of respective T cells. Such features need to be considered for further optimization of neoantigen targeting including adoptive T-cell therapies using TCR-transgenic T cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 821-821
Author(s):  
Amy Beres ◽  
Dipica Haribhai ◽  
Chelsea Tessler-Verville ◽  
Patrick Gonyo ◽  
Martin Hessner ◽  
...  

Abstract Abstract 821 Regulatory T cells defined as CD4+ and expressing the transcription factor Foxp3 have been shown to play a pivotal role in mitigating the severity of graft versus host disease (GVHD). In the course of studies designed to define the functional role of various CD4+ Treg populations in GVHD biology, we identified a novel population of CD8+ T cells that expressed Foxp3 and were induced early during this disease. While this population has been reported in patients with autoimmune disorders, the role of CD8+ Foxp3+ T cells in GVHD is unknown. To delineate the significance of this observation, we performed studies in which lethally irradiated Balb/c [H-2d] mice were transplanted with bone marrow and spleen cells from C57BL/6J [H-2b] mice that carried an EGFP reporter gene linked to Foxp3 (Foxp3EGFP). Tissues (spleen, lung, liver and colon) were harvested 5, 7, 10, 14 and 21 days post transplantation to define the temporal kinetics and absolute numbers of CD8+ Tregs during acute GVHD. We observed that CD8+ Foxp3+ T cells were detectable as early as five days post transplantation and persisted for up to three weeks in all GVHD target tissues. This cell population was present in similar percentages and absolute numbers to CD4+ Tregs in these tissue sites which is noteworthy given that the CD4+ Treg pool is comprised of two populations (natural Tregs and induced Tregs) whereas the CD8 pool is made up almost exclusively of Tregs that are induced, since only a very small percentage of CD8+ T cells from normal mice (<1.0%) constitutively express Foxp3. To determine whether the induction of CD8+ Tregs was a function of MHC disparity, we performed similar transplant studies using murine models with varying degrees of MHC incompatibility. Notably, the relative and absolute number of CD8+ Tregs were much lower in an MHC-matched, minor antigen mismatched model of GVHD [B6→Balb.B], and were absent in a model where only three amino acids distinguish donor and recipient [B6→bm1], indicating a correlation between CD8+ iTreg generation and MHC disparity between donor and host. To confirm that in vivo-induced CD8+ Tregs were suppressive, CD8+ Foxp3+ and CD4+ Foxp3+ T cells were sorted from the spleen and liver of B6→Balb/c GVHD mice six days post transplantation and examined in standard MLC suppression assays. These studies revealed that in vivo-derived CD8+ and CD4+ Tregs equally suppressed alloreactive T cell responses. Phenotypic analysis of in vivo-differentiated CD8 iTregs revealed that these cells expressed many of the same cell surface molecules as CD4+ Tregs (e.g. GITR, CD25, CD103, CTLA-4). To determine if CD8+ Foxp3+ T cells could be induced in vitro and used as adoptive therapy for GVHD prevention, purified CD8+ Foxp3EGFP– T cells were cultured with anti-CD3/CD28 antibodies, TGF-β and IL-2 for 3 days. Under these conditions, ∼30% of cells are induced to become Foxp3+. Addition of in vitro-differentiated CD8+ iTregs to a standard MLC resulted in potent suppression which was equivalent to that observed with in vitro-differentiated CD4+ Tregs. To determine whether these cells were suppressive in vivo, in vitro-differentiated CD8+ iTregs were adoptively transferred at a 1:1 Treg: effector cell ratio into lethally irradiated Balb/c mice that also received B6.PL BM and spleen cells to induce GVHD. In vitro-derived CD8+ iTregs failed to protect mice from GVHD in comparison to animals transplanted without CD8+ iTregs. This was attributable to reduced survival and the loss of Foxp3 expression in vivo. Furthermore, approximately 30–50% of these cells reverted to a proinflammatory phenotype characterized by IFN-γ secretion, similar to what has been described for in vitro-differentiated CD4+ iTregs (Beres et al, Clin Can Res, 2011). Finally, microarray studies were performed to compare the gene signatures of in vitro versus in vivo-induced CD8+ Tregs. Ontological analysis revealed that there was a 3–16 fold increase in the transcription of cytokine (e.g. IL-10) and cytotoxic (granzyme A, perforin, granzyme B) pathway genes in in vivo versus in vitro-induced CD8+ Tregs, suggesting that the former Treg population may employ similar mechanisms of suppression as has been reported for CD4+ Tregs. In summary, these studies have identified a novel population of CD8+ Foxp3+ cells that are induced early during GVHD, are able to suppress alloreactive T cell responses, and constitute another regulatory T cell population that is operative in GVHD biology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5793-5800 ◽  
Author(s):  
Manoj Saini ◽  
Claire Pearson ◽  
Benedict Seddon

Abstract Interleukin-7 (IL-7) plays a central role in the homeostasis of the T-cell compartment by regulating T-cell survival and proliferation. Whether IL-7 can influence T-cell receptor (TCR) signaling in T cells remains controversial. Here, using IL-7–deficient hosts and TCR-transgenic T cells that conditionally express IL-7R, we examined antigen-specific T-cell responses in vitro and in vivo to viral infection and lymphopenia to determine whether IL-7 signaling influences TCR-triggered cell division events. In vitro, we could find no evidence that IL-7 signaling could costimulate T-cell activation over a broad range of conditions, suggesting that IL-7 does not directly tune TCR signaling. In vivo, however, we found an acute requirement for IL-7 signaling for efficiently triggering T-cell responses to influenza A virus challenge. Furthermore, we found that IL-7 was required for the enhanced homeostatic TCR signaling that drives lymphopenia-induced proliferation by a mechanism involving efficient contacts of T cells with dendritic cells. Consistent with this, saturating antigen-presenting capacity in vivo overcame the triggering defect in response to cognate peptide. Thus, we demonstrate a novel role for IL-7 in regulating T cell–dendritic cell interactions that is essential for both T-cell homeostasis and activation in vivo.


PLoS ONE ◽  
2009 ◽  
Vol 4 (1) ◽  
pp. e4256 ◽  
Author(s):  
Rachel Lubong Sabado ◽  
Daniel G. Kavanagh ◽  
Daniel E. Kaufmann ◽  
Karlhans Fru ◽  
Ethan Babcock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document