Treatment With G-CSF Reduces Acute Myeloid Leukemia (AML) Blasts Viability In Presence Of Bone Marrow Stroma

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1422-1422
Author(s):  
Meritxell Nomdedeu ◽  
Marta Pratcorona ◽  
Marina Díaz-Beyá ◽  
Xavier Calvo ◽  
Mari Carmen Lara-Castillo ◽  
...  

Abstract Background The simultaneous administration of G-CSF and chemotherapy as a priming strategy has resulted in a clinical benefit in determined subsets of patients diagnosed with acute myeloid leukemia (AML) (Löwenberg et al, NEJM 2003; Pabst T, et al, Blood 2012). However, the mechanism responsible for this anti-leukemic effect is not fully characterized. We hypothesize that the clinical benefit may occur at least partially by the effect of G-CSF on leukemic stem cells (LSC). Objective The main goal of this project was to determine the effect of G-CSF on primary AML samples in vitro, especially on LSCs. Methods and patients Peripheral blood mononuclear cells (PBMC) from 10 AML patients were treated with G-CSF at increasing doses, alone or in co-culture with HS-5 stroma cells. Cell viability (7-AAD -eBioscience- cell death exclusion and volumetric cell counting) and surface phenotype was determined by flow cytometry (FACSVerse, BD) 72 hours after treatment. Data were analyzed using the FlowJo (Trastar) software. For clonogenicity assays, AML primary samples were treated for 18 hours with G-CSF at increasing concentrations and cultured in H4034 Optimum MethoCult (StemCell Technologies) for 14 days. Colonies were counted based on cellularity and morphology criteria. Results G-CSF treatment showed no effect on cell viability of the bulk leukemic population or on the CD34 + immature subpopulation. A dose-dependent increase in CXCR4 surface expression was observed, reaching a 1.4-fold of change at the highest concentration of G-CSF (100 μg/mL). In contrast, treatment of leukemia cells with G-CSF in the presence of stroma cells reduced the overall cell viability. Thus, a 32% decrease of cell viability was measured at the highest concentration used (p = 0.0006), while no significant changes in the frequency of each leukemic subpopulations were observed. Clonogenic capacity was significantly reduced in a dose-dependent manner upon treatment with G-CSF, achieving a 41% reduction at the highest G-CSF concentration (100 μg/mL). Conclusions G-CSF reduces the viability of leukemic cells when these cells are in co-culture with the HS-5 stroma cell line, suggesting that the presence of stroma cells is required for the cytotoxical effect of G-CSF on the blast population. Interestingly, G-CSF treatment decreased the clonogenic capacity of AML samples, therefore suggesting that G-CSF exerts its effect at least partially on LSCs. Our findings support the design of studies to explore new strategies of chemotherapy priming in AML patients. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 19 (1) ◽  
pp. 52-57
Author(s):  
Li Wen ◽  
Yuli Liang ◽  
Jing Li ◽  
Meijie Quan ◽  
Yanxiao Li ◽  
...  

Acute myeloid leukemia remains a therapeutic challenge in the medical field and improvement in chemotherapeutics is needed. In this paper, MOLM-13 cells were treated with different concentrations (0, 10, 50, 100 µM) of dentatin and cell viability was detected using Cell Counting Kit-8. Cell cycle and cell apoptosis rates were evaluated by flow cytometry. The relevant proteins were assessed by Western blot. Consequently, the results show that dentatin inhibits the cell viability in a dose-dependent manner. In addition, dentatin arrests the cell cycle at G1 phase (P ‹ 0.01). Moreover, dentatin induces the cell apoptosis. Further study revealed that dentatin downregulates the phosphorylated STAT3 and CyclinD1 but upregulates the cleaved caspase-3. In summary, this study confirms that dentatin inhibits MOLM-13 cell viability, increases cell apoptosis, and retards cell cycle.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2404-2412 ◽  
Author(s):  
DC Roy ◽  
JD Griffin ◽  
M Belvin ◽  
WA Blattler ◽  
JM Lambert ◽  
...  

Abstract The use of immunotoxins (IT) to selectively destroy acute myeloid leukemia (AML) cells in vivo or in vitro is complicated by both the antigenic similarity of AML cells to normal progenitor cells and the difficulty of producing a sufficiently toxic conjugate. The monoclonal antibody (MoAb) anti-MY9 is potentially ideal for selective recognition of AML cells because it reacts with an antigen (CD33) found on clonogenic AML cells from greater than 80% of cases and does not react with normal pluripotent stem cells. In this study, we describe an immunotoxin that is selectively active against CD33+ AML cells: Anti- MY9-blocked-Ricin (Anti-MY9-bR), comprised of anti-MY9 conjugated to a modified whole ricin that has its nonspecific binding eliminated by chemical blockage of the galactose binding domains of the B-chain. A limiting dilution assay was used to measure elimination of HL-60 leukemic cells from a 20-fold excess of normal bone marrow cells. Depletion of CD33+ HL-60 cells was found to be dependent on the concentration of Anti-MY9-bR and on the duration of incubation with IT at 37 degrees C. More than 4 logs of these leukemic cells were specifically depleted following short exposure to high concentrations (10(-8) mol/L) of Anti-MY9-bR. Incubation with much lower concentrations of Anti-MY9-bR (10(-10) mol/L), as compatible with in vivo administration, resulted in 2 logs of depletion of HL-60 cells, but 48 to 72 hours of continuous exposure were required. Anti-MY9-bR was also shown to be toxic to primary AML cells, with depletion of greater than 2 logs of clonogenic cells following incubation with Anti- MY9-bR 10(-8) mol/L at 37 degrees C for 5 hours. Activity of Anti-MY9- bR could be blocked by unconjugated Anti-MY9 but not by galactose. As expected, Anti-MY9-bR was toxic to normal colony-forming unit granulocyte-monocyte (CFU-GM), which expresses CD33, in a concentration- and time-dependent manner, and also to burst-forming unit-erythroid and CFU-granulocyte, erythroid, monocyte, megakaryocyte, although to a lesser extent. When compared with anti-MY9 and complement (C′), Anti- MY9-bR could be used in conditions that provided more effective depletion of AML cells with substantially less depletion of normal CFU- GM. Therefore, Anti-MY9-bR may have clinical utility for in vitro purging of AML cells from autologous marrow when used at high IT concentrations for short incubation periods. Much lower concentrations of Anti-MY9-bR that can be maintained for longer periods may be useful for elimination of AML cells in vivo.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Chi Huu Nguyen ◽  
Katharina Bauer ◽  
Hubert Hackl ◽  
Angela Schlerka ◽  
Elisabeth Koller ◽  
...  

AbstractEcotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.


2020 ◽  
Vol 38 (6) ◽  
pp. 1664-1676
Author(s):  
Małgorzata Opydo-Chanek ◽  
Iwona Cichoń ◽  
Agnieszka Rak ◽  
Elżbieta Kołaczkowska ◽  
Lidia Mazur

Summary One of the key features of acute myeloid leukemia (AML) is the arrest of differentiation at the early progenitor stage of myelopoiesis. Therefore, the identification of new agents that could overcome this differentiation block and force leukemic cells to enter the apoptotic pathway is essential for the development of new treatment strategies in AML. Regarding this, herein we report the pro-differentiation activity of the pan-Bcl-2 inhibitor, obatoclax. Obatoclax promoted differentiation of human AML HL-60 cells and triggered their apoptosis in a dose- and time-dependent manner. Importantly, obatoclax-induced apoptosis was associated with leukemic cell differentiation. Moreover, decreased expression of Bcl-2 protein was observed in obatoclax-treated HL-60 cells. Furthermore, differentiation of these cells was accompanied by the loss of their proliferative capacity, as shown by G0/G1 cell cycle arrest. Taken together, these findings indicate that the anti-AML effects of obatoclax involve not only the induction of apoptosis but also differentiation of leukemic cells. Therefore, obatoclax represents a promising treatment for AML that warrants further exploration.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4135-4135
Author(s):  
Maria Paola Martelli ◽  
Lorenzo Brunetti ◽  
Luca De Carolis ◽  
Elisabetta Agliani ◽  
Laura Berchicci ◽  
...  

Abstract Abstract 4135 Acute myeloid leukemia (AML) expressing mutated NPM1 gene and cytoplasmic nucleophosmin (NPMc+ AML) [Falini B et al, NEJM 2005;352:254-266] is a new entity of WHO classification that shows distinctive biological and clinical features. AML with mutated NPM1 usually presents with a high white blood cell count; the bone marrow biopsy is usually markedly hypercellular and leukemic cells frequently show myelomonocytic or monocytic features, with dysplasia and involvement of two or more cell lineages in about 25% of cases. Lack, or low expression, of CD34 in over 90% of cases is the most distinctive immunophenotypic feature of NPM1-mutated AML and is independent of leukemic cell maturation. NPM1 gene mutation without concomitant FLT3-ITD identify a subgroup of AML patients with a favorable prognosis and has been associated with an approximately 50-60% probability of survival at 5 years in younger patients. Here we report 4 out of 41 (10%) patients, admitted at our Hospital in the last year, with new-diagnosed AML with mutated NPM1 presenting with life-threatening thromboembolic (either arterial or venous) events. The main characteristics of these patients are summarized in Table 1. The patients had neither personal nor family history concerning thromboembolism. Hyperleukocytosis was a common feature of the vast majority of NPM1-mutated AML patients at diagnosis. Immunophenotypic analysis did not show a peculiar phenotype in these patients. Table 1 Characteristics of patients with NPM1-mutated AML and thrombosis. Case report no Age Sex (M/F) FAB subtype WBC/mmc Type of thrombosis Site of thrombosis 1 41 F M1 14970 arterial Anterior interventricular branch of left coronary artery 2 56 M M4 93990 arterial external iliac and femoral (right limb) 3 63 M M2 113000 deep venous great saphenous veins (bilateral) 4 73 F M4 190000 deep venous iliac and femoral In two patients (cases 1 and 2), the arterial thromboembolic event (acute myocardial infarction and acute ischemia of right lower limb, respectively) presented about one month before diagnosis of leukemia. In the other 2 patients (cases 3 and 4), deep venous thromboembolism was concomitant with the diagnosis of leukemia. One patient (case 4), who could not initiate chemotherapy for severe concomitant renal failure, died few days after diagnosis. The other patients recovered from the acute event and upon diagnosis of leukemia were promptly treated with standard polychemotherapy which allowed to obtain complete hematological remission associated with complete resolution of the thromboembolic event. The clinical course after chemotherapeutic treatment of the patients outlines the importance and life saving role of early chemotherapy even under adverse circumstances. The pathogenesis of thromboembolic disease in hematological malignancies is complex and multifactorial: tumor cell-derived procoagulant, fibrinolytic or proteolytic factors and inflammatory cytokines affect clotting activation. Other important factors include infectious complications and hyperleukocytosis. However, large vessel thrombosis is a very rare clinical presentation. Our report of severe thromboembolic events at presentation in AML with mutated NPM1 suggests some still unidentified biological features of this leukemia which we are currently investigating. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4908-4908
Author(s):  
Pervin Topcuoglu ◽  
Klara Dalva ◽  
Sinem Civriz Bozdag ◽  
Onder Arslan ◽  
Muhit Ozcan ◽  
...  

Abstract Abstract 4908 Immunophenotyping Features in Acute Myeloid Leukemia (AML) with NPM1 and/or FLT-3 Positive Pervin Topçuoglu, Klara Dalva, Sinem Civriz Bozdag, Önder Arslan, Muhit Özcan, Osman Ýlhan, Hamdi Akan, Meral Beksaç, Günhan Gürman Aim: We aimed to evaluate immunophenotypical (IP) features in AML pts with NPM1+ and/or FLT3+ except on acute promyelocytic leukemia. Patients&Method: Between Nov 2009 and Feb 2011, we retrospectively analyzed IP features by flow cytometry (FCM) in 51 pts (46M;17F) with new diagnosed AML. Median age was 46 years (range: 14–71 ys). The mutations of NMP1 and FLT-3 TKD&ITD were determined by the methods of RQ-PCR or RFLP, respectively in the samples of bone marrow (n=31) or periheral blood (n=20) at the diagnosis. Antigenic expression of leukemic cells was analyzed by four-color FCM (FITC, PE, PerCP&APC) based by Nomdedeu et al researh (Leuk res 2011; 35:163) (Table-1). Results: We detected NMP1+ mutation in 16 patients. Of these, three were associated with mutations of FLT3-ITD (n=2) or -TKD (n=1). Twelve patients had FLT3+ (9 ITD or 3 TKD). More than half of the patients without any mutation were CD15+/CD34+/HLA-DR+ and 11.5% for CD34 negative. Similarly, the patients with FLT-3 positive were mostly CD34+ as the pts w/o any mutations. Contrary, most of the pts with NMP1+ were CD34 negative (56.3%) (Table 1). When evaluated the complete IP in leukemic cells, the expression of CD123 was significantly marked in the patients with NPM1+ and/or FLT3+ than those w/o mutations (p=0.008). While the co-expression of CD7 and CD117 was found in 67% of the pts w/o any mutations, 30% of the pts with NMP1 and/or FLT-3 ITD (p=0.01). CD56 expression was detected in more pts with NMP1+ than those with FLT-3+ (40% vs 8%, p=0.04). Besides, CD36 expression was positive in the all pts with FLT3-ITD than TKD+ (p=0.005). More intensive CD33 expression was seen in NMP1+ pts. The expression of CD64 was similar in all three mutations. Conclusion: Though NMP1 mutation was associated more CD34+ cells, more FLT3+ pts had CD34 positivity. The expression of CD123 was especially associated with the mutations. Aberrant expression of CD56 was in more pts with NPM1+, but CD36 for FLT3-ITD. These data might be a step for a study aiming to show a correlation between the type of mutations combined with IP features of leukemic cells and clinical characteristics or disease course of AML pts. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2626-2626 ◽  
Author(s):  
Line Nederby ◽  
Peter Hokland ◽  
Gordon Brown ◽  
Maria Hansen ◽  
Charlotte Guldborg Nyvold ◽  
...  

Abstract Flow cytometry constitutes a cornerstone in the diagnosis and follow up of acute myeloid leukemia (AML) and it is based on the identification of leukemia-associated immunophenotypes (LAIPs). We have recently demonstrated that the C-type lectin hMICL in combination with CD123 constitute a highly stable and reliable LAIP marker combination at diagnosis and relapse. In addition, we have shown that an hMICL/CD123-based assay is an effective tool for the monitoration of minimal residual disease (MRD) in AML. To what extent hMICL/CD123 marking identifies early leukemic cells is, however, not established. We hypothesized that this could be addressed by studying molecular aberrations in leukemic cell subsets according to their expression of hMICL and CD123. Employing cell sorting and mutational analyses, we here establish the leukemic origin of hMICL and CD123 expressing cell populations. Analyzing diagnostic AML samples with homozygous FLT3-ITD aberrations allowed for verification of pure malignant clones. Five patients with FLT3-ITD allelic burden of >50% (range 77-93%, median 85%) as measured by DNA fragment analysis by capillary electrophoresis on mononuclear cells (MNC) were identified in our local database of 600 cases. We found that 5/5 patients displayed a normal karyotype and carried NPM1 mutations (NPM1 allelic burden 42-48%, median 46%). In contrast, mutations in FLT3-D835, IDH1-R132, c-KIT-D816V or indel mutations in CEBPA and WT-1 exon 7 were absent. From samples of cryopreserved mononuclear cells (bone marrow (n=4) and peripheral blood (n=1)), CD45low/SSClow blast cell subsets with the following immunophenotypes were sorted by FACS: CD34+/hMICL+/CD123+, CD34+/hMICL+/CD123-, CD34+/hMICL-/CD123+, and CD34+/hMICL-/CD123-. In one case of CD34 negative AML the sorted subsets were CD34-/hMICL+/CD123+, CD34-/hMICL+/CD123-, CD34-/hMICL-/CD123+, and CD34-/hMICL-/CD123-. Sorted cell subsets were analyzed for FLT3-ITD and NPM1 mutations using fragment analysis by capillary electrophoresis. The results of the fragment analyses are tabulated in the table below. In all cases the hMICL and CD123 expressing subsets of interest closely approximated 100% FLT3-ITD allelic burden. In contrast, hMICL-/CD123- cells approximated only a 50% FLT3-ITD allelic burden. Of note, an extended search in our AML database, revealed only 9 of 600 patients to have an FLT3-ITD allelic burden >50% (range 52-94%, median 81%) hence indicating a state of either homo- or hemizygosity. Interestingly, with the exception of one case carrying a chromosome 13 duplication, each of these 9 patients also harbored a mutation in the NPM1 gene as the only other known aberration. In conclusion using AML patients with high FLT3-ITD allelic burdens we have been able to show that blasts expressing hMICL and/or CD123 at diagnosis are indeed malignant thus further substantiating the use of these antigens in AML MRD detection. Additionally, a direct relationship between NPM1 and FLT3-ITD homo-/hemizygosity may be suggested in the evolution of the malignant clone.Phenotype of sorted cell subsetNumber of patientsFLT3-ITD allelic burden (%) Min-max (median)NPM1 allelic burden (%) Min-max (median)MNC577-93 (85)42-48 (46)CD45low/SSClow/CD34+/hMICL+/CD123+495-100 (98)48-50 (49)CD45low/SSClow/CD34+/hMICL+/CD123-1*9248CD45low/SSClow/CD34+/hMICL-/CD123+497-100 (99)47-51 (48.5)CD45low/SSClow/CD34+/hMICL-/CD123-436-68 (47)16-38 (25)CD45low/SSClow/CD34-/hMICL+/CD123+110046CD45low/SSClow/CD34-/hMICL+/CD123-19448CD45low/SSClow/CD34-/hMICL-/CD123+110047CD45low/SSClow/CD34-/hMICL-/CD123-17735*Subset only present in one of four patients Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 572-572
Author(s):  
Cecile Thirant ◽  
Cecile K Lopez ◽  
Cathy Ignacimouttou ◽  
M'Boyba Diop ◽  
Lou Le Mouël ◽  
...  

Abstract Deregulated gene expression due to genetic alterations, such as gene fusions affecting transcription and/or epigenetic factors is the hallmark of acute myeloid leukemia and the basis for the differentiation block of hematopoietic progenitors. Acute megakaryoblastic leukemia (AMKL) is a subtype of poor prognosis acute myeloid leukemia (AML) affecting primarily young children. Recently, the ETO2-GLIS2 fusion has been identified in 20-30% of de novo AMKL and associated with the worst prognosis in this subtype of AML. To characterize the transformation induced by ETO2-GLIS2, we first defined the consequences of ETO2-GLIS2 expression on hematopoietic progenitors and the contribution of ETO2 and GLIS2 on differentiation and self-renewal. Using methylcellulose replating assays and phenotype characterization, we show that the GLIS2 moiety drives the megakaryocytic phenotype whereas both the ETO2 and GLIS2 moieties are required for maintaining self-renewal. Global expression profiling and comparison to patients' signature consistently identify ETO2-GLIS2-mediated deregulation of major transcriptional regulators of hematopoiesis and leukemogenesis, including overexpression of the ERG oncogene. ChIP-seq analysis reveals that ETO2-GLIS2 is recruited at normal ETO2 complexes sites and also at GLIS2-specific targets through binding via GLIS2 DNA-binding domain. We demonstrate that ETO2-GLIS2 fusion localize at half of H3K27Ac-dense enhancers, so called super-enhancers, to control transcription of associated genes. We show that interaction of ETO2-GLIS2 with ETO2 complexes is an essential node for the transcriptional control by the fusion at enhancer elements. Indeed, ETO2-GLIS2 dimerizes and interacts with endogenous ETO2 via its NHR2 domains. An NHR2 peptide-interference strategy inhibits oligomerization, reverses the transcriptional activation at enhancers, promotes megakaryocytic differentiation and abrogates human AMKL cells maintenance in vivo. Finally, upregulation of ERG by ETO2-GLIS2 further strengthen enhancers formation as ERG is co-recruited generating a feed forward loop at these elements and its knockdown or genetic inactivation downregulates expression of ETO2-GLIS2 targets required for leukemic cells survival. We propose that the megakaryocytic differentiation arrest and self-renewal controlled by ETO2-GLIS2 results from an imbalance in the expression of master transcription factors imposed by aberrant chromatin structures at enhancers that may be disrupted by targeting the NHR2 interface. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5168-5168
Author(s):  
Ching-Tien Peng

Yu-Nan Huang1, Kang-Hsi Wu4, Te-fu Weng4, Su-Ching Liu4, Hui-Chih Hung1*, Ching-Tien Peng4,5* FLT3 internal tandem duplication (FLT3-ITD) mutations in patients with acute myeloid leukemia (AML) are usually associated with other mutations resulting in unfavorable outcome. Tyrosine kinase inhibitors (TKI) have shown promising responses, however, these responses are almost transient in therapy-resistant AML. Here, we show that human mitochondrial NAD(P)+-dependent-malic enzyme 2 (ME2) have significantly increased in CD34+ cell of patients with AML. To determine how ME2 establish metabolic reprogramming of leukemogenesis, we performed a comprehensive analysis of metabolism in CRISPR-mediated ME2 knockout leukemic cells (THP-1 and MV4-11) and purified leukemic blast cells (CD34+) derived from patients with AML. We demonstrate that disrupting ME2 signaling exerts potent activities against proliferation, reduced oxidative metabolism and lactate metabolism. We also show that genetic inhibition of RUNX1/FLT3/ME2 markedly repressed AML cell leukemogenesis. In conclusion, our findings provide a rationale for clinical development of this strategy for treating RUNX1 and FLT3-mutated leukemic patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 114-114
Author(s):  
Jatinder K. Lamba ◽  
Kristine Crews ◽  
Stanley Pounds ◽  
Xueyuan Cao ◽  
Varsha Gandhi ◽  
...  

Abstract Abstract 114 To identify genes that influence responses to cytarabine (ara-C) treatment, we explored the association of gene expression in leukemic cells at diagnosis with multiple pharmacological and clinical end-points in children with acute myeloid leukemia (AML) treated with ara-C on the St. Jude AML97 clinical trial. We applied a novel statistical procedure, PRojection Onto the Most Interesting Statistical Evidence (PROMISE; PR), to identify genes with expression levels associated with clinical and pharmacological endpoints. To do this, we first defined the following values of the clinical and pharmacological variables as “therapeutically beneficial” :higher leukemic cell ara-C triphosphate levels, lower DNA synthesis values on days 1 and 2 of treatment relative to baseline, decreases in leukocyte counts on day 2 of treatment, improved response and decreased risk of relapse, death, or second malignancy. We considered a gene to show a therapeutically beneficial pattern of association if its expression was positively correlated with ara-CTP levels, negatively correlated with DNA synthesis levels, negatively correlated with decrease in leukocyte counts on day 2, positively correlated with better treatment response, and negativelycorrelated with the risk of relapse or death. A gene showed a therapeutically detrimental pattern of association if its expression had the opposite correlations with the clinical and pharmacological variables. We performed five variable (PR5 using early pharmacologically interesting phenotype measures) or seven variable (PR7 all the above indicated phenotypes) PROMISE analyses. PR5 identified 275 beneficial probe sets and 69 detrimental probe sets (p ≤ 0.005). PR7 analysis identified 112 beneficial probe sets and 115 detrimental probe sets (p ≤ 0.005). To confirm these results, we performed a PROMISE for a cohort of patients treated with ara-C and other agents on the AML02 protocol. Gene expression in leukemic cells at diagnosis was analyzed for a beneficial or detrimental pattern of association with three phenotypes (PR-3); diagnostic blast ara-C cytotoxicity, minimal residual disease (MRD) and event-free survival (EFS). Eighty-one probe sets identified by PR5 or PR7 analyses in the initial cohort were confirmed in the PR-3 analysis of AML02 data. Genes identified in the present study may serve as predictive markers of response and candidates for future drug development. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document