scholarly journals Inhibition of Splicing Factor SF3B1: Evaluating Effects on Iron Metabolism in K562 and CD34+ Cells

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1348-1348
Author(s):  
Simon Knight ◽  
Robert K. Bressin ◽  
Upamanyu Basu ◽  
Kazunori Koide ◽  
Andrew Dancis

Abstract Somatic mutations in the RNA splicing factor SF3B1 have been found in hematopoietic cells from patients with myelodysplastic syndrome. The association is particularly strong for patients with anemia with ringed sideroblasts, where 65 - 75 % show alterations in SF3B1. Ringed sideroblasts are erythroid precursors with insoluble iron aggregates in mitochondria and deficient hemoglobin synthesis. Thus these cells demonstrate a defect in iron metabolism. SF3B1 is a core component of the U2 snRNP spliceosome, responsible for the majority of mRNA maturation, raising the question of how alteration of SF3B1 might perturb cellular iron metabolism. Meayamycin B, a synthetic analog of the natural product FR901464, is an inhibitor of SF3B1, and here we describe the effects of this compound on cellular iron metabolism in the K562 leukemic cell line and in CD34+ cells isolated from cord blood. Inhibition of SF3B1 by meayamycin B was confirmed by analysis of spliced forms of Mcl-1 mRNA, a known target of SF3B1. In untreated cells, a long form (Mcl-lL) arises from inclusion of exon 2 in the final mRNA. In treated cells, inhibition of SF3B1 splicing generates a short form (Mcl-lS) that lacks exon 2. In the presence of 3 to 10 nM meayamycin B the short splice-form (Mcl-1S) became the dominant species. To examine the effect of inhibition of SF3B1 on iron metabolism, K562 cells were exposed to meayamycin B for 24 hours, with controls of 50 µM hemin and 50 µM deferoxamine (DFO). Steady state mRNA levels of transferrin receptor (TFR-1), ABCB7 (mutations in which are associated with inherited sideroblastic anemia and ataxia), and NDRG1 (n-myc downstream regulated gene, previously shown to be induced by DFO) were significantly down regulated by meayamycin B, as determined by qRT-PCR. NDUFS8 mRNA that encodes a subunit of mitochondrial complex 1 and has previously been shown to be iron-responsive, did not change in response to meayamycin B, hemin, or DFO. However, MRLP19 that encodes a mitochondrial ribosomal component, was strongly down-regulated by meayamycin B. In contrast, cytosolic ribosomal protein RPLP0 was not affected by meayamycin B, hemin or DFO and was used as the endogenous control. Analysis of protein levels by western blotting indicated that meayamycin B increased levels of ferritin (heavy chain) and decreased TFR-1. In concordance with the decreased TFR-1 protein levels, meayamycin B treated K562 cells exhibited significant downregulation of iron uptake from 55Fe-transferrin, similar to that observed for hemin treated cells. DFO treatment significantly increased transferrin iron uptake, compared to untreated controls. A similar set of experiments was performed with CD34+ cells, before or after differentiation with erythropoietin. Meayamycin was efficacious in these cells, as shown by disappearance of the long splice-form Mcl-lL and appearance of the short splice form Mcl-1S in cells exposed to the compound for 16 h. TFR-1 mRNA exhibited a dose dependent decrease in response to meayamycin (both pre and post epo treatment). Neither hemin nor DFO altered TFR-1 mRNA levels, or protein levels. In non-epo treated CD34+ cells, exposure to meayamycin caused a small decrease in ferritin protein levels, but ferritin protein increased in epo-treated cells exposed to meayamycin. Hemin increased ferritin protein in both non-epo and epo treated cells. Mitochondrial ribosomal protein MRPL19 RNA was significantly decreased by meayamycin in all cases, but cytoplasmic ribosomal protein RPLP0 was unaffected by meayamycin. Ribosomal protein levels were not responsive to iron manipulations with hemin or DFO. To summarize, treatment of cells with meayamycin B inhibits SF3B1 function in K562 cells or CD34+ cells. The effects are quicker and cleaner than siRNA, making possible closer functional correlations. Meayamycin treated K562 cells exhibited downregulation of TFR-1 and TFR-1 iron uptake, as if they were sensing high cellular iron levels. Note that this is the opposite of the expected result, because iron loading in the setting of sideroblastic anemia would be expected to be associated with increased cellular iron uptake. In CD34+ cells, a similar downregulation of TFR-1 levels was observed, although iron uptake has not yet been directly measured. The strong decrease in mitochondrial ribosomal protein expression indicates a specific mitochondrial effect of SF3B1 inhibition, which may be an important mediator of iron metabolism. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3432-3432
Author(s):  
Hong-Yan Du ◽  
M. Tarek Elghetany ◽  
Blanche P Alter ◽  
Akiko Shimamura

Abstract Abstract 3432 Diamond-Blackfan anemia (DBA) is an autosomal dominantly inherited bone marrow failure syndrome characterized by red cell aplasia, physical anomalies, and cancer predisposition. DBA is caused by mutations resulting in haploinsufficiency of genes encoding ribosomal proteins. p53 is activated in the erythroid lineage following reduction of ribosomal protein expression; however the mechanism whereby ribosomal stress results in p53 activation in DBA remains unclear. RPL11 has been proposed to play a central role in p53 activation following ribosomal stress. Reduced expression of individual small ribosomal subunit proteins in a tumor cell line resulted in increased translation of RPL11. Excess free RPL11 can bind and inactivate HDM2, an E3 ubiquitin ligase targeting p53 for degradation. The recent demonstration that cellular responses to ribosomal perturbations vary widely between different tissues raised the question of whether RPL11 upregulation contributes to p53 activation following ribosomal stress in hematopoietic progenitors. To address this question, we modeled DBA in human CD34+ cells. Since RPS19 is the most commonly mutated gene in DBA, we used lentiviral vectors expressing short hairpin RNAs to knock down RPS19 expression in primary human CD34+ cells. RPS19 protein levels were reduced to about 50% of control levels in a manner reflecting the haploinsufficient state in DBA. RPS19 depletion resulted in elevated p53 protein levels and increased mRNA levels of p21, a transcriptional target of p53. Total p53 mRNA levels and p53 mRNA translational activity remained unchanged consistent with a post-transcriptional mechanism for p53 activation. Although total RPL11 mRNA levels were not diminished following RPS19 depletion, RPL11 protein levels were significantly decreased consistent with post-transcriptional downregulation. Depletion of RPS19 in human CD34+ cells did not affect polysome loading of RPL11 mRNA. Reduction of additional ribosomal proteins also accompanied RPS19 knockdown consistent with coordinate regulation of multiple ribosomal protein levels. Corticosteroids, which improve anemia in the majority of DBA patients, did not prevent p53 activation, nor did this improve RPS19 or RPL11 protein levels. Expression of p53 was also assessed in bone marrow biopsy slides from 26 DBA patients with the following genotypes: RPS19 (18), RPS24 (2), RPS26 (2), RPS10 (1), RPS17 (1), RPS7 (1), and RPL11 (1). p53 was over-expressed in all but one patient (RPS26), and was clearly over-expressed in the DBA patient harboring the RPL11 mutation. In summary, we find that p53 activation in DBA does not require upregulation of RPL11 translation or elevated RPL11 protein levels. p53 activation persists in DBA caused by RPL11 deficiency. Corticosteroids do not improve ribosomal protein levels nor do they prevent p53 activation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1995 ◽  
Vol 85 (10) ◽  
pp. 2962-2966 ◽  
Author(s):  
R Oria ◽  
L Sanchez ◽  
T Houston ◽  
MW Hentze ◽  
FY Liew ◽  
...  

Nitric oxide (NO) is known to increase the affinity of the intracellular iron-regulatory protein (IRP) for iron-response elements (IREs) in transferrin receptor and ferritin mRNAs, suggesting that it may act as a regulator of cellular iron metabolism. In this study, exogenous NO produced by adding the NO-generator S-nitroso-N-acetyl penicillamine gave a dose-dependent upregulation of transferrin receptor expression by K562 erythroleukemia cells and increased levels of transferrin receptor mRNA. NO did not affect the affinity of transferrin binding by the transferrin receptor. NO alone did not alter intracellular ferritin levels, but it did abrogate the inhibitory effect of the iron chelator desferrioxamine and potentiated the stimulatory effect of additional iron. NO also caused some increase in ferritin mRNA levels, which might mask any IRP-/IRE-mediated inhibitory effect of NO on ferritin translation. Although NO did not affect net iron uptake, it increased release of iron from K562 cells pulsed previously with 59Fe, and subcellular fractionation showed that it also increased the proportion of intracellular iron bound to ferritin. These findings provide direct evidence that NO can affect cellular iron metabolism and suggest that NO produced in vivo by activated bone marrow macrophages might affect erythropoiesis.


1994 ◽  
Vol 127 (6) ◽  
pp. 1799-1813 ◽  
Author(s):  
E de Beus ◽  
J S Brockenbrough ◽  
B Hong ◽  
J P Aris

We have isolated a gene (NOP2) encoding a nucleolar protein during a search for previously unidentified nuclear proteins in the yeast Saccharomyces cerevisiae. The protein encoded by NOP2 (Nop2p) has a predicted molecular mass of 70 kD, migrates at 90 kD by SDS-PAGE, and is essential for cell viability. Nop2p shows significant amino acid sequence homology to a human proliferation-associated nucleolar protein, p120. Approximately half of Nop2p exhibits 67% amino acid sequence identity to p120. Analysis of subcellular fractions indicates that Nop2p is located primarily in the nucleus, and nuclear fractionation studies suggest that Nop2p is associated with the nucleolus. Indirect immunofluorescence localization of Nop2p shows a nucleolar-staining pattern, which is heterogeneous in appearance, and a faint staining of the cytoplasm. The expression of NOP2 during the transition from stationary phase growth arrest to rapid growth was measured, and compared to the expression of TCM1, which encodes the ribosomal protein L3. Nop2p protein levels are markedly upregulated during the onset of growth, compared to the levels of ribosomal protein L3, which remain relatively constant. NOP2 mRNA levels also increase during the onset of growth, accompanied by a similar increase in the levels of TCM1 mRNA. The consequences of overexpressing NOP2 from the GAL10 promoter on a multicopy plasmid were investigated. Although NOP2 overexpression produced no discernible growth phenotype and had no effect on ribosome subunit synthesis, overexpression was found to influence the morphology of the nucleolus, as judged by electron microscopy. Overexpression caused the nucleolus to become detached from the nuclear envelope and to become more rounded and/or fragmented in appearance. These findings suggest roles for NOP2 in nucleolar function during the onset of growth, and in the maintenance of nucleolar structure.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1548-1548
Author(s):  
Yasumasa Okazaki ◽  
Hong Yin ◽  
Yuxiang Ma ◽  
Mary Yeh ◽  
Kwo-yih Yeh ◽  
...  

Abstract The final steps of heme biosynthesis include the transport of coproporphyrin with the transport step probably mediated by the peripheral benzodiazepine receptor (PBR). Within the mitochondria copropoprhyrin is then converted to protoporphyrin IX (PPIX) which in turn is converted to hemin with insertion of iron by ferrochelatase. PBR is ubiquitously expressed and has been implicated in steriodogenesis, apoptosis, erythroid differentiation, and inflammation. Interestingly, PPIX is among several high affinity ligands for PBR. Various cytosolic proteins that interact with PBR have also been defined including PBR associated protein 7 (PAP7). The various PBR ligands including PPIX may affect the binding of these proteins to PBR. We have demonstrated (Blood, Nov 2004; 104: 53) that DAP, a protein highly homologous to PAP7, binds to the C-terminus of DMT1 and may have a role in regulation of intracellular iron transport. We, therefore, examined the effects of PPIX on the functions of DAP and other proteins that affect cellular iron metabolism. DAP is 526 amino acid protein with a nuclear localization signal domain (aa 212–229) and a Golgi localization domain (aa 380–524), and is distributed in the cytoplasm, Golgi apparatus, and nuclei of K562 cells. K562 cells were grown in the presence of 5 μM PPIX for 24 hours and then the expression of DAP, transferrin receptor 1 (TfR1), and ferritin examined by western blot analysis. In addition, cells were grown in medium of either normal iron content (3.5 μM from ferri-transferrin), high iron content (217 μM from the addition of ferric ammonium citrate), or low iron content (by the addition of 50 mM desferroxamine). Under all three iron conditions PPIX induced differentiation but down-regulated ferritin expression and up-regulated TfR1 expression. Additionally, PPIX had a striking effect on DAP expression markedly decreasing DAP levels but only in cells grown either in normal or low iron medium. In addition, PPIX affected the expression of the iron transporter DMT1in parallel with DAP. As PPIX induced erythroid differentiation of K562 cells we examined the effects of hemin which can also induce differentiation of K562 cells. In contrast to PPIX, hemin caused strong down-regulation of TfR and up-regulation of ferritin and DAP. The down-regulation of DAP induced by PPIX was restored by the addition of hemin. These results indicate that PPIX affects DAP expression and other important elements involved in cellular iron metabolism and that these effects are partially modified by the iron status of the cell.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 460 ◽  
Author(s):  
Agata Grzybkowska ◽  
Katarzyna Anczykowska ◽  
Wojciech Ratkowski ◽  
Piotr Aschenbrenner ◽  
Jędrzej Antosiewicz ◽  
...  

Iron is essential for physical activity due to its role in energy production pathways and oxygen transportation via hemoglobin and myoglobin. Changes in iron-related biochemical parameters after physical exercise in athletes are of substantial research interest, but molecular mechanisms such as gene expression are still rarely tested in sports. In this paper, we evaluated the mRNA levels of genes related to iron metabolism (PCBP1, PCBP2, FTL, FTH, and TFRC) in leukocytes of 24 amateur runners at four time points: before, immediately after, 3 h after, and 24 h after a marathon. We measured blood morphology as well as serum concentrations of iron, ferritin, and C-reactive protein (CRP). Our results showed significant changes in gene expression (except for TFRC), serum iron, CRP, and morphology after the marathon. However, the alterations in mRNA and protein levels occurred at different time points (immediately and 3 h post-run, respectively). The levels of circulating ferritin remained stable, whereas the number of transcripts in leukocytes differed significantly. We also showed that running pace might influence mRNA expression. Our results indicated that changes in the mRNA of genes involved in iron metabolism occurred independently of serum iron and ferritin concentrations.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4842-4842
Author(s):  
Q.F. Xiao ◽  
Zi X. Chen ◽  
Dan D. Liu ◽  
Jian N. Cen ◽  
Jun He ◽  
...  

Abstract The diagnosis of myelodysplastic syndrome (MDS) is made largely on the dysplastic morphology of BM cells from aspiration or biopsies. Prognosis scored by IPSS is depending on the percentage of marrow myeloblasts and the clonal cytogenetic abnormalities. To expand the understanding of genetic defects in hematopoietic cells of MDS in hope of finding novel genes correlated to pathogenesis and provide possible diagnostic marker for MDS, we have applied microarray to analyze the clinical samples from MDS patients. Total RNAs of CD34+ cells from 8 patients ( 2 RAEBt,2 RAEB,2 RA,1 RAS,1 CAA ) and one healthy people were extracted followed by a double in vitro transcription to circumvent the limited number of CD34+ cells. Following a modified Affymetrix target amplification protocol. Biotinylated cRNA was synthesized from 50 ng total RNA by double-round amplification and hybridized to an Human Genome U133 Plus 2.0 Array (Affymetrix). From the expression profile of 18404 different genes, we revealed that DNTT,MLL3,IL1R2,MAPK1,IGLL1 were down regulated while EGR-1, Rap1GAP or MAF were up regulated compared with normal controls. Most notably, Dlk1 was up regulated in MDS, while down regulated in AML and normal. By real-time RT-PCR we confirmed that in BMNCs the median levels of Dlk1 transcript in patients with RA and RAS were 2.55 (range, 0.00–23.7), RAEB and RAEBt were 8.24(range, 2.01–18.44), AML were 1.88 (range, 0.12–5.13), and other patients were 0.37(range, 0.00–1.79), respectively. The abundance of Dlk1 mRNA in MNCs from most MDS patients was markedly greater than that in the MNCs from others (P <0.05 ). Dlk1 expression in RAEB and RAEBt is markedly higher than AML (P <0.05 ) Forced expression of Dlk1 in transfected K562 cells resulted in faster growth than control cells, affected apoptosis induced by As2O3. and reduced the G2 arrested cells induced by TPA. By using the same experimental system we found that forced expression of Dlk1 can increase the mRNA levels of HES1 and p21WAF1 transcript variant 1. To elucidate the mechanisms we analyzed the levels of phosphorylated-p38 and p38 in Dlk1 transfected K562 cells treated with TPA. Dlk1 inhibited p38 phosphorylation while expression of p38 kept no change. These results support further investigation on the role of Dlk1 in abnormal hematopoiesis in MDSheterogeneous cell component. Diagnosis is currently depending on the dysplastic morphology of.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2642-2642
Author(s):  
Huiwu Zhao ◽  
Anna Kalota ◽  
Shenghao Jin ◽  
Alan Gewirtz

Abstract The c-myb proto-oncogene encodes an obligate hematopoietic cell transcription factor that contributes to lineage commitment, proliferation, and differentiation. Factors which regulate c-myb expression are of interest but remain incompletely defined. MicroRNAs (miRNAs) are being increasingly recognized as important regulators of cell development, and abnormalities in miRNA activity may also contribute to the pathogenesis of several hematologic malignancies. We speculated that miRNAs might also regulate c-Myb expression, a gene often aberrantly expressed in leukemia, lymphoma, and myeloma. Accordingly, we searched for potential miRNA binding sites in the 3′-UTR of the c-myb mRNA using the TargetScanS Target Database and identified 14 candidate miRNAs. Based on binding probability, three miRNAs (miR-15a, −107 and −150) were selected for further analysis using a luciferase reporter assay. 1191 bp of the human c-Myb 3′-UTR was subcloned downstream of the f-luc open reading frame to create the reporter construct (pBub1/Myb3U). This was co-transfected into HEK293T cell line with pRL-CMV (to normalize for transfection differences) and then either a control RNA oligonucleotide (ON) (miR-Control), miR-15a, miR-107, or miR-150 ONs. Relative luciferase activity of the pBub1/Myb3U construct was markedly diminished in cells co-transfected with miR-15a (74.1 ± 1.5%) or miR-107 (68.2 ± 5.3%) ONs, but only modestly with miR-150 ON (22.1 ± 4.2%). Functionality of miR-15a site was further tested by mutating the predicted miR-15a binding sites. This resulted in a 2 to 3 fold increase in luciferase activity, suggesting that miR-15a bound the predicated sites, and that they might be physiologically relevant. To test this possibility, miR-15a ONs were transfected into K562 human myeloid leukemia cells and the effects on c-Myb mRNA and MYB protein levels were determined. As expected with functional miRNA, c-myb mRNA levels did not change when compared to control treated cells, as measured by quantitative real-time PCR, but Myb protein levels were significantly decreased. Additionally, when analyzed by flow cytometry, miR-15a transfected cells were found to be arrested in G1 as might be expected in a Myb knockdown experiment. Conversely, when K562 cells were transfected with a methylphosphonate inhibitor (antisense) of miR-15a, endogenous c-myb expression increased. Moreover, exogenous expression in K562 cells of a c-Myb mRNA construct devoid of its 3′-UTR partially rescued the miR-15a induced cell cycle arrest. Interestingly, miR-15a levels were found to vary inversely with c-Myb mRNA expression levels in normal human CD34+ cells stimulated to develop along the erythroid, but not the myeloid lineage. These results suggested that miR-15a might play a specific, and potentially important role in regulating normal human erythropoiesis by modulating the expression of c-Myb, though we cannot exclude the possibility that additional miR-15a targets are also important. Finally, a siRNA mediated knockdown of c-Myb expression in K562 cells resulted in reduction of miR-15a expression, suggesting the possibility that Myb and miR-15a autoregulate their expression through a negative feed-back loop. We conclude that miR-15a regulates c-Myb expression in a physiologically significant, lineage specific manner in normal human hematopoietic cells. Since miR-15a localizes to ch13q14, a region often deleted in hematologic malignancies, we postulate that it might also play a role in leukemogenesis. This possibility is under active investigation in our laboratory.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3907-3907
Author(s):  
Costanza Bogani ◽  
Paola Guglielmelli ◽  
Niccolò Bartalucci ◽  
Miguel Aracil ◽  
Maria Fe Paz ◽  
...  

Abstract Abstract 3907 Poster Board III-843 Plitidepsin (Aplidin®) is a novel cyclic depsipeptide derived from the marine tunicate Aplidium albicans, currently obtained by chemical synthesis, that is under Phase II clinical development. Plitidepsin is effective against a large panel of tumor cells, and although precise action mechanisms have still to be ascertained the drug induces an oxidative stress, activation of Rac1 GTPase and inhibition of protein phosphatases, overall leading to sustained activation of JNK and p38MAPK. In a previous report (Verrucci M et al, ASH 2008, 2787A) we evaluated Plitidepsin activity in the GATA-1low murine model of myelofibrosis. Plitidepsin corrected thrombocytopenia of myelofibrotic mice, reduced the frequency of megakaryocytes (Mk) and normalized angiogenesis in the bone marrow, and prevented extramedullary hematopoiesis. In the present study, we assessed the effects of Plitidepsin on cell lines harboring homozygous (HEL and UKE-1, a gift of W. Fiedler) or heterozygous (SET2) JAK2V617F mutation and on cells from patients (pts) with myeloproliferative neoplasms (MPN). In a short-term (3 days) proliferation assay we found that Plitidepsin prevented cell growth with IC50 values of 1.0±0.3 nM for HEL, 0.5±0.03 nM for UKE-1, and 0.8±0.02 nM for SET2, that were all lower than 1.5±0.1 nM for the BCR/ABL mutated K562 cell line (P<.001 in case of UKE-1 cells). Also Ba/F3 cells transduced with the V617F allele (a gift of R. Skoda) were found more sensitive to Plitidepsin (IC50= 0.03±0.01 nM) than the wild-type counterpart (IC50= 0.4±0.03 nM; P<0.02). Similar results were obtained using a 14-day clonogenic assay in agar cultures. These data indicated that Plitidepsin was active at very low nanomolar concentrations against cell lines harboring JAK2V617F mutation. We then evaluated the effects of Plitidepsin on the growth of BFU-E, CFU-GM and CFU-Mk from MPN pts; all five Polycythemia Vera (PV) and 4/5 Primary Myelofibrosis (PMF) pts analyzed were JAK2V617F mutated. As shown in the Table, PMF pts presented significantly lower IC50 value than controls (Ctrl; P<.002) for all type of clonogenic progenitors; cells from PMF pts resulted also significantly more sensitive to Plitidepsin than those from PV patients (P<.02), while the difference between PV and Ctrl did not reach the significance level. To evaluate whether Plitidepsin also affected the latest stages of differentiation and maturation of MKs, that is the most overtly affected cell lineage in PMF, we added Plitidepsin on day +7 of a two-stage liquid culture system initiated with CD34+ cells purified from the PB of PMF patients; the generation of CD61+ Mks was measured 5 days later by FACS analysis. However, we found that the number of CD61+ cells was no different between cultures containing or not Plitidepsin, overall suggesting that the drug mainly affected early proliferation of Mk progenitors rather than influencing their differentiation. We then performed single colony genotyping to quantify the proportion of hematopoietic colonies harboring the JAK2V617F mutation which grew in growth factor-supplemented methylcellulose cultures initiated with purified CD34+ cells from PMF patients in the presence of 1 nM Plitidepsin. Initial data in 3 pts were available; in one, the proportion of JAK2-mutated BFU-E colonies decreased from 51% to 27% while no changes were observed in the other two pts. Finally, since a correlation between levels of p27(Kip1) and the response of tumor cells to Plitidepsin has been described, we measured p27 levels in different cell lines after exposure to Plitidepsin. We observed that p27 mRNA levels increased 15-fold and 30-fold in UKE1 and HEL cells, respectively, compared to K562 cells after 24 hr with 1nM Plitidepsin; such an increase was mirrored by a protein content 1.9- to 3.5-fold greater than baseline in UKE-1 cells at 1 and 10 nM Plitidepsin, suggesting that JAK2V617F mutated cells responded to the drug by modulating their p27 levels. Collectively, we provided evidence that Plitidepsin has in-vitro activity against MPN cells, particularly from PMF pts. These results, as well as those which were previously described in the GATA1low murine model, provided the rationale for a clinical trial in patients with myelofibrosis that is being developed within the Myeloproliferative Disorders Research Consortium (MPD-MRC). Plitidepsin IC50 (nM) BFU-E CFU-GM CFU-Mk Ctrl (n=5) 8.7 ± 2.3 8.2 ± 3.5 1.7 ± 0.9 PV (n=5) 5.2 ± 2.0 7.4 ± 4.0 not done PMF (n=5) 1.1 ± 0.6 1.6 ± 0.4 0.4 ± 0.06 Disclosures: Aracil: PharmaMar: Employment. Fe Paz:PharmaMar: Employment. Vannucchi:PharmaMar: Research Funding.


1986 ◽  
Vol 102 (3) ◽  
pp. 951-958 ◽  
Author(s):  
A M Weissman ◽  
R D Klausner ◽  
K Rao ◽  
J B Harford

When the human erythroleukemia cell line K562 is treated with OKT9, a monoclonal antibody against the transferrin receptor, effects on receptor dynamics and degradation ensue. The apparent half-life of the receptor is decreased by greater than 50% as a result of OKT9 treatment. The transferrin receptor is also rapidly redistributed in response to OKT9 such that a lower percentage of the cellular receptors are displayed on the cell surface. OKT9 treatment also leads to a decrease in the total number of receptors participating in the transferrin cycle for cellular iron uptake. The reduction in iron uptake that results from the loss of receptors from the cycle leads to enhanced biosynthesis of the receptor. Receptors with bound OKT9 continue to participate in multiple cycles of iron uptake. However, OKT9 treatment appears to result in a relatively small increase per cycle in the departure of receptors from participation in iron uptake to a pathway leading to receptor degradation. Radiolabeled OKT9 is itself degraded by K562 cells and this degradation is inhibitable by leupeptin or chloroquine. In the presence of leupeptin, OKT9 treatment results in the enhanced intracellular accumulation of transferrin. Because the time involved in the transferrin cycle is shorter (12.5 min) than the normal half-life of the receptor (8 h), a small change in recycling efficiency caused by OKT9 treatment could account for the marked decrease in receptor half-life. In this paper the implications of these findings are discussed as they relate to systems in which receptor number is regulated by ligand.


2020 ◽  
Vol 202 (10) ◽  
Author(s):  
Dharam Singh ◽  
Oleg N. Murashko ◽  
Sue Lin-Chao

ABSTRACT Escherichia coli ribosomal protein (r-protein) L4 has extraribosomal biological functions. Previously, we described L4 as inhibiting RNase E activity through protein-protein interactions. Here, we report that from stabilized transcripts regulated by L4-RNase E, mRNA levels of tnaA (encoding tryptophanase from the tnaCAB operon) increased upon ectopic L4 expression, whereas TnaA protein levels decreased. However, at nonpermissive temperatures (to inactivate RNase E), tnaA mRNA and protein levels both increased in an rne temperature-sensitive [rne(Ts)] mutant strain. Thus, L4 protein fine-tunes TnaA protein levels independently of its inhibition of RNase E. We demonstrate that ectopically expressed L4 binds with transcribed spacer RNA between tnaC and tnaA and downregulates TnaA translation. We found that deletion of the 5′ or 3′ half of the spacer compared to the wild type resulted in a similar reduction in TnaA translation in the presence of L4. In vitro binding of L4 to the tnaC-tnaA transcribed spacer RNA results in changes to its secondary structure. We reveal that during early stationary-phase bacterial growth, steady-state levels of tnaA mRNA increased but TnaA protein levels decreased. We further confirm that endogenous L4 binds to tnaC-tnaA transcribed spacer RNA in cells at early stationary phase. Our results reveal the novel function of L4 in fine-tuning TnaA protein levels during cell growth and demonstrate that r-protein L4 acts as a translation regulator outside the ribosome and its own operon. IMPORTANCE Some ribosomal proteins have extraribosomal functions in addition to ribosome translation function. The extraribosomal functions of several r-proteins control operon expression by binding to own-operon transcripts. Previously, we discovered a posttranscriptional, RNase E-dependent regulatory role for r-protein L4 in the stabilization of stress-responsive transcripts. Here, we found an additional extraribosomal function for L4 in regulating the tna operon by L4-intergenic spacer mRNA interactions. L4 binds to the transcribed spacer RNA between tnaC and tnaA and alters the structural conformation of the spacer RNA, thereby reducing the translation of TnaA. Our study establishes a previously unknown L4-mediated mechanism for regulating gene expression, suggesting that bacterial cells have multiple strategies for controlling levels of tryptophanase in response to varied cell growth conditions.


Sign in / Sign up

Export Citation Format

Share Document