A Genome-Wide RNAi Screen to Identify Novel Genes Involved in Clonal Maintenance of ALL

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2390-2390
Author(s):  
Frida Ponthan ◽  
Simon Bomken ◽  
Deepali Pal ◽  
Alex Elder ◽  
Hesta McNeill ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents where treatment is associated with significant morbidity. Novel therapeutic approaches to improve treatment outcome and minimize side-effects are therefore required. We have previously shown a lack of stem cell hierarchy and a high frequency of leukemic stem cells in ALL. Based on these findings, we have postulated that malignant self-renewal in ALL may be similar to lymphoid, but distinct from hematopoietic stem cell (HSC) self-renewal thereby providing new therapeutic targets for diseases affecting the lymphoid system. To identify targets and pathways involved in ALL self-renewal, we have performed a genome-wide RNAi screen in the ALL cell line SEM, which carries the translocation t(4;11) and expresses the MLL/AF4 fusion gene. SEM cells were lentivirally transduced using the Decode™ pGIPZ negative selection library consisting of 7 pools of 10,000 shRNA constructs each. The pGIPZ vector allows for Pol II-dependent shRNA expression, GFP-based cell sorting and selection for puromycin resistance. Self-renewal was addressed by replating of transduced cells on puromycin-resistant murine stromal bone marrow feeder cells (M2-10B4), which mimics a niche environment in vitro. SEM cells were selected with puromycin and seeded at low cellular-density under serum-starved conditions to ensure adherence-dependent growth. SEM cells were replated onto new feeders and the puromycin selective pressure was kept throughout the experiments to minimize silencing of shRNA expression. Cells were harvested after the second plating (F2, ~30 days after transduction) and the prevalence of shRNA constructs in F2 was compared to samples harvested 6 days after transduction (baseline, BL) using next generation sequencing of genomic DNA. Initial sequencing results obtained from one out of seven pools show that constructs targeting 637 different genes were differentially expressed (2 –fold change, padj <0.05). For instance, shRNAs targeting genes associated with lymphoid differentiation such as IKZF3 (B-cell progenitor differentiation) and CD20 (marker of B-cell differentiation) were enriched, whereas constructs targeting genes important for proliferation and survival such as BCL2 (survival), BRD4 (epigenetic reader, therapeutic target in leukemia), MAX (partner of MYC), BMI1 (polycomb complex 1 member, required for self-renewal) or POT1 (telomere integrity) were depleted. Furthermore, constructs targeting MAPK9/JNK2 and JUN in the mitogen-activated protein kinase pathway were depleted whilst the construct targeting DUSP10 (inhibitor of MAPK9/JNK2) was enriched, further proving that our screen has functional relevance within a biological context. Interestingly, the construct targeting the aryl hydrocarbon receptor (AHR) involved in B-cell maturation was also increased, which is in line with published data showing that inhibition of AHR drives stem cell maintenance. These results demonstrate the feasibility of our approach where we have established a robust screening protocol that can identify genes involved in survival and self-renewal. Sequencing data from the additional six pools are currently being analyzed. These analyses are expected to provide important information about the key mechanisms by which leukemic blasts maintain their “stemness” in ALL. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 94-94 ◽  
Author(s):  
Francesca Ficara ◽  
Mark J. Murphy ◽  
Min Lin ◽  
Michael L. Cleary

Abstract Pbx1 is a proto-oncogene that was originally discovered at the site of chromosomal translocations in pediatric acute leukemia. It codes for a homeodomain transcription factor, which is a component of hetero-oligomeric protein complexes that regulate developmental gene expression. Lack of Pbx1 is associated with multiple patterning malformations, defects in organogenesis, and severe fetal anemia, however embryonic lethality has prevented an assessment of its roles in the adult hematopoietic stem cell (HSC) compartment and in lymphoid differentiation. The objective of this study was to characterize the physiological roles for Pbx1 in the hematopoietic system, specifically in the regulation of cell fate decisions involved in the timing and/or extent of postnatal HSC and progenitor proliferation, self-renewal or differentiation capacity. A genetic approach was employed to conditionally inactivate Pbx1 in the hematopoietic compartment in vivo using Cre recombinase expressed under the control of the Tie2 or Mx1 promoters. A crucial role for Pbx1 in the development of the lympho-hematopoietic system was evidenced by reduced size, cell number, and altered architectures of the thymus and spleen in mutant mice. A marked reduction was observed in the bone marrow (BM) pro- and pre-B cell compartment, as well as a striking reduction (up to 10-fold) in common lymphoid progenitors (CLP), suggesting a role for Pbx1 at a critical stage of lymphoid development where acute leukemia likely originates. Accordingly, abnormal T cell development was observed in the thymus. Common myeloid progenitors (CMP) and Lin-cKit+Sca1+ (LKS, enriched in HSCs) cells were also reduced, as well as long-term stem cells (LT-HSCs, reduced 7-fold on average). Assessment of the proliferation status of LT- and ST (short-term)-HSCs, as well as multi-potent progenitors (MPP), revealed that the reduction of the HSC compartment was associated with a higher number of stem cells exiting the G0 phase, thus losing their quiescent state. Strikingly, Pbx1-deficient BM cells failed to engraft in competitive transplants, but were able to reconstitute congenic recipients in the absence of competition, indicating a profound defect of functional HSCs, which nevertheless retained reconstitution potential. Importantly, Pbx1 deficient HSCs progressively disappeared from primary transplant recipients, and were unable to engraft secondary recipients, demonstrating that Pbx1 is crucial for the maintenance of LT-HSC self-renewal. Microarray studies performed on mutant and wt LT- and ST-HSCs, followed by bioinformatics analysis, showed that in the absence of Pbx1 LT-HSCs are characterized by premature expression of a large subset of ST-HSC genes. The up-regulated differentially expressed transcripts are enriched for cell cycle regulatory genes, consistent with the observed increased cycling activity. Notably, more than 8% of the down-regulated genes are related to the Tgf-beta pathway, which serves a major role in maintaining HSC quiescence. Moreover, B-cell specific genes, which are expressed in the wt LT-HSC compartment, are down-regulated in the absence of Pbx1, suggesting that the observed reduction in CLP and B-cell numbers ultimately arose from a stem cell defect in lymphoid priming. We conclude that Pbx1 is at the apex of a transcriptional cascade that controls LT-HSC quiescence and differentiation, thus allowing the maintenance of their self-renewal potential, crucial for the homeostasis of the lympho-hematopoietic system.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1331-1331
Author(s):  
Mianmian Yin ◽  
Yang Jo Chung ◽  
R. Coleman Lindsley ◽  
Yeulin Zhu ◽  
Robert L. Walker ◽  
...  

Abstract Chromosomal translocations resulting in NUP98 fusion genes have been associated with a wide spectrum of hematologic malignancies, including MDS, AML, T-ALL, and B cell precursor (BCP) ALL. Based on gene expression profiles and murine transplantation experiments, it is thought that NUP98 fusions can confer aberrant self-renewal potential to hematopoietic cells. Approximately 90% of mice that express a NUP98-PHF23 (NP23) fusion in the hematopoietic compartment, under the control of Vav1 regulatory elements develop AML and/or T-ALL. However, approximately 10% of NP23 mice develop an aggressive acute lymphoblastic leukemia of B1-lymphocyte progenitor origin (pro B-1 ALL). Whole exome sequencing demonstrated that all NP23 pro-B1-ALL had acquired somatic frameshift mutations of the BCL6 co-repressor (Bcor) gene, and most had acquired mutations in the Jak/Stat pathway. To determine whether experimentally engineered Bcor mutations would lead to pro B-1 ALL, we used CRISPR-Cas9 to introduce Bcor indel mutations into NP23 hematopoietic stem and progenitor cells through the use of Bcor single guide RNAs (Bcor sgRNA). Recipient mice transplanted with NP23 bone marrow (BM) or fetal liver (FL) cells that had been transduced with a Bcor sgRNA developed pro B-1 ALL, characterized by a B-1 progenitor immunophenotype, clonal Igh gene rearrangement, and Bcor indel mutation, whereas control recipients did not. In addition, similar to some human BCP ALL, the Bcor sgRNA/NP23 murine pro B-1 ALL had acquired somatic mutations in Jak kinase genes. A distinct subset of pediatric BCP ALL are characterized by rearrangement and overexpression of the CRLF2 gene (designated CRLF2r); the CRLF2 gene is the receptor for thymic stromal lymphopoietin (TSLP), a cytokine that plays a role in normal progenitor B1 cell development. The NP23 pro-B1 ALL are similar to CRLF2r BCP ALL in terms of a preferential V heavy chain (VH) usage, gene expression profile, and propensity for acquired JAK/STAT pathways mutations. JAK inhibitors (ruxolitinib and tofacitinib) induced apoptosis and inhibited the growth of pro B-1 ALL cell lines established from Bcor sgRNA/NP23 recipients, at clinically achievable concentrations (10-100 nM). Taken together, these findings demonstrate that a CRISPR-induced Bcor frameshift collaborates with an NP23 transgene to predispose B-1 progenitors to leukemic transformation. These two events are unlikely to be sufficient for leukemic transformation, as we detected spontaneous Jak pathway mutations that were required for continued growth of the leukemic cells. This constellation of mutations (NP23 expression leading to increased stem cell self-renewal, Bcor frameshift leading to impaired B cell differentiation, and Jak pathway mutations leading to dysregulated proliferation) is similar to that seen in human BCP ALL patients, and suggests that the NP23/Bcor mutant mice and cell lines will be a useful model for human pro-B1 ALL. Disclosures Aplan: NIH Office of Technolgy Transfer: Employment, Patents & Royalties: NUP98-HOXD13 mice.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 863-863
Author(s):  
Jason Ackerman ◽  
Douglas Hawkins ◽  
Karyn Brundige ◽  
Laura Eisenberg ◽  
Blythe Thomson

Abstract Background: Acute Lymphoblastic Leukemia (ALL) is the most common form of malignancy in children. Advances in treatments have made ALL the disease highly curable; however relapse is the most common form of treatment failure. The prognosis for relapsed ALL is poor, and the ability to achieve a durable second remission is influenced by the length of the initial remission and, potentially, the re-induction therapy chosen. We present a series of 60 pediatric ALL patients with first relapse (54 pre B-cell and 6 T-cell) treated with a standardized four-drug induction therapy followed by either intensification therapy or hematopoietic stem cell transplant (HSCT). Methods: Patients treated at Children’s Hospital and Regional Medical Center, Seattle, WA with a common re-induction regimen for first relapse ALL were reviewed in this IRB-approved retrospective study. Patients included isolated or combined bone marrow (BM) relapse, isolated central nervous system (CNS) relapse alone, or isolated testicular relapse. Re-induction consisted of a four-drug combination of dexamethasone (dex) (day 0-6, 14-20), vincristine (VCR) (weekly for 4 weeks), peg-aspargase (weekly for 4 weeks), and idarubicin (10 mg/m2/day × 2-3 doses) and intrathecal triple (ITT) drug therapy. After achieving second complete remission (CR2), patients proceeded to HSCT or continued chemotherapy at the discretion of the physician. Allogeneic HSCT was total body irradiation based and a variety of stem cell sources. Continuation chemotherapy was alternating blocks every 3 weeks for up to 8 courses: Block A, consisting of dex, VCR, 6-thioguanine (TG), peg-asparagase and methotrexate (MTX) and ITT, and Block B, consisting of etoposide and ifosfamide and ITT. Maintenance chemotherapy with MTX, VCR and TG with cranial, craniospinal or testicular radiation completed the two year regimen. Results: Among the 54 pre-B-cell patients, there were 32 with BM relapse (either isolated or with CNS), 16 CNS relapses, and 6 testicular relapses. CR2 was achieved in 96% of the patients. Two did not achieve remission, dying of toxicity during re-induction. BM (± CNS) Isolated CNS Testicular Duration of CR1 n 3 yr. EFS (95% CI) n 3 yr. EFS (95% CI) n 3 yr. EFS (95% CI) <18 months 5 0% (± 52%) 3 67% (± 54%) - - >18 months 27 39% (± 24%) 13 75% (± 26%) 6 67% (± 38%) Among the patients with BM relapse, the 3 year Event Free Survival (EFS) was 33.2% (95% CI: ± 20.8%). The 3 year EFS for the 18 who proceeded to HSCT was 35.0% (95% CI: ± 27.4%), while 3-year EFS for chemotherapy only patients was 31.7% (95% CI: ± 31.8%). There were 6 patients with T-cell relapsed disease, which were evaluated separately. Their EFS was 0% (95% CI: ±46%) at three years, and 2 failed to achieve CR2. Discussion: We present a large single institution series of patients treated with a common reinduction regimen followed by chemotherapy or HSCT. Although intensive, the regimen was tolerable (less than 4% toxic death rate) and highly successful in achieving CR2. Among the patients with later BM relapse, there was minimal difference in 3-year EFS between chemotherapy and HSCT, offering a reasonable continuation chemotherapy regimen to these patients. Our data confirmed the excellent outcome of isolated CNS and testicular relapse and the poor outcome of very early relapse and T cell disease.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 900-900 ◽  
Author(s):  
Eric R. Lechman ◽  
Karin G. Hermans ◽  
Erwin M. Schoof ◽  
Aaron Trotman-Grant ◽  
Stephanie M Dobson ◽  
...  

Abstract Recent studies have shown that several miRNA are differentially expressed in hematopoietic stem cells (HSC) and involved in regulating self-renewal, pointing to a new axis of epigenetic control of HSC function. Murine studies have documented a role for miR-125a in regulating HSC as miR-125a enforced expression augments self-renewal. We examined whether these attributes are evolutionarily conserved within human hematopoiesis. Lentiviral vectors over-expressing miR-125a (miR-125OE) were developed and HSC function was investigated using xenotransplantation of CD34+ CD38- human umbilical cord blood (CB) hematopoietic stem and progenitor cells (HSPCs). miR-125OE resulted in significantly increased human bone marrow (BM) chimerism at 12 and 24 weeks post-transplantation and splenomegaly. Within enlarged spleens, there were significantly increased proportions of CD34+CD19+CD10+CD20-B lymphoid cells suggesting a partial B cell differentiation block at the pro-B cell stage. In the BM, CD41+ megakaryocytes, GlyA+ erythroid and CD3+ T cell populations were significantly expanded. Within the primitive compartment, multi-lymphoid progenitors (MLP) were massively expanded by 12 weeks, followed by a combined reduction of immuno-phenotypic HSC and multi-potent progenitors (MPP) by 24 weeks. Given this loss of immuno-phenotypic HSC, we wondered whether stem cell function was compromised in vivo. Secondary transplantation with limiting dilution (LDA) revealed that stem cell frequencies were increased by 4.5 fold in miR-125OE recipients. Using lentivirus sponge-mediated inhibition of miR-125 (miR-125KD) in CD34+CD38-human CB, we were able to directly link these effects to miR-125: B cells increased at the expense of T cells; immuno-phenotypic HSC increased with a concomitant loss of MLP; and functional HSC were decreased by 2.5 fold using secondary LDA assays. Together, these data strongly suggest that miR-125a expression levels regulate human HSC self-renewal and lineage commitment. Since HSC frequency increased so substantially upon miR-125OE, we asked whether more committed cell populations might also be endowed with enhanced self-renewal. Highly purified populations of HSC, MPP and MLP and CD34+CD38+ committed progenitors were transduced and transplanted cells into xenografts. Unexpectedly, miR-125OE transduced CD34+CD38+ progenitors produced a substantial graft after 12 weeks. Control transduced CD34+CD38+ cells did not engraft and only control transduced HSC generated a disseminating graft in recipient mice. miR-125OE transduced HSC and MPP generated robust engraftment, while MLP did not. In all cases, xenografts generated by CD34+CD38+ and MPP transduced with miR-125OE showed multi-lineage repopulation. Moreover, the miR-125OE grafts from CD34+CD38+ and MPP recipients were durable as secondary transplantation generated multi-lineage grafts for at least 20 weeks in 5/7 and 6/10 recipients, respectively; no control transduced groups generated secondary grafts. Thus, the enhancement of self-renewal by enforced expression of miR-125a occurs not only in HSC, but also in MPP and to an as yet unidentified subpopulation within the CD34+38+ committed progenitor compartment. Using protein mass spectrometry, we identified and validated a miR-125a target network in CD34+ CB that normally functions to restrain self-renewal in more committed progenitors. Together, our data suggest that increased miR-125a expression can endow an HSC-like program upon a selected set of non-self-renewing hematopoietic progenitors. Our findings offer the innovative potential to use MPP with enhanced self-renewal to augment limited sources of HSC to improve clinical outcomes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2318-2328 ◽  
Author(s):  
Damien Reynaud ◽  
Emmanuel Ravet ◽  
Monique Titeux ◽  
Frédéric Mazurier ◽  
Laurent Rénia ◽  
...  

AbstractThe fate of hematopoietic stem cells (HSCs) is regulated through a combinatorial action of proteins that determine their self-renewal and/or their commitment to differentiation. Stem cell leukemia/T-cell acute lymphoblastic leukemia 1 (SCL/TAL1), a basic helix-loop-helix (bHLH) transcription factor, plays key roles in controlling the development of primitive and definitive hematopoiesis during mouse development but its function in adult HSCs is still a matter of debate. We report here that the lentiviral-mediated enforced expression of TAL1 in human CD34+ cells marginally affects in vitro the differentiation of committed progenitors, whereas in vivo the repopulation capacity of the long-term SCID (severe combined immunodeficient) mouse–repopulating cells (LT-SRCs) is enhanced. As a consequence, the production of SRC-derived multipotent progenitors as well as erythroid- and myeloid-differentiated cells is increased. Looking at the lymphoid compartment, constitutive TAL1-enforced expression impairs B- but not T-cell differentiation. Expression of a mutant TAL1 protein that cannot bind DNA specifically impairs human LT-SRC amplification, indicating a DNA-binding dependent effect of TAL1 on primitive cell populations. These results indicate that TAL1 expression level regulates immature human hematopoietic cell self-renewal and that this regulation requires TAL1 DNA-binding activity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hideki Sano ◽  
Kazuhiro Mochizuki ◽  
Shogo Kobayashi ◽  
Yoshihiro Ohara ◽  
Nobuhisa Takahashi ◽  
...  

Background: The prognosis of refractory/relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) remains dismal owing to acquired resistance to chemotherapeutic agents. This study aimed to evaluate the efficacy of T-cell replete HLA haploidentical hematopoietic stem cell transplantation (TCR-haplo-HSCT) for pediatric refractory/relapsed BCP-ALL (RR-BCP-ALL).Methods: Nineteen pediatric patients with RR-BCP-ALL underwent TCR-haplo-HSCT between 2010 and 2019 at the Fukushima Medical University Hospital. The disease status at TCR-haplo-HSCT included complete remission (CR) in eight patients and non-CR with active disease in 11 patients. Total body irradiation-based, busulfan-based, and reduced-intensity conditioning regimens were employed in 11, 6, and 2 patients, respectively. Low-dose anti-thymocyte globulin (thymoglobulin, 2.5 mg/kg) was used in all patients. Graft-vs.-host disease (GVHD) prophylaxis was administered with tacrolimus, methotrexate, and prednisolone.Results: All patients received peripheral blood stem cells as the stem cell source. The HLA disparities in graft vs. host directions were 2/8 in one, 3/8 in five, and 4/8 in 13 patients. Among 18 patients who achieved primary engraftment, acute GVHD occurred in all 18 evaluable patients (grade II, 9; grade III, 8; grade IV, 1), and chronic GVHD was observed in 10 out of 15 evaluable patients. Three patients died because of transplant-related mortality. The 3-year overall survival (OS) and leukemia-free survival rates were 57.4 and 42.1%, respectively. Compared to patients older than 10 years in age (N = 10), those younger than 10 years in age (N = 9) showed an excellent OS rate (3-year OS rate: patients &lt; 10 years old, 100%; patients &gt; 10 years old, 20% [95% confidence interval, 3.1–47.5]; p = 0.002).Conclusions: We suggest that TCR haplo-HSCT with low-dose ATG conditioning has the potential to improve the transplantation outcomes in patients with RR-BCP.


Sign in / Sign up

Export Citation Format

Share Document