Coagulopathy Predicts Mortality in Pediatric Patients with Traumatic Brain Injury

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2891-2891 ◽  
Author(s):  
Bhavya S. Doshi ◽  
Shannon L. Meeks ◽  
Jeanne E Hendrickson ◽  
Andrew Reisner ◽  
Traci Leong ◽  
...  

Abstract Trauma is the leading cause of death in children ages 1 to 21 years of age. Traumatic brain injury (TBI) poses a high risk of both morbidity and mortality within the subset of pediatric trauma patients. Numerous adult studies have shown that coagulopathy is commonly observed in patients who have sustained trauma and that the incidence is higher when there is TBI. Previously, it was thought that coagulopathy related to trauma was dilutional (i.e. due to replacement of red cells and platelets without plasma) but more recent studies show that the coagulopathy in trauma is early and likely independent of transfusion therapy. Additionally, abnormal coagulation studies (PT, PTT, INR, platelet count, fibrinogen, and D-dimer) following TBI are associated with increased morbidity and mortality in adults. Although coagulopathy after traumatic brain injury in adults is well documented, the pediatric literature is fairly sparse. A recent study by Hendrickson et al in 2008 demonstrated that coagulopathy is both underestimated and under-treated in pediatric trauma patients who required blood product replacements. Here we present the results of a retrospective pilot study designed to assess coagulopathy in the pediatric TBI population. We analyzed all children admitted to our facility with TBI from January 2012 to December 2013. Patients were excluded if they had underlying diseases of the hemostatic system. All patients had baseline characteristics measured including: age, sex, mechanism of injury, Glasgow Coma Scale (GCS), injury severity score (ISS), initial complete blood count, DIC profile, hematological treatments including transfusions, ICU and hospital length of stay, ventilator days and survival status. Coagulation studies were defined as "abnormal" when they fell outside the accepted reference range of the pediatric hospital laboratory (PT 12.6-15.9, PTT 23.6-42.1 seconds, fibrinogen < 180 mg/dL units, platelets < 185 103/mL and hemoglobin < 11.5 g/dL). Survival was measured as survival at 30 days from admission or last known status at hospital discharge. One hundred and twenty patients met the inclusion criteria of the study and all were included in outcome analysis. Twenty-three of the 120 patients died (19.2%). Logistic regression analysis was used to compare survivors and non-survivors and baseline demographic data showed no difference in age or weight between the two groups with p-values of 0.1635 and 0.1624, respectively. Non-survivors had a higher ISS (30.26 vs 20.92, p-value 0.0004) and lower GCS (3 vs 5.8, p-value 0.0002) compared to survivors. Univariate analysis of coagulation studies to mortality showed statistically significant odds-ratios for ISS (OR 1.09, 95% CI 1.04-1.15), PT (OR 5.91, 95% CI 1.86-18.73), PTT (OR 6.48, 95% CI 2.04-20.52) and platelets (OR 5.63, 95% CI 1.74 – 18.21). Abnormal fibrinogen levels were not predictive of mortality (OR 2.56, 95% CI 0.96-6.79). These results are summarized in Table 1. Our results demonstrate that, consistent with adult studies, abnormal coagulation studies are also associated with increased mortality in pediatric patients. Higher injury severity scores and lower GCS scores are also predictive of mortality. Taken together, these results suggest that possible early correction of coagulopathy in severe pediatric TBI patients could improve outcomes for these patients. Table 1. OR 95% CI p-value ISS 1.09 1.04—1.15 .0009 PT > 15.9 sec 5.91 1.86—18.73 0.0026 PTT > 42.1 sec 6.48 2.04—20.52 0.0015 Fibrinogen < 180 mg/dL 2.56 0.96—6.79 0.0597 Platelets < 185 x 103/mL 5.63 1.74—18.21 0.0040 Disclosures No relevant conflicts of interest to declare.

2014 ◽  
Vol 13 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Korak Sarkar ◽  
Krista Keachie ◽  
UyenThao Nguyen ◽  
J. Paul Muizelaar ◽  
Marike Zwienenberg-Lee ◽  
...  

Object Traumatic brain injury (TBI) is a leading cause of injury, hospitalization, and death among pediatric patients. Admission CT scans play an important role in classifying TBI and directing clinical care, but little is known about the differences in CT findings between pediatric and adult patients. The aim of this study was to determine if radiographic differences exist between adult and pediatric TBI. Methods The authors retrospectively analyzed TBI registry data from 1206 consecutive patients with nonpenetrating TBI treated at a Level 1 adult and pediatric trauma center over a 30-month period. Results The distribution of sex, race, and Glasgow Coma Scale (GCS) score was not significantly different between the adult and pediatric populations; however, the distribution of CT findings was significantly different. Pediatric patients with TBI were more likely to have skull fractures (OR 3.21, p < 0.01) and epidural hematomas (OR 1.96, p < 0.01). Pediatric TBI was less likely to be associated with contusion, subdural hematoma, subarachnoid hemorrhage, or compression of the basal cisterns (p < 0.05). Rotterdam CT scores were significantly lower in the pediatric population (2.3 vs 2.6, p < 0.001). Conclusions There are significant differences in the CT findings in pediatric versus adult TBI, despite statistical similarities with regard to clinical severity of injury as measured by the GCS. These differences may be due to anatomical characteristics, the biomechanics of injury, and/or differences in injury mechanisms between pediatric and adult patients. The unique characteristics of pediatric TBI warrant consideration when formulating a clinical trial design or predicting functional outcome using prognostic models developed from adult TBI data.


2021 ◽  
Vol 27 (1) ◽  
pp. 79-86
Author(s):  
Era D. Mikkonen ◽  
Markus B. Skrifvars ◽  
Matti Reinikainen ◽  
Stepani Bendel ◽  
Ruut Laitio ◽  
...  

OBJECTIVETraumatic brain injury (TBI) is a major cause of death and disability in the pediatric population. The authors assessed 1-year costs of intensive care in pediatric TBI patients.METHODSIn this retrospective multicenter cohort study of four academic ICUs in Finland, the authors used the Finnish Intensive Care Consortium database to identify children aged 0–17 years treated for TBI in ICUs between 2003 and 2013. The authors reviewed all patient health records and head CT scans for admission, treatment, and follow-up data. Patient outcomes included functional outcome (favorable outcome defined as a Glasgow Outcome Scale score of 4–5) and death within 6 months. Costs included those for the index hospitalization, rehabilitation, and social security up to 1 year after injury. To assess costs, the authors calculated the effective cost per favorable outcome (ECPFO).RESULTSIn total, 293 patients were included, of whom 61% had moderate to severe TBI (Glasgow Coma Scale [GCS] score 3–12) and 40% were ≥ 13 years of age. Of all patients, 82% had a favorable outcome and 9% died within 6 months of injury. The mean cost per patient was €48,719 ($54,557) (95% CI €41,326–€56,112). The index hospitalization accounted for 66%, rehabilitation costs for 27%, and social security costs for 7% of total healthcare costs. The ECPFO was €59,727 ($66,884) (95% CI €52,335–€67,120). A higher ECPFO was observed among patients with clinical and treatment-related variables indicative of parenchymal swelling and high intracranial pressure. Lower ECPFO was observed among patients with higher admission GCS scores and those who had epidural hematomas.CONCLUSIONSGreater injury severity increases ECPFO and is associated with higher postdischarge costs in pediatric TBI patients. In this pediatric cohort, over two-thirds of all resources were spent on patients with favorable functional outcome, indicating appropriate resource allocation.


2011 ◽  
Vol 31 (5) ◽  
pp. E5 ◽  
Author(s):  
Geoffrey Appelboom ◽  
Stephen D. Zoller ◽  
Matthew A. Piazza ◽  
Caroline Szpalski ◽  
Samuel S. Bruce ◽  
...  

Traumatic brain injury (TBI) is the current leading cause of death in children over 1 year of age. Adequate management and care of pediatric patients is critical to ensure the best functional outcome in this population. In their controversial trial, Cooper et al. concluded that decompressive craniectomy following TBI did not improve clinical outcome of the analyzed adult population. While the study did not target pediatric populations, the results do raise important and timely clinical questions regarding the effectiveness of decompressive surgery in pediatric patients. There is still a paucity of evidence regarding the effectiveness of this therapy in a pediatric population, and there is an especially noticeable knowledge gap surrounding age-stratified interventions in pediatric trauma. The purposes of this review are to first explore the anatomical variations between pediatric and adult populations in the setting of TBI. Second, the authors assess how these differences between adult and pediatric populations could translate into differences in the impact of decompressive surgery following TBI.


Author(s):  
Julian Zipfel ◽  
Juliane Engel ◽  
Konstantin Hockel ◽  
Ellen Heimberg ◽  
Martin U. Schuhmann ◽  
...  

OBJECTIVE Hypertonic saline (HTS) is commonly used in children to lower intracranial pressure (ICP) after severe traumatic brain injury (sTBI). While ICP and cerebral perfusion pressure (CPP) correlate moderately to TBI outcome, indices of cerebrovascular autoregulation enhance the correlation of neuromonitoring data to neurological outcome. In this study, the authors sought to investigate the effect of HTS administration on ICP, CPP, and autoregulation in pediatric patients with sTBI. METHODS Twenty-eight pediatric patients with sTBI who were intubated and sedated were included. Blood pressure and ICP were actively managed according to the autoregulation index PRx (pressure relativity index to determine and maintain an optimal CPP [CPPopt]). In cases in which ICP was continuously > 20 mm Hg despite all other measures to decrease it, an infusion of 3% HTS was administered. The monitoring data of the first 6 hours after HTS administration were analyzed. The Glasgow Outcome Scale (GOS) score at the 3-month follow-up was used as the primary outcome measure, and patients were dichotomized into favorable (GOS score 4 or 5) and unfavorable (GOS score 1–3) groups. RESULTS The mean dose of HTS was 40 ml 3% NaCl. No significant difference in ICP and PRx was seen between groups at the HTS administration. ICP was lowered significantly in all children, with the effect lasting as long as 6 hours. The lowering of ICP was significantly greater and longer in children with a favorable outcome (p < 0.001); only this group showed significant improvement of autoregulatory capacity (p = 0.048). A newly established HTS response index clearly separated the outcome groups. CONCLUSIONS HTS significantly lowered ICP in all children after sTBI. This effect was significantly greater and longer-lasting in children with a favorable outcome. Moreover, HTS administration restored disturbed autoregulation only in the favorable outcome group. This highlights the role of a “rescuable” autoregulation regarding outcome, which might be a possible indicator of injury severity. The effect of HTS on autoregulation and other possible mechanisms should be further investigated.


2019 ◽  
Vol 85 (4) ◽  
pp. 370-375 ◽  
Author(s):  
Adel Elkbuli ◽  
Raed Ismail Narvel ◽  
Paul J. Spano ◽  
Valerie Polcz ◽  
Astrid Casin ◽  
...  

The effect of timing in patients requiring tracheostomy varies in the literature. The purpose of this study was to evaluate the impact of early tracheostomy on outcomes in trauma patients with and without traumatic brain injury (TBI). This study is a four-year review of trauma patients undergoing tracheostomy. Patients were divided into two groups based on TBI/non-TBI. Each group was divided into three subgroups based on tracheostomy timing: zero to three days, four to seven days, and greater than seven days postadmission. TBI patients were stratified by the Glasgow Coma Scale (GCS), and non-TBI patients were stratified by the Injury Severity Score (ISS). The primary outcome was ventilator-free days (VFDs). Significance was defined as P < 0.05. Two hundred eighty-nine trauma patients met the study criteria: 151 had TBI (55.2%) versus 138 (47.8%) non-TBI. There were no significant differences in demographics within and between groups. In TBI patients, statistically significant increases in VFDs were observed with GCS 13 to 15 for tracheostomies performed in four to seven versus greater than seven days ( P = 0.005). For GCS <8 and 8 to 12, there were significant increases in VFDs for tracheostomies performed at days 1 to 3 and 4 to 7 versus greater than seven days (P << 0.05 for both). For non-TBI tracheostomies, only ISS ≥ 25 with tracheostomies performed at zero to three days versus greater than seven days was associated with improved VFDs. Early tracheostomies in TBI patients were associated with improved VFDs. In trauma patients with no TBI, early tracheostomy was associated with improved VFDs only in patients with ISS ≥ 25. Future research studies should investigate reasons TBI and non-TBI patients may differ.


2020 ◽  
pp. 000313482094999
Author(s):  
Mario Chico-Fernández ◽  
Jesús A. Barea-Mendoza ◽  
Jon Pérez-Bárcena ◽  
Iker García-Sáez ◽  
Manuel Quintana-Díaz ◽  
...  

Background To compare the main outcomes of trauma patients with and without traumatic brain injury (TBI), hemorrhagic shock, and the combination of both using data from the Spanish trauma intensive care unit (ICU) registry (RETRAUCI). Methods Patients admitted to the participating ICUs from March 2015 to May 2019 were included in the study. The main outcomes were analyzed according to the presence of TBI, hemorrhagic shock, and/or both. Comparison of groups with quantitative variables was performed using the Kruskal-Wallis test, and differences between groups with categorical variables were compared using the Chi-square test or Fisher’s exact test as appropriate. A P value <.05 was considered significant. Results Overall, 310 patients (3.98%) were presented with TBI and hemorrhagic shock. Patients with TBI and hemorrhagic shock received more red blood cell (RBC) concentrates, fresh frozen plasma (FFP), a higher ratio FFP/RBC, and had a higher incidence of trauma-induced coagulopathy (60%) ( P < .001). These patients had higher mortality ( P < .001). Intracranial hypertension was the leading cause of death (50.4%). Conclusions Concomitant TBI and hemorrhagic shock occur in nearly 4% of trauma ICU patients. These patients required a higher amount of RBC concentrates and FFP and had an increased mortality.


Author(s):  
Marius Marc-Daniel Mader ◽  
Rolf Lefering ◽  
Manfred Westphal ◽  
Marc Maegele ◽  
Patrick Czorlich

Abstract Purpose Based on the hypothesis that systemic inflammation contributes to secondary injury after initial traumatic brain injury (TBI), this study aims to describe the effect of splenectomy on mortality in trauma patients with TBI and splenic injury. Methods A retrospective cohort analysis of patients prospectively registered into the TraumaRegister DGU® (TR-DGU) with TBI (AISHead ≥ 3) combined with injury to the spleen (AISSpleen ≥ 1) was conducted. Multivariable logistic regression modeling was performed to adjust for confounding factors and to assess the independent effect of splenectomy on in-hospital mortality. Results The cohort consisted of 1114 patients out of which 328 (29.4%) had undergone early splenectomy. Patients with splenectomy demonstrated a higher Injury Severity Score (median: 34 vs. 44, p < 0.001) and lower Glasgow Coma Scale (median: 9 vs. 7, p = 0.014) upon admission. Splenectomized patients were more frequently hypotensive upon admission (19.8% vs. 38.0%, p < 0.001) and in need for blood transfusion (30.3% vs. 61.0%, p < 0.001). The mortality was 20.7% in the splenectomy group and 10.3% in the remaining cohort. After adjustment for confounding factors, early splenectomy was not found to exert a significant effect on in-hospital mortality (OR 1.29 (0.67–2.50), p = 0.45). Conclusion Trauma patients with TBI and spleen injury undergoing splenectomy demonstrate a more severe injury pattern, more compromised hemodynamic status and higher in-hospital mortality than patients without splenectomy. Adjustment for confounding factors reveals that the splenectomy procedure itself is not independently associated with survival.


2016 ◽  
Vol 18 (4) ◽  
pp. 499-506 ◽  
Author(s):  
Paige J. Ostahowski ◽  
Nithya Kannan ◽  
Mark S. Wainwright ◽  
Qian Qiu ◽  
Richard B. Mink ◽  
...  

OBJECTIVE Posttraumatic seizure is a major complication following traumatic brain injury (TBI). The aim of this study was to determine the variation in seizure prophylaxis in select pediatric trauma centers. The authors hypothesized that there would be wide variation in seizure prophylaxis selection and use, within and between pediatric trauma centers. METHODS In this retrospective multicenter cohort study including 5 regional pediatric trauma centers affiliated with academic medical centers, the authors examined data from 236 children (age < 18 years) with severe TBI (admission Glasgow Coma Scale score ≤ 8, ICD-9 diagnosis codes of 800.0–801.9, 803.0–804.9, 850.0–854.1, 959.01, 950.1–950.3, 995.55, maximum head Abbreviated Injury Scale score ≥ 3) who received tracheal intubation for ≥ 48 hours in the ICU between 2007 and 2011. RESULTS Of 236 patients, 187 (79%) received seizure prophylaxis. In 2 of the 5 centers, 100% of the patients received seizure prophylaxis medication. Use of seizure prophylaxis was associated with younger patient age (p < 0.001), inflicted TBI (p < 0.001), subdural hematoma (p = 0.02), cerebral infarction (p < 0.001), and use of electroencephalography (p = 0.023), but not higher Injury Severity Score. In 63% cases in which seizure prophylaxis was used, the patients were given the first medication within 24 hours of injury, and 50% of the patients received the first dose in the prehospital or emergency department setting. Initial seizure prophylaxis was most commonly with fosphenytoin (47%), followed by phenytoin (40%). CONCLUSIONS While fosphenytoin was the most commonly used medication for seizure prophylaxis, there was large variation within and between trauma centers with respect to timing and choice of seizure prophylaxis in severe pediatric TBI. The heterogeneity in seizure prophylaxis use may explain the previously observed lack of relationship between seizure prophylaxis and outcomes.


2016 ◽  
Vol 17 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Thomas M. O’Lynnger ◽  
Chevis N. Shannon ◽  
Truc M. Le ◽  
Amber Greeno ◽  
Dai Chung ◽  
...  

OBJECT The goal of critical care in treating traumatic brain injury (TBI) is to reduce secondary brain injury by limiting cerebral ischemia and optimizing cerebral blood flow. The authors compared short-term outcomes as defined by discharge disposition and Glasgow Outcome Scale scores in children with TBI before and after the implementation of a protocol that standardized decision-making and interventions among neurosurgeons and pediatric intensivists. METHODS The authors performed a retrospective pre- and postprotocol study of 128 pediatric patients with severe TBI, as defined by Glasgow Coma Scale (GCS) scores < 8, admitted to a tertiary care center pediatric critical care unit between April 1, 2008, and May 31, 2014. The preprotocol group included 99 patients, and the postprotocol group included 29 patients. The primary outcome of interest was discharge disposition before and after protocol implementation, which took place on April 1, 2013. Ordered logistic regression was used to assess outcomes while accounting for injury severity and clinical parameters. Favorable discharge disposition included discharge home. Unfavorable discharge disposition included discharge to an inpatient facility or death. RESULTS Demographics were similar between the treatment periods, as was injury severity as assessed by GCS score (mean 5.43 preprotocol, mean 5.28 postprotocol; p = 0.67). The ordered logistic regression model demonstrated an odds ratio of 4.0 of increasingly favorable outcome in the postprotocol cohort (p = 0.007). Prior to protocol implementation, 63 patients (64%) had unfavorable discharge disposition and 36 patients (36%) had favorable discharge disposition. After protocol implementation, 9 patients (31%) had unfavorable disposition, while 20 patients (69%) had favorable disposition (p = 0.002). In the preprotocol group, 31 patients (31%) died while 6 patients (21%) died after protocol implementation (p = 0.04). CONCLUSIONS Discharge disposition and mortality rates in pediatric patients with severe TBI improved after implementation of a standardized protocol among caregivers based on best-practice guidelines.


2020 ◽  
Author(s):  
Chiaki Toida ◽  
Takashi Muguruma ◽  
Masayasu Gakumazawa ◽  
Mafumi Shinohara ◽  
Takeru Abe ◽  
...  

Abstract Background: In-hospital mortality in trauma patients decreased recently owing to improved trauma injury prevention systems. However, no study which evaluated the validity of Trauma and Injury Severity Score (TRISS) in pediatrics by detailed classification of patients’ age and injury severity in Japan. This retrospective nationwide study evaluated the validity of TRISS in predicting survival in Japanese pediatric patients with blunt trauma by age and injury severity.Methods: Data were obtained from the Japan Trauma Data Bank during 2009−2018.Results: In all age categories, the area under the curve (AUC) for TRISS demonstrated high performance (0.935, 0.981, 0.979, and 0.977). The Accuracy of TRISS was 99.9%, 98.2%, 92.1%, 76.7%, 55.3%, and 72.1% in survival probability (Ps) interval groups (0.96−1.00), (0.91−0.95), (0.76.−0.90), (0.51−0.75), (0.26−0.50), and (0.00−0.25), respectively. The AUC for TRISS demonstrated moderate performance in the Ps interval group (0.96−1.00) and low performance in other Ps interval groups.Conclusions: The TRISS methodology appears to predict survival accurately in Japanese pediatric patients with blunt trauma; however, there were several problems in adopting the TRISS methodology for younger blunt trauma patients with higher injury severity. In the future, we should consider to conducting a simple, high-quality prediction model that is more suitable for pediatric trauma patients than the current TRISS model.


Sign in / Sign up

Export Citation Format

Share Document