scholarly journals Chronic Lymphocytic Leukemia Patients Exhibit Expanded Functional Granulocyte-like Myeloid Derived Suppressor Cells

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3279-3279
Author(s):  
Gerardo Ferrer ◽  
Rita Simone ◽  
Sonia Marsilio ◽  
Stefano Vergani ◽  
Andrea Nicola Mazzarello ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is a disease commonly associated with an immune disturbance. These alterations of the immune system have been generally considered due to the direct effects of CLL cells. In the last years, myeloid derived suppressor cells (MDSCs) have been found to be expanded in several cancers and to play a major role in helping tumor cells escape from immune surveillance. MDSCs represent a heterogeneous population of HLA-DRlo/CD11b+/CD33+ cells that are subdivided into monocyte-like (CD14+, m-) or granulocyte-like (CD15+, g-) subsets. Here we have investigated the extent that patients with CLL have expansions of MDSCs, their types and functions, and how these correlate with clinical and laboratory characteristics. Using flow cytometry on cryopreserved PBMCs, we did not observe differences in the percentages of HLA-DRlo/CD11b+/CD33+ cells between 17 untreated CLL patients and 10 healthy controls (HC) (3.3% vs. 3.1%). However, the distribution between m-MDSCs and g-MDSCs was dramatically different, with CLL patients exhibiting significantly higher levels of g-MDSCs (79.7% vs. 4.1%, p<0.001). When analyzing the phenotypes of g-MDSCs and m-MDSCs from CLL patients, we found that the latter exhibited significantly higher levels of CD80, an immune modulator that can promote Tregs and the immune suppressor molecule IDO. As in other cancers, the ratio of CLL T cells compared to MDSCs was significantly lower than in HC (p=0.030). In vitro studies revealed that the ratio between MDSCs and T cells was important when studying the induction of suppression in the latter. Furthermore, when evaluating the ability of MDSCs to inhibit autologous T cell proliferation in 5 patients, we observed a consistent reduction of proliferation only when co-culturing with g-MDSCs. The results on m-MDSCs were varied and insignificant statistically. To address this, we induced m-MDSCs (im-MDSCs) from purified CD33+ cells in vitro with GM-CSF, IL10 and IL6. Notably, the im-MDSC population suppressed autologous T cell proliferation in 4 of 5 cases at an average of 33% (range: 10-79%). Significance analysis of microarrays (SAM) of im-MDSCs, m-MDSCS, and HLA-DRhi monocytes indicated that im-MDSCs exhibit a lower expression of pro-inflammatory genes (e.g., TNF, IL-1α/β, CCR7, CCL3, CXCL10, CCL5) and higher levels of genes related to the ability to suppress and to MDSCs (e.g., HMOX1, CD40, FN1). Thus, these two sets of studies of m-MDSC function indicate that the poor suppressor activity of the m-MDSCs in patients is induced and not inherent. Finally we looked for clinicobiological correlations with the above laboratory findings. In this cohort we did not observed that the frequency of g-MDSCs was associated with good or bad prognostic markers, but we found several correlations with the phenotype of the g-MDSCs and m-MDSCS. Notably, those patients that required therapy expressed significantly more CD80 and iNOS in the g-MDSCs (p=0.038 and p=0.009), as well as higher iNOS, IDO and S100A9 in the m-MDSCs (p=0.035, p=0.075 and p=0.047). Highlighting an immune suppressor/modulator phenotype, that could facilitate the progression of the CLL by a reduction of the immune surveillance. In summary, CLL patients demonstrate an altered HLA-DRlo/CD11b+/CD33+ population with significantly more g-MDSCs than m-MDSCs. CLL g-MDSCs are functional suppressors, whereas m-MDSCs are not, even though they exhibit increased levels of inhibitory molecules and can perform this function when induced from CD33+ cells. The latter suggest that that the poor suppressor activity of patient derived m-MDSCs is induced in vivo. Finally, different clinicobiological characteristics associate with the phenotype of MDSCs, especially an increase in suppressor molecules and need to treat. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 614-614
Author(s):  
Gerardo Ferrer ◽  
Xiao-Jie Yan ◽  
Brendan Franca ◽  
Jacqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
...  

Abstract Immune imbalance is a common characteristic of patients with chronic lymphocytic leukemia (CLL). This feature is shared with Eμ-TCL1 transgenic mice that, like CLL patients, exhibit an expansion of CD5+ B cells with associated non-B-cell defects. In patients and in mice, T-cell responses are often ineffective. This alteration is generally considered due to the direct effects of the leukemic cells. The expansion of myeloid derived suppressor cells (MDSCs), which play a major role in helping tumor cells escape immune surveillance by inhibiting T-cell responses, is promoted by many cancers. MDSCs are a heterogeneous population of cells that are subdivided into monocyte-like (m-MDSC) and granulocyte-like (g-MDSC) subsets, both in humans and mice. There we have investigated the extent that patients with CLL have expansions of MDSCs, what are their types and functions, and how these correlate with the Eμ-TCL1 mice model. Using flow cytometry on cryopreserved PBMCs, we found that the absolute numbers of MDSCs (HLA-DRlo/CD11b+/CD33+) in 49 untreated CLL patients were significantly higher than 15 healthy controls (HCs) (966 446 vs. 163 578 cells/ml, P<0.001). Moreover, we observed that the absolute numbers of MDSCs significantly correlated with CLL B-cell counts in the blood (P=0.005, Spearman r=0.423). Of note, the distribution between m-MDSCs (CD14+) and g-MDSCs (CD15+) was dramatically different, with CLL patients exhibiting significantly higher numbers and percentages of g-MDSCs than HCs (702 296 vs. 26 818 cells/ml, P<0.001; 50.89 vs. 16.98%, P<0.001).In line with these results, when we explored the MDSC populations (CD11b+/GR1+) in Eμ-TCL1 mice of 5-16 months of age with leukemia cell blood counts ranging from 0.1 to 100 x 106 cell/ml. This analysis indicated a positive correlation between MDSCs and leukemic CD19+ CD5+ cells (P=0.003; Spearman r=0.328). Furthermore, the dot-plot analysis of GR1 and CD11b showed three well defined cell populations: one monocytic (Ly6-C+) and two granulocytic (Ly6-G+ CD11blo and Ly6-G+ CD11bhi). As in patients, the g-MDSC population was larger than the m-MDSC population (884 100 vs. 454 700,P=0.016). However in this case, the m-MDSCs correlated with the numbers of circulating leukemic cells (P<0.001; Spearman r=0.463) and the g-MDSCs did not. The latter was the case even when they were subdivided into both CD11blo and CD11bhi subgroups. A similar pattern was observed when analyzing single cell suspensions from murine spleens. When we evaluated the ability of MDSCs to inhibit autologous T-cell proliferation in CLL patients (n=7), we observed a consistent reduction of proliferation only when co-culturing with g-MDSCs(P=0.034). In contrast, the effects of m-MDSCs on T-cell expansion were varied and insignificant statistically. In 5 CLL samples, we induced m-MDSCs (im-MDSCs) from purified CD33+ cells in vitro with GM-CSF, IL10, and IL6; the im-MDSCs effectively suppressed T-cell proliferation in 4 of 5 cases at an average inhibition of 33% (range: 10-79%). Thus, dysfunctional m-MDSC suppression was not inherent and functional suppression could be achieved by stimulation of CLL precursor cells. Similarly in 3 independent experiments performed with MDSCs from Eμ-TCL1 mice (12-14 months of age), we observed a reduction of in vitro proliferation with g-MDSCs (P=0.049) and not with m-MDSCs. In addition, for those Eμ-TCL1 animals for which sufficient sample was available, we subdivided the g-MDSC population into the two subpopulations based on CD11b density; the CD11blo subset present less nuclear segmentation and higher suppressive activity. In summary, absolute numbers of MDSCs in the blood of CLL patients and Eμ-TCL1 mice are elevated and correlate with the levels of expansion of the leukemia. The major subtype in both situations was g-MDSCs.These g-MDSCs were functionally competent suppressors, whereas m-MDSCs were impaired in this function. In CLL patients, this m-MDSC suppressor defect could be corrected by in vitro stimulation with growth factors that support monocyte differentiation. The high similarity between CLL patients and Eμ-TCL1 mice in relation to MDSC number and function suggest that an imbalance in g-MDC vs. m-MDSC function may affect CLL development and expansion, altering interactions with members of the microenvironment such as T cells. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 25 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Young Suk Lee ◽  
Eduardo Davila ◽  
Tianshu Zhang ◽  
Hugh P Milmoe ◽  
Stefanie N Vogel ◽  
...  

Myeloid-derived suppressor cells (MDSCs) inhibit T cell responses and are relevant to cancer, autoimmunity and transplant biology. Anti-thymocyte globulin (ATG) is a commonly used T cell depletion agent, yet the effect of ATG on MDSCs has not been investigated. MDSCs were generated in Lewis Lung Carcinoma 1 tumor-bearing mice. MDSC development and function were assessed in vivo and in vitro with and without ATG administration. T cell suppression assays, RT-PCR, flow cytometry and arginase activity assays were used to assess MDSC phenotype and function. MDSCs increased dramatically in tumor-bearing mice and the majority of splenic MDSCs were of the polymorphonuclear subset. MDSCs potently suppressed T cell proliferation. ATG-treated mice developed 50% fewer MDSCs and these MDSCs were significantly less suppressive of T cell proliferation. In vitro, ATG directly bound 99.6% of MDSCs. CCR7, L-selectin and LFA-1 were expressed by both T cells and MDSCs, and binding of LFA-1 was inhibited by ATG pre-treatment. Arg-1 and PD-L1 transcript expression were reduced 30–40% and arginase activity decreased in ATG-pretreated MDSCs. MDSCs were bound and functionally inhibited by ATG. T cells and MDSCs expressed common Ags which were also targets of ATG. ATG may be helpful in tumor models seeking to suppress MDSCs. Alternatively, ATG may inadvertently inhibit important T cell regulatory events in autoimmunity and transplantation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A504-A504
Author(s):  
Luis Carvajal ◽  
Luciana Gneo ◽  
Carmela De Santo ◽  
Matt Perez ◽  
Tracy Garron ◽  
...  

BackgroundMyeloid-derived suppressor cells (MDSCs) accumulate in the blood and tumor microenvironment (TME) and suppress anti-tumor immune responses.1 Cancer cells express the granulocyte-macrophage colony-stimulating factor (GM-CSF), which drives MDSC differentiation and function.2 3 4 It is upregulated in several cancers, including mesothelioma, pancreatic and colorectal, and it is linked to higher levels of intra-tumoral MDSCs and poorer overall survival.2 4 5 In animal models, knockdown of GM-CSF in pancreatic epithelium or pancreatic mesenchymal stem cells inhibits tumorigenesis, reduces intra-tumor MDSCs and enhances CD8+ T cell accumulation.6 7 8 Therefore, targeting the GM-CSF receptor alpha (GM-CSFRα) on MDSCs is an attractive strategy to restore anti-tumor immunity. Mavrilimumab is a clinical stage fully human monoclonal antibody that blocks GM-CSFRα. It has demonstrated efficacy and acceptable safety profile in patients with rheumatoid arthritis, and it’s currently undergoing investigation in phase II studies in giant cell arteritis and in patients with severe COVID-19 pneumonia and hyper-inflammation (NCT03827018, NCT04397497, respectively). The present study investigates its potential as a therapeutic strategy to target MDSCs in the TME as an adjuvant to immunotherapy.MethodsCancer cell supernatants were collected when cells reached confluency. Human GM-CSF was measured by ELISA. Healthy donor CD14+ monocytes were incubated (± mavrilimumab) with cancer cell supernatants for either 3 or 6 days followed by phenotypic analysis (CD14, CD33, HLA-DR, CD11b, CD206, CD80, PD-L1, Arginase-1) by flow cytometry. On day 3, autologous CD3+ T cells were stimulated with CD3/CD28 and IL-2 and co-cultured with putative MDSCs for 5 days. T-cell proliferation was evaluated by measuring carboxyfluorescein succinimidyl ester (CFSE) dilution in CD4+ and CD8+ T cells by flow cytometry.ResultsGM-CSF is expressed in the supernatant of cancer cell lines (HCT116, SW-480, Panc-1, Capan-1). Human monocytes cultured with conditioned medium from colorectal carcinoma (SW-480) or pancreatic adenocarcinoma (Capan-1) show downregulation of HLA-DR, increased expression of PD-L1, Arg-1, CD206, and can suppress T-cell proliferation in-vitro. Similarly, peripheral blood monocytes purified from pancreatic cancer patients suppress T-cell proliferation ex-vivo. Notably, Mavrilimumab inhibits the polarization of healthy donor monocytes to M-MDSCs and restores T-cell proliferation.ConclusionsTargeting of GM-CSFRα with mavrilimumab may alleviate the pro-tumorigenic and immunosuppressive functions of MDSCs in the TME. Future clinical studies should evaluate whether targeting of the GM-CSFRα in combination with immune checkpoint inhibitors is a viable therapeutic option to bolster their efficacy.Ethics ApprovalThe study was approved by the Institute of Immunology and Immunotherapy, University of Birmingham, UK Ethics Board. Healthy volunteer human material was obtained from commercial sources and approved by Stemexpress Institutional Review Board (IRB).ReferencesLaw AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020;9(3):561.Khanna S, Graef S, Mussai F, et al. Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clin Cancer Res 2018;24(12):2859–2872.Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 2010;40(1):22–35.Takeuchi S, Baghdadi M, Tsuchikawa T, et al. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res 2015;75(13):2629–2640.Chen Y, Zhao Z, Chen Y, et al. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep 2017;7(1):8265.Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21(6):822–835.Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012;21(6):836–847.Waghray M, Yalamanchili M, Dziubinski M, et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov 2016;6(8):886–899.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos Lamsfus Calle ◽  
Rolf Fendel ◽  
Anurag Singh ◽  
Thomas L. Richie ◽  
Stephen L. Hoffman ◽  
...  

Malaria can cause life-threatening complications which are often associated with inflammatory reactions. More subtle, but also contributing to the burden of disease are chronic, often subclinical infections, which result in conditions like anemia and immunologic hyporesponsiveness. Although very frequent, such infections are difficult to study in endemic regions because of interaction with concurrent infections and immune responses. In particular, knowledge about mechanisms of malaria-induced immunosuppression is scarce. We measured circulating immune cells by cytometry in healthy, malaria-naïve, adult volunteers undergoing controlled human malaria infection (CHMI) with a focus on potentially immunosuppressive cells. Infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) were inoculated during two independent studies to assess malaria vaccine efficacy. Volunteers were followed daily until parasites were detected in the circulation by RT-qPCR. This allowed us to analyze immune responses during pre-patency and at very low parasite densities in malaria-naïve healthy adults. We observed a consistent increase in circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in volunteers who developed P. falciparum blood stage parasitemia. The increase was independent of preceding vaccination with a pre-erythrocytic malaria vaccine. PMN-MDSC were functional, they suppressed CD4+ and CD8+ T cell proliferation as shown by ex-vivo co-cultivation with stimulated T cells. PMN-MDSC reduced T cell proliferation upon stimulation by about 50%. Interestingly, high circulating PMN-MDSC numbers were associated with lymphocytopenia. The number of circulating regulatory T cells (Treg) and monocytic MDSC (M-MDSC) showed no significant parasitemia-dependent variation. These results highlight PMN-MDSC in the peripheral circulation as an early indicator of infection during malaria. They suppress CD4+ and CD8+ T cell proliferation in vitro. Their contribution to immunosuppression in vivo in subclinical and uncomplicated malaria will be the subject of further research. Pre-emptive antimalarial pre-treatment of vaccinees to reverse malaria-associated PMN-MDSC immunosuppression could improve vaccine response in exposed individuals.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 38-38
Author(s):  
Xing Li ◽  
Xiang-yuan Wu ◽  
Nan Jiang ◽  
Yan-Fang Xing ◽  
Jie Chen ◽  
...  

38 Background: A recent study indicated that Lectin-type oxidized LDL receptor-1 (LOX-1) was a distinct surface marker for human polymorphonuclears myeloid-derived suppressor cells (PMN-MDSC). The present study was aimed to investigate the existence LOX-1 PMN-MDSC in hepatocellular carcinoma (HCC) patients, the latent mechanism and their association with clinical parameters. Methods: 30 HCC patients and 30 health control were included. LOX-1+CD15+ PMN-MDSCs were investigated. Results: LOX-1+CD15+ PMN-MDSC were significantly elevated in both WB and PBMC of HCC patients compared with healthy control. LOX-1+CD15+ PMN-MDSC were more abundant in PBMC than WB. Addition of PMN-MDSCs resulted in significantly reduced proliferation and IFN-γ production of T cells with a dosage dependent manner. LOX-1-CD15+ PMNs present no suppressive function. The suppression on T cell proliferation and IFN-γ production was reversed by ROS inhibitor and Arginase inhibitor. ROS level of LOX-1+CD15+ PMN by DCFDA were higher in LOX-1+CD15+ PMN-MDSCs than LOX-1-CD15+ PMNs, as well as the mRNA levels of the NADPH oxidase NOX2. Meanwhile, the expression of arginase I and activity of arginase were also significantly raised in LOX-1+CD15+ PMN-MDSCs. LOX-1+CD15+ PMN-MDSCs displayed significantly higher expression of spliced X-box–binding protein 1 (sXBP1), ATF3 and CCAAT/enhancer binding protein (CHOP) were higher. For HCC patients, LOX-1+CD15+ PMN-MDSCs in WB were positively related to Cancer of the Liver Italian Program (CLIP) score. Conclusions: LOX-1+CD15+ PMN-MDSC were elevated in HCC patients and suppressed T cell proliferation through ROS/Arg I pathway with ER stress as a potential feature. LOX-1+CD15+ PMN-MDSC presented positive association with the prognosis of HCC patients.


2016 ◽  
Vol 38 (6) ◽  
pp. 2438-2451 ◽  
Author(s):  
Wen-Cai Zhang ◽  
Yan-Ge Wang ◽  
Wen-Hui Wei ◽  
Xin Xiong ◽  
Kan-Ling Liu ◽  
...  

Background/Aims: Myeloid-derived suppressor cells (MDSCs) are increased in inflammatory and autoimmune disorders. This study aims to evaluate the significance of MDSCs in dilated cardiomyopathy (DCM) patients. Methods: In total, 42 newly hospitalized DCM patients and 39 healthy controls were enrolled in the study. The frequencies of circulating CD14+HLA-DR-/low MDSCs were determined by flow cytometry. Then, the functional properties of MDSCs in suppressing T cell proliferation and interferon-gamma (IFN-γ) production were measured in a co-culture model. Then, mRNA expression levels of various important molecules in peripheral blood mononuclear cells were measured by real time polymerase chain reaction. Furthermore, correlation analyses between MDSC frequencies and cardiac function parameters were also performed. Results: The frequencies of circulating CD14+HLA-DR-/low MDSCs were significantly elevated in DCM patients compared with healthy controls. It showed that MDSCs from DCM patients more effectively suppressed T cell proliferation and IFN-γ production compared with those from healthy controls, which was partially mediated by arginase-1 (Arg-1). In addition, the correlation analysis suggested that MDSC frequencies were negatively correlated with left ventricular ejection fraction (LVEF), while positively with N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with DCM. Conclusions: Circulating activated MDSCs might play significant immunomodulatory roles in the pathogenesis of DCM.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2176-2176
Author(s):  
Xingmin Feng ◽  
Jisoo Kim ◽  
Gladys Gonzalez Matias ◽  
Zhijie Wu ◽  
Sabrina Solorzano ◽  
...  

Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells with immunoregulatory function. Limited published studies have reported conflicting data concerning the effects of MDSCs on autoimmune diseases and graft-versus-host disease. MDSCs can be divided into two major subsets, more abundant granulocytic (G-MDSCs) and monocytic (M-MDSCs). We examined G-MDSCs in murine models of human bone marrow failure (BMF). We first characterized bone marrow (BM) MDSCs from C.B10 mice. CD11b +Ly6G +Ly6C low G-MDSCs suppressed in vitro proliferation of both CD4 and CD8 T cells from C57BL/6 (B6) mice, while Ly6G +Ly6C - cells had no effect and Ly6G -Ly6C + cells increased T cell proliferation (Fig. 1A). We then tested G-MDSCs in vivo utilizing antibody-mediated cell depletion. Lymph node (LN) cells from B6 donor mice were injected into sub-lethally irradiated major histocompatibility-mismatched CByB6F1 mice to induce BMF. Anti-Ly6G antibody injection worsened cytopenias and BM hypoplasia, and they increased BM CD4 and CD8 T cell infiltration. In contrast, anti-Ly6G antibody injection in the minor histocompatibility-mismatched C.B10 BMF model improved platelet counts and reduced BM CD8 T cells. The pathogenic and protective effects in the two models correlated with differential anti-Ly6G antibody modulation of G-MDSCs: in the CByB6F1 model, anti-Ly6G antibody eradicated G-MDSCs in blood and BM while in the C.B10 model the same antibody generated a novel G-MDSC cell population, of identical Ly6C lowCD11b + phenotype but intermediate Ly6G expression, which was not present in the CByB6F1 animals after antibody injection. When we examined the efficacy of G-MDSCs in C.B10 BMF: Ly6G + cells were enriched from BM of normal C.B10 donors (94%-97% Ly6C lowLy6G +CD11b +), and injected at the time of marrow failure initiation. Mice infused with Ly6G + cells had significantly higher levels of WBC, RBC, platelets, and total BM cells, decreased BM CD4 and CD8 T cell infiltration, and improved BM cellularity. These results indicated a protective role of G-MDSCs. When G-MDSCs were injected at day 3 after LN cell infusion, treated mice again had higher levels of WBC, RBC, platelets, and total BM cells at day 14, alleviating BMF. As both prophylaxis and therapy, G-MDSCs decreased Fas expression and Annexin V binding of residual BM cells, suppressed intracellular levels of gamma interferon and tumor necrosis factor alpha, as well as cell proliferation protein Ki67 levels in BM CD4 and CD8 T cells, relative to BMF control mice. TotalSeq simultaneously detecting surface proteins and mRNA expression in whole BM mononuclear cells in the therapy model showed an increased proportion of myeloid cells and reduced proportion of T cells in marrow from G-MDSC-treated mice based on cell surface markers and marker gene expression (Fig. 1B). Gene pathway analysis revealed down-regulation of Fas expression and reduced program cell death in total BM cells and decreased expression of genes related to cell cycle in infiltrating T cells from Ly6G + cell-treated mice-both results consistent with suppression by G-MDSCs of T cell proliferation and protection of target BM cells from apoptosis. In vitro culture of T cells from B6 mice with G-MDSCs which had been isolated from C.B10 BM cells showed dose-dependent suppression of T cell proliferation. In conclusion, our results demonstrate an active role of G-MDSCs in protecting BM from immune-mediated destruction, by suppression of T cell proliferation in the BM. G-MDSCs might have clinical application as treatment in human aplastic anemia and other immune-mediated and autoimmune diseases. Figure 1 Figure 1. Disclosures Young: Novartis: Research Funding.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi137-vi137
Author(s):  
Mi-Yeon Jung ◽  
Benjamin Himes ◽  
Luz Cumba-Garcia ◽  
Ian Parney

Abstract Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Median survival is 15 months despite surgery, radiation, and chemotherapy. Immunotherapy is promising but GBM-mediated immunosuppression remains a barrier. Recently, extracellular vesicles (EVs) have been implicated in GBM-mediated immunosuppression through expression of the immune checkpoint molecule PD-L1. Data from our group has suggested this is predominantly through induction of immunosuppressive monocytes including myeloid-derived suppressor cells (MDSCs) and non-classical monocytes (NCMs). PD-L1 expression is increased in most nucleated cells following IFN-γ exposure. We, therefore, sought to determine if IFN-γ exposure would result in super-induction of immunosuppressive GBM EVs. EVs were harvested in vitro from matched differentiated and stem-like human GBM cell lines +/- IFN-γ. IFN-γ exposure did not alter EV production or expression of common EV markers but increased PD-L1 expression in EVs from differentiated but not stem-like GBM cells. In keeping with our earlier findings, no direct inhibition of T cell proliferation by stem-like or differentiated GBM EVs was observed regardless of IFN-γ exposure or PD-L1 expression. In contrast, differentiated but not stem-like GBM cell EVs induced MDSC and NCM differentiation from normal monocytes. This was increased following IFN-γ exposure and was dependent upon PD-L1 expression. Monocytes exposed to differentiated but not stem-like GBM cell EVs inhibited T cell proliferation in a similar manner (increased with IFN-γ exposure, decreased with PD-L1 knockdown). Thus, IFN-γ exposure results in super-induction of immunosuppressive EVs from differentiated but not stem-like GBM cells that increase MDSC and NCM differentiation in normal monocytes and increase their ability to inhibit T cell proliferation. These effects are dependent upon PD-L1 up-regulation induced by IFN-γ. This may be an important mechanism GBMs utilize to suppress anti-tumor T cell responses that are typically accompanied by increased IFN-γ expression.


Sign in / Sign up

Export Citation Format

Share Document