Next-Generation Sequencing Reveals Clonal Evolution at the Immunoglobulin Loci in Chronic Lymphocytic Leukemia

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3302-3302 ◽  
Author(s):  
Jennifer R. Brown ◽  
Stacey M. Fernandes ◽  
Siddha Kasar ◽  
Kevin Hoang ◽  
Martin Moorhead ◽  
...  

Abstract Background: Immunoglobulin (Ig) gene rearrangement is a hallmark of early B-cell development. Chronic lymphocytic leukemia (CLL) is typically considered a malignancy of mature B-cells and is thought to originate from the oncogenic transformation of a single pre- or post-germinal B-cell. Activation-induced deaminase (AID), an enzyme that induces somatic hypermutation (SHM) at the heavy and light chain Ig loci, has been shown to be active in CLL cells in vitro (Patten et al., Blood 2012). Previous studies suggest that multiple CLL-specific Ig clonotypes related by SHM may be present in patients (pts) with dominant CLL clones possessing somatically mutated or unmutated Ig loci (Logan et al., PNAS 2011; Campbell et al., PNAS 2008). To our knowledge, evolution of the dominant CLL-specific Ig clonotype over the course of treatment has not been demonstrated. Here we utilized the LymphoSIGHT™ method, a next-generation sequencing-based method for lymphocyte characterization and quantification, to quantify clonal evolution at the Ig heavy and kappa chain (IGH and IGK) loci in 63 pts with CLL. Methods: Samples were collected at Stanford University and the Dana-Farber Cancer Institute. Peripheral blood mononuclear cells were isolated, and genomic DNA was extracted. Using unbiased universal primer sets, we amplified IGH and IGK variable, diversity, and joining gene segments. Amplified products were sequenced and analyzed using standardized algorithms for clonotype determination (Faham et al., Blood 2012). CLL-specific clonotypes were identified for each patient based on their high frequency (>5%) within the B-cell repertoire of a diagnostic (dx) sample. The highest frequency CLL clonotype identified in a dx sample is termed the “index clonotype”. Dx and post-treatment peripheral blood samples were assessed for evidence of evolved CLL clonotypes using LymphoSIGHT. A clonotype was considered “evolved” based on CDR3 sequence homology to the dx “index clonotype.” Results: CLL clonotypes were identified in dx samples from 63 pts (51 unmutated IGHV; 12 mutated), and we assessed post-treatment samples for the presence of CLL clonotype-associated oligoclonality. Two of 63 pts exhibited clonal evolution in post-treatment samples. One patient with unmutated CLL was MRD negative for over 7 years following allogeneic hematopoietic cell transplant (HCT), and subsequently became MRD positive with the evolved clonotype (differing by 1 nucleotide from the index clonotype) leading to clinical relapse 9 months after MRD positivity, while the original index clone remained undetectable. The patient was treated with ibrutinib upon clinical relapse and continues to have detectable MRD with the same evolved CLL clonotype (Fig 1A). In a second patient with mutated IGHV, we observed several evolved clonotypes in the dx sample. Multiple evolved clonotypes, including 5 that exhibited a significant increase in their frequency relative to the index clonotype, were present in the follow-up sample after treatment with fludarabine and rituximab (Fig 1B). These evolved clonotypes differed from the index clonotype by 1-4 nucleotides, but otherwise shared CDR3 identity, excluding independently arisen B cell clonotypes. Conclusions: We observed evidence of clonal evolution at Ig loci in a small subset (3.2%) of pts with CLL undergoing treatment. The presence of evolution in pts with CLL indicates that either the SHM mechanism, including the AID enzyme, remains active after neoplastic transformation, or the evolved clonotypes arose through a mechanism distinct from SHM. These evolved CLL clonotypes may have a selective advantage, and may be useful as surrogate markers for other oncogenic mutations providing resistance to therapy. Additional cases are under investigation and updated results will be presented. Figure 1. CLL clonal evolution during therapy. MRD levels of two related Ig clonotypes, expressed as leukemia molecules per million leukocytes in peripheral blood, are shown at multiple time points following allogeneic HCT (A). In another patient undergoing conventional treatment, the level of each individual evolved clonotype as a fraction of the total CLL molecules is plotted at dx and post treatment time points. The index clone, evolved clones with increasing levels post-treatment, and evolved clones with decreasing levels post-treatment are shown in red, blue, and white, respectively (B). Figure 1A. Figure 1A. Figure 1B. Figure 1B. Disclosures Moorhead: Sequenta, Inc.: Employment, Equity Ownership. Carlton:Sequenta, Inc.: Employment, Equity Ownership. Faham:Sequenta, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4424-4424 ◽  
Author(s):  
Clare C. Sun ◽  
Pia Nierman ◽  
Inhye E. Ahn ◽  
Janet Valdez ◽  
Jennifer Lotter ◽  
...  

Abstract Background: Bruton tyrosine kinase (BTK) is a critical component of B-cell receptor signaling and a validated target for CLL. Acalabrutinib is a highly selective, potent, covalent BTK inhibitor, which has shown promising efficacy and safety in patients with CLL, including high-risk patients. We present preliminary efficacy, safety, and pharmacodynamic results from an ongoing single-center, open-label, phase 2 study of acalabrutinib monotherapy in patients with R/R and high-risk, TN CLL. Methods: Patients with R/R or high-risk (chromosome 17p deletion [del17p] or mutation in TP53 or NOTCH1) TN CLL/small lymphocytic lymphoma (SLL) who met International Workshop on Chronic Lymphocytic Leukemia (IWCLL) 2008 criteria for treatment and had an Eastern Cooperative Oncology Group performance status ≤2 were eligible. Patients who had prior BTK inhibitor therapy were excluded. Patients were randomized to receive oral acalabrutinib 100 mg twice daily (BID) or 200 mg daily (QD) until progressive disease or unacceptable toxicity. The primary endpoint was investigator-assessed overall response rate (ORR) by IWCLL 2008 criteria with modification for lymphocytosis. Secondary endpoints included safety and BTK occupancy. BTK occupancy was measured with a biotin-tagged analogue probe in peripheral blood cells at drug trough time points after 3 days of dosing and after 1, 6, and 12 mo of treatment. BTK occupancy in lymph node samples was measured at drug trough time points after 3 days of dosing. Results: Forty-six patients were enrolled and treated (100 mg BID, n=22; 200 mg QD, n=24). The median age was 64 years (range, 45-83), and 35% (16/46) were TN. Approximately 39% of patients (25% of TN) had bulky lymph nodes ≥5 cm, 37% (50% of TN) had Rai stage III-IV disease at baseline, 76% (88% of TN) had unmutatedIGHV, 21% (40% of TN) had del(17p), 21% (23% of TN) had TP53 mutation, and 47% (54% of TN) had NOTCH1 mutation. As of April 13, 2018, the median time on study for all treated patients was 20 mo (range 1-39), with 89% (41/46) remaining on acalabrutinib. Two patients (9%) in the BID group and 3 patients (13%) in the QD group discontinued treatment due to an adverse event (AE; n=1), progressive disease (n=1), and other reasons (n=3). The patient who discontinued due to progressive disease (BID group) achieved partial response at 2 mo and developed Richter transformation at 6 mo. The ORR was 90% (95% CI: 76, 97) for efficacy evaluable patients (N=39), defined per protocol as patients who had ≥ 6 mo of acalabrutinib (Table). ORR was 95% (75, 100) and 84% (60, 97) for the BID and QD group, respectively. For the intent-to-treat population (N=46), ORR was 80% (66, 91). Most AEs were grade 1/2 and did not require dose delays or modifications. The most common AEs (all grades; >25%) were headache (63%), contusion (50%), diarrhea (43%), upper respiratory tract infection (43%), arthralgia (33%), influenza-like illness (28%), maculo-papular rash (28%), myalgia (26%), and nausea (26%). Grade 3/4 AEs occurred in 33% (15/46) of patients (BID, 27% [6/22]; QD, 38% [9/24]), most commonly (>10%) infections (13%; urinary tract infection, lung infection, hepatitis B reactivation, which led to treatment discontinuation and fatal hepatic failure after 10 mo of treatment, and an invasive pulmonary aspergillosis at 2 mo in the setting of prolonged neutropenia and recent systemic corticosteroid use that led to treatment discontinuation) and neutropenia (11%). Approximately 33% (15/46) of patients (BID, 23% [5/22]; QD, 42% [10/24]) reported serious AEs (all grades), most commonly (>5%) lung infection (7%). No atrial fibrillation was reported, and one grade 1 atrial flutter occurred (BID). On day 4 of cycle 1, median trough BTK occupancy was significantly higher for the BID group versus the QD group in the peripheral blood (95% vs 87%; P<0.001) and in the lymph node (98% vs 90%, P<0.001). Median trough BTK occupancy in the peripheral blood was also higher for the BID group at 1, 6, and 12 mo (range, 98%-99% for BID vs 95%-97% for QD; P<0.05 at all time points). Conclusion: Acalabrutinib monotherapy produced high ORR in R/R and high-risk TN CLL, with an acceptable safety profile. The study was not designed to detect a statistically significant difference in clinical outcomes between the dosing groups. Near complete target coverage (>95%) was more rapidly achieved with 100 mg BID than 200 mg QD dosing in the lymph node and peripheral blood. Disclosures Nierman: National Institutes of Health: Employment. Covey:Acerta Pharma: Employment; AstraZeneca: Equity Ownership. Hamdy:Acerta Pharma: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: various patents for ACP-196. Izumi:Acerta Pharma: Employment, Equity Ownership, Patents & Royalties: Acerta Pharma, various patents for ACP-196. Liu:Acerta Pharma: Employment. Patel:Acerta Pharma: Employment, Equity Ownership. Wiestner:Pharmacyclics LLC, an AbbVie Company: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2399-2399 ◽  
Author(s):  
Olga Sala Torra ◽  
Megan Othus ◽  
David W Williamson ◽  
Brent L. Wood ◽  
Ilan Kirsch ◽  
...  

Abstract We used next generation sequencing (NGS) of the immunoglobulin genes to evaluate minimal residual disease (MRD) in 153 specimens from 32 patients with newly diagnosed adult B cell ALL enrolled in the phase II SWOG S0333 multi-center study. We used the clonoSEQTM assay developed by Adaptive Biotechnologies that detects 1 leukemic cell in a background of 1 million nucleated cells and focuses in the B cell receptor (Ig). Initially, a set of pre-study specimens was sequenced in order to identify the precise sequence of the VDJ or DJ fragments. Clones representing more than 5% of the total repertoire of IgH molecules profiled were considered potentially leukemic. The follow-up specimen IgH repertoire sequences were compared to the diagnostic clonal ones and the leukemic marker sequence(s) previously identified were searched for explicitly. At least one Ig clonotype was detected in 29/32 (91%) cases analyzed. The 3 remaining cases were reviewed, and in 2 cases the specimens available for NGS had been reported as having no blasts by morphology. The leukemic clonal sequence was a complete VDJ rearrangement in 17/32 patients (53%), an incomplete DJ rearrangement in 8/32 patients (25%), and in 3/32 cases both VDJ and DJ rearrangements coexisted. One patient had a kappa light chain rearrangement. 17/32 (53%) cases contained more than one IgH rearrangement at diagnosis (median=2, range: 1 - 4). One of our patients is a potential case of therapy driven clonal selection. He presented at diagnosis with two related clones, one representing 75% of VDJ sequences and the second one 18%. At relapse, the second clone was responsible for most of the VDJ sequences (95%). The NGS results were compared to the MRD results detected by multiparameter flow cytometry (MFC) in 66 specimens analyzed by both methods. The concordance between the methods in the qualitative determination of the presence or absence of leukemia was 82% (54/66). In 12 specimens (18%) MRD was detected by sequencing but not by MFC. One specimen had MRD detected at very low levels by MFC and was negative by NGS. Our study includes 54 paired bone marrow (BM) and peripheral blood (PB) specimens. The median values of leukemia detected by NGS were 6-fold higher in BM than PB (range: 0.38 - 821-fold). Twenty-five pairs show no detectable MRD in either specimen. MRD was still detectable in 20 of the remaining 29 PB cases (for one of the pairs the BM specimen was negative). In 6/9 (67%) pairs of samples with disease detectable in BM but not in PB by NGS, no MRD was detected by MFC in the BM specimen. Lastly, outcome analysis was conducted in 21/32 patients with specimen available for MRD studies at the time of registration to second induction. Patients without MRD by NGS had a 5-year relapse free survival (RFS) of approximately 80%, while patients with MRD positive by both NGS and flow have the poorest outcome (p = 0.003) (see Figure). Patients with MRD detectable only by NGS have and intermediate RFS (p = 0.078, and p = 0.04 when compared to patients with MRD negative by both techniques, and patients with leukemia detected both by NGS and flow respectively). These results suggest that MRD detection by immunoglobulin gene sequencing is a very sensitive technique, and may identify patients with an excellent survival. Moreover, the increased sensitivity of the method may allow peripheral blood testing to supplement routine marrow sampling for MRD determination. Figure 1 Figure 1. Disclosures Williamson: Adaptive Biotechnologies: Employment, Equity Ownership. Kirsch:Adaptive Biotechnologies: Employment, Equity Ownership. Robins:Adaptive Biotechnologies: Consultancy, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4170-4170
Author(s):  
Simone C. Oostindie ◽  
Hilma J. Van Der Horst ◽  
Marije B. Overdijk ◽  
Kristin Strumane ◽  
Sandra Verploegen ◽  
...  

Abstract CD37 is a tetraspanin plasma membrane protein abundantly expressed on B-cells and represents a promising therapeutic target for the treatment of B-cell malignancies. Although complement-dependent cytotoxicity (CDC) has proven to be a powerful Fc-mediated effector function for killing hematological cancer cells, CD37 antibody-based therapeutics currently in clinical development are poor inducers of CDC. Here we present DuoHexaBody-CD37, a novel humanized IgG1 bispecific antibody targeting two different CD37 epitopes, with an E430G hexamerization-enhancing mutation, for the potential treatment of B-cell malignancies. The natural process of antibody hexamer formation through intermolecular Fc-Fc interactions between IgG molecules after cell surface antigen binding can be improved by introducing a single point mutation such as E430G in the IgG Fc domain, thereby facilitating more efficient C1q binding and complement activation (Diebolder et al., Science 2014; de Jong et al., PLoS Biol 2016). The hexamerization-enhancing mutation E430G was introduced into two humanized CD37 monoclonal antibodies (mAbs) that bind non-overlapping CD37 epitopes. Different antibody formats and combinations, including the single antibodies, combinations of the mAbs and bispecific mAbs were tested for their capacity to induce CDC and antibody-dependent cellular cytotoxicity (ADCC). The bispecific hexamerization-enhanced antibody variant DuoHexaBody-CD37, showed superior CDC activity compared to the single hexamerization-enhanced mAbs and the combination thereof, both in vitro over a range of different B-cell lines, and ex vivo in tumor cell samples obtained from patients with chronic lymphocytic leukemia (CLL). In a CDC assay using tumor cells obtained from a relapsed/refractory CLL patient who received prior treatment with rituximab, ibrutinib and idelalisib, DuoHexaBody-CD37 induced almost complete lysis (84% lysis at a concentration 100 µg/mL), thereby outperforming the single HexaBody molecules (15% and 23% lysis) and the combination (57%) (Figure 1). In addition to its potent CDC activity, DuoHexaBody-CD37 was also capable of inducing potent ADCC of Daudi cells (EC50 = 12.3 ± 9.5 ng/mL), as assessed using peripheral blood mononuclear cells from 8 healthy human donors in a standard chromium release assay. In assays using whole blood from 6 healthy human donors, DuoHexaBody-CD37 showed efficient B-cell binding and potent and specific depletion of the B-cell population (98% ± 1.3% depletion at 10 µg/mL, EC50 = 0.85 ± 0.284 µg/mL). Furthermore, DuoHexaBody-CD37 induced significant inhibition of tumor growth in vivo in Daudi-luc Burkitt's lymphoma and JVM-3 CLL mouse xenograft models, at doses as low as 0.1 and 1 mg/kg (p<0.05), respectively. In summary, we present a novel therapeutic antibody that, for the first time, combines proprietary DuoBody® and HexaBody® platforms. DuoHexaBody-CD37 induced highly potent CDC and efficient ADCC in preclinical models, suggesting that DuoHexaBody-CD37 may serve as a potential therapeutic mAb for the treatment of human B-cell malignancies. Disclosures Oostindie: Genmab: Employment, Equity Ownership. Van Der Horst:Genmab: Research Funding. Overdijk:Genmab: Employment, Equity Ownership. Strumane:Genmab: Employment, Equity Ownership. Verploegen:Genmab: Employment, Equity Ownership. Lindorfer:Genmab: Research Funding. Cook:Genmab: Research Funding. Chamuleau:Gilead: Research Funding; BMS: Research Funding; celgene: Research Funding; Genmab: Research Funding. Mutis:Gilead: Research Funding; Celgene: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genmab: Research Funding; Novartis: Research Funding; OnkImmune: Research Funding. Schuurman:Genmab: Employment, Other: Warrants. Sasser:Genmab: Employment, Equity Ownership. Taylor:Genmab: Research Funding. Parren:Genmab: Equity Ownership; Lava Therapeutics: Employment. Beurskens:Genmab: Employment, Equity Ownership. Breij:Genmab: Employment, Equity Ownership.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 57-57 ◽  
Author(s):  
Jan A. Burger ◽  
Susan O'Brien ◽  
Nathan Fowler ◽  
Ranjana Advani ◽  
Jeff Porte Sharman ◽  
...  

Abstract Abstract 57 Introduction: Bruton's tyrosine kinase (Btk) is a downstream mediator of B-cell receptor (BCR) signaling and is not expressed in T-cells or NK-cells. As such, Btk represents an ideal therapeutic target for B-cell malignancies dependent upon BCR signaling. Chronic lymphocytic leukemia (CLL)/small lymphocytic leukemia (SLL) has been reported to have constitutively active BCR signaling. PCI-32765 is a potent, selective, irreversible and orally bioavailable small molecule inhibitor of Btk that has pre-clinical activity in B-cell malignancies (Proc Natl Acad Sci 2010;107(29):13075-80). PCI-32765 was therefore moved forward to a Phase 1 study in B-cell malignancies including patients (pts) with CLL/SLL. A subsequent CLL/SLL-specific Phase 1b study was initiated to further explore safety, pharmacokinetics (PK), pharmacodynamics (PD), and efficacy of PCI-32765. This report includes a composite summary of the CLL/SLL experience in both of these studies. Pts and Methods: Pts with CLL/SLL who had relapsed or refractory disease after >1 prior treatment regimens were eligible for treatment in each of the studies whereas the second Phase 1b study also included a cohort of elderly pts (aged ≥ 65 years) with CLL/SLL who required treatment and were “treatment-naive”. Responses were assessed by the investigator using the International Working Group CLL criteria (Hallek et al, Blood 2008 for pts with CLL) and the International Workshop to Standardize Response Criteria for Non-Hodgkin's Lymphomas (Cheson et al, J Clin Oncol 2007 for pts with SLL). Results: To date, 30 CLL/SLL patients (including 4 treatment-naive) have been enrolled across the 2 studies. Eighty-four percent of subjects are men with an overall median age of 68 (range 44–82) years. Of the subjects with prior therapy for CLL/SLL the median number of prior therapies is 3 (range 1–4). Treatment has been well-tolerated; Grade ≥ 3 toxicities have been infrequent (10/30 pts; 33%). Two study-drug related serious adverse events have been reported: 1 case of viral adenitis (Grade 3) and 1 case of viral infection (Grade 2). Two adverse events have led to discontinuation of study drug: a small bowel obstruction (Grade 3) and exacerbation of chronic obstructive disease (Grade 3); both events were reported as unrelated to study drug. No study-drug related deaths have reported. There has been no change in either NK cell or T cell counts. Target inhibition as measured by a probe of Btk drug occupancy showed inhibition of Btk at PCI-32765 exposure levels of ≥ 245 ng•h/mL. Of the 14 patients currently evaluable for response using the pre-defined criteria, the overall response rate is 64% (1 complete remission [CR], 8 partial remissions [PR], and 4 SD). Both studies are ongoing and open to enrollment. An update on response rate, response duration, safety, and PD information will be presented on enrolled patients based on a November 2010 database cut-off. Conclusion: PCI-32765 is a novel oral and selective “first-in-human” inhibitor of Btk that induces objective partial and complete responses in a substantial proportion of pts with CLL/SLL and has a favorable safety profile. These data support further studies of both monotherapy and also combination treatment with PCI-32765 in CLL/SLL. Disclosures: O'Brien: Pharmacyclics, Inc: Honoraria, PI grant. Fowler:Pharmacyclics: Consultancy, Research Funding. Advani:Pharmacyclics, Inc: Honoraria, PI grant. Sharman:Pharmacyclics, Inc: Honoraria, PI grant. Furman:Pharmacyclics, Inc: PI grant. Izumi:Pharmacyclics, Inc: Employment. Buggy:Pharmacyclics, Inc: Employment, Equity Ownership. Loury:Pharmacyclics: Employment, Equity Ownership. Hamdy:Pharmacyclics, Inc: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2858-2858 ◽  
Author(s):  
Tapan Kadia ◽  
Maria L Delioukina ◽  
Hagop M. Kantarjian ◽  
Michael J Keating ◽  
William G. Wierda ◽  
...  

Abstract Abstract 2858 Inhibition of B cell receptor signaling is an important mechanism of controlling the proliferation and survival of B cell chronic lymphocytic leukemia (CLL) cells. Lyn, a member of the Src kinase family, couples the B cell receptor to downstream signaling and is over expressed in CLL cells relative to normal B lymphocytes. Lyn is upstream from regulatory kinases in B cells such as PI3 kinase Δ and Bruton's tyrosine kinase, which have been successfully targeted for the treatment of CLL. Addition of Lyn kinase inhibitors to CLL cell cultures accelerates apoptosis; treatment of CLL cells with drugs that induce apoptosis decreases both the activity and amount of Lyn kinase (Contri et al, J Clin Invest, 2005; 115 :369–78). These findings support a critical role for Lyn kinase in CLL pathogenesis by showing correlation between high basal Lyn activity and defects in induction of apoptosis in CLL cells. Thus bafetinib, a limited Src family kinase inhibitor targeting BCR/ABL, Lyn, and Fyn kinases, may suppress the growth of CLL cells by inhibiting Lyn kinase and thus have clinical activity. Methods and Objectives: We conducted a single arm, open-label phase 2 trial of single-agent bafetinib in patients with CLL who were relapsed or refractory to > 1course of treatment with either an alkylating agent, rituximab, or a fludaribine-based regimen. Patients were treated with oral bafetinib twice daily (BID), continuously until disease progression or unacceptable toxicity. Endpoints included response assessment by International Working Group CLL Criteria (Hallek et al, Blood, 2008) and toxicity. Results: At the time of analysis, 16 patients were administered bafetinib in the intent-to-treat population at 2 study sites (MD Anderson Cancer Center and City of Hope Cancer Center). The median age was 71 years (range 55–88 years); 13 patients were male. 13 patients were Caucasian and 3 were African-American. Of the 12 patients who were tested, 9 had del (17p;13). Patients had received a median of 3 prior treatment regimens (range 1–6). Where indicated, 5/16 (31%) patients were Rai stage I, 5/16 (31%) Rai stage II, 1/16 (6%) Rai stage III and 5/16 (31%) Rai stage IV. 14/16 patients had ECOG performance scores of 0 or 1. The median duration of treatment with bafetinib was 2 months (range 0.25 to 5 months). 11/16 patients were evaluable for response (baseline + > 1 post-baseline evaluation). There were no objective responses by IWCLL 2008 criteria. Partial nodal responses (> 50% reduction in bidimensional measurements in lymph nodes and/or > 50% shrinkage in spleen size) were observed in 7/11 evaluable patients. 2 patients had stable disease post baseline assessments and 2 patients demonstrated progressive disease at their initial evaluation post baseline. 14 patients were evaluable for toxicity. Almost all of the treatment-related adverse events were grade 1 or 2, with fatigue, nausea and elevated liver enzymes being the most common. Grade 1–2 elevated liver enzymes occurred in 9/14 patients; 1/14 patients had a grade 3 elevated liver enzymes and was removed from the study. No patients exhibited elevated bilirubin. One patient with Parkinson's disease had a worsening of his symptoms and was withdrawn from the trial. No treatment-related serious adverse events occurred. Conclusion: Bafetinib, a Lyn kinase inhibitor, shows promise in patients with relapsed/refractory B-CLL at a dose of 240 mg orally BID. No treatment-limiting toxicity was observed at this dose level. Preliminary PK analysis from a parallel solid tumor study indicated that peak bafetinib concentrations at this dose only reach 0.3–0.6 μM, which is below the concentrations that inhibit the growth of B-CLL cells in vitro (1–1.5 μM). A higher dose level of 360 mg orally BID is being investigated. Future studies involving combinations of bafetinib with monoclonal antibodies and chemotherapy are planned. Disclosures: Kadia: CytRx Corporation: Research Funding. Delioukina:CytRx Corporation: Research Funding. Wieland:CytRx Corporation: Employment, Equity Ownership. Levitt:CytRx Corporation: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2666-2666
Author(s):  
Yasuhiro Oki ◽  
Malek Faham ◽  
Victoria Carlton ◽  
Sattva S. Neelapu ◽  
Anas Younes

Abstract Abstract 2666 Background: In patients with diffuse large B-cell lymphoma (DLBCL), circulating lymphoma cells in the bloodstream are rarely detected by conventional morphology or flow cytometry evaluation. We developed a high-throughput sequencing based platform, LymphoSIGHT, to detect evidence of lymphoid malignancies in peripheral blood samples, as this could potentially be used for detection of minimal residual disease after treatment. This sequencing method has a sensitivity to detect one lymphoma cell per million leukocytes in peripheral blood. We herein report the results of our pilot study assessing the ability of this method to detect the lymphoma clone in peripheral blood samples from 5 DLBCL patients at the time of diagnosis. Methods: This study has been approved by IRB and consent has been obtained from patients. Using universal primer sets, we amplified immunoglobulin heavy chain (IgH@) variable, diversity, and joining gene segments from genomic DNA in tumor biopsy and peripheral blood samples (plasma and peripheral blood mononuclear cell (PBMC) compartments) collected at initial diagnosis. Amplified products were sequenced to obtain >1 million reads (>10× sequencing coverage per IgH molecule), and were analyzed using standardized algorithms for clonotype determination. Tumor-specific clonotypes were identified for each patient based on their high-frequency within the B-cell repertoire in the lymph node biopsy sample. The presence of the tumor-specific clonotype was then quantitated in cell-free and PBMC compartments from the diagnostic blood sample. A quantitative and standardized measure of clone level among all leukocytes in the diagnostic sample was determined using internal reference DNA. Results: We detected a high-frequency IgH clonal rearrangement in all 5 lymph node biopsy samples. The lymphoma clonotype that was identified in the tumor biopsy was also detected in the plasma and/or PBMC compartment in all 5 patients at diagnosis. Specifically, the lymphoma clonotype was detected in the plasma compartment in 4 patients, while 3 patients demonstrated the presence of the lymphoma clonotype in the PBMC compartment (Table 1). We hypothesize that the positive lymphoma clone in the plasma is due to rapid proliferation and necrosis of the primary tumor, releasing the degraded component of lymphoma into the blood stream. However, in this small sample size, we did not observe an obvious correlation between the level of detection (PBMC or plasma) and clinical parameters (LDH, stage, size of tumor, tumor Ki67, cell-of-origin). All patients achieved complete response after initial treatment and four are being followed. We plan to analyze blood specimens while they are in remission. Conclusions: IgH clonal rearrangements were detected by sequencing in all tumor biopsy samples. Importantly, all peripheral blood samples showed signs of circulating lymphoma material in either the plasma or PBMC compartment at diagnosis. Analysis of diagnostic and post-therapy samples from additional DLBCL patients is ongoing. These data will determine whether the sequencing assay is a strong indicator for response to therapy and relapse monitoring. Disclosures: Faham: Sequenta, Inc.: Employment, Equity Ownership, Research Funding. Carlton:Sequenta, Inc.: Employment, Equity Ownership, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1984-1984 ◽  
Author(s):  
Howard A. Burris ◽  
Manish R. Patel ◽  
Danielle M. Brander ◽  
Owen A. O'Connor ◽  
Changchun Deng ◽  
...  

Abstract Background: TGR-1202 is a novel oral, next generation PI3Kδ inhibitor which notably lacks the hepatotoxicity associated with other PI3Kδ inhibitors. Preliminary data from an ongoing Ph I study of TGR-1202 demonstrated clinical activity in patients with advanced hematologic malignancies (ASCO 2014). Herein we present updated results from this Phase I, first in human study of TGR-1202 in patients with relapsed and/or refractory CLL and B-cell lymphoma. Methods: TGR-1202 is administered orally once daily following a 3+3 dose escalation design. Previously treated patients with an ECOG PS ≤ 2 and confirmed diagnosis of B-cell non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL), or other lymphoproliferative disorders are eligible. Endpoints include safety, PK/PD, and efficacy. Results: 49 patients have been enrolled to date of various lymphoma subtypes including CLL, follicular lymphoma (FL), Hodgkin’s lymphoma (HL), DLBCL, mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL). Demographics: 76% male, ECOG 0/1/2: 17/31/1, median age of 59 yrs (range: 22-85), median prior treatment regimens: 3 (range: 1-14), and 43% were refractory to prior treatment. 35 patients have been treated at doses ≥ 800 mg of a previous formulation where a threshold effect in activity was observed, and 6 have been treated with an improved micronized formulation (≥ 200 mg). TGR-1202 was well tolerated and no MTD has been reached to date. The only Gr≥3 AE occurring in >5% of patients was neutropenia (8%). AE’s of all grades occurring in >20% of patients were limited to diarrhea (24%), cough (22%), fatigue (20%), and nausea (20%). Notably, in comparison to other PI3Kδ inhibitors, no hepatotoxicity and no cases of colitis have been observed to date. Rates of infection and pneumonia have also been low (12% and 6%, respectively), and no cases of febrile neutropenia have been reported. Of the 41 patients treated at ≥ 800 mg of the previous formulation or with the micronized formulation, 32 are evaluable for efficacy (6 too early to evaluate, 2 non-compliant, 1 did not meet I/E criteria). Responses have been limited in patients with aggressive lymphoma and HL. Of the 9 evaluable CLL patients, 8 (89%) achieved a nodal PR (median nodal reduction of 71%), of which 5 achieved a PR per Hallek 2008 criteria with the remaining 4 having persistent lymphocytosis. The 1 CLL patient with SD had a >40% nodal reduction and remains on study. Of the 7 evaluable FL patients, all have shown clinical benefit with a reduction in tumor burden with 2 having achieved a PR, and the remaining 5 patients in SD. Additionally 2 MZL patients each achieved SD with >25% nodal reductions and remain on study. Notably, no patient with CLL or indolent lymphoma (FL & MZL) treated at ≥800 mg has progressed to date (median time on study of 20 weeks, range 6 – 73+), and no patient who achieved >50% reduction in tumor burden (including patients with CLL, FL, and HL) has progressed, with median time on study of 34 weeks (range 7 – 68+). Pharmacodynamic analysis in CLL patients indicates rapid suppression of pAKT at doses of 400 mg QD of the previous formulation. Conclusions: TGR-1202 is well tolerated in patients with relapsed and/or refractory hematologic malignancies with no reported hepatotoxicity or events of colitis and promising clinical activity. Enrollment continues in expansion cohorts and with the micronized formulation. Disclosures Brander: Celgene: Mentor received research funding Other. O'Connor:Celgene: Consultancy; Millennium Pharmaceuticals: Consultancy. Miskin:TG Therapeutics, Inc.: Employment, Equity Ownership. Sportelli:TG Therapeutics: Employment, Equity Ownership. Vakkalanka:Rhizen: Employment, Equity Ownership. Flinn:Infinity Pharmaceuticals: Consultancy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3500-3500 ◽  
Author(s):  
Vincent Ribrag ◽  
Silvia Damien ◽  
Mecide Gharibo ◽  
Mercede Gironella ◽  
Armando Santoro ◽  
...  

Abstract Background: CC-122 is a novel non-phthalimide analog of the IMiDs® immunomodulatory drugs (lenalidomide and pomalidomide) and a first in class PPMTM (Pleiotropic Pathway Modifier) compound with multiple biological activities including potent anti-proliferative activity against B-lineage cells (10-fold greater than lenalidomide), anti-angiogenic activity (100-fold greater than lenalidomide) and immunomodulatory effects (10-fold greater than lenalidomide). The molecular target of CC-122 is cereblon (CRBN), a substrate receptor of the Cullin ring E3 ubiquitin ligase complex (CRL4CRBN). CC-122 promotes ubiquitination of lymphoid transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) in a CRBN-dependent manner, leading to their subsequent degradation. Following establishment of 3mg once daily (QD) as the maximum tolerated dose (Blood 122:2905 2013), patients with advanced aggressive non-Hodgkin lymphoma (NHL), multiple myeloma (MM), and select solid tumors were enrolled in parallel expansion cohorts of up to 20 evaluable patients. CC-122 was dosed at 3 mg QD in 28-day cycles until disease progression. Results: As of May 1, 2014, 93 total patients were enrolled in the expansion phase of the study. The NHL cohort included 21 patients with diffuse large B-cell lymphoma (DLBCL) and 1 patient with mantle cell lymphoma, and twenty-four patients were enrolled in the MM cohort. Results in solid tumor cohorts will be reported separately. All patients were ECOG performance status 0-2, the median number of prior systemic therapies was 4 (NHL) and 6 (MM). The most common (> 20%) adverse events (AEs) (grades 1-4) included neutropenia (69.6%), anemia (52%), asthenia (50%), pyrexia (35%), diarrhea (30%), cough (30%), thrombocytopenia (28%), and constipation (22%). Grade 3/4 AEs occurring in more than one patient were neutropenia (52%), anemia (26%), febrile neutropenia (13%), and thrombocytopenia (7%). CC-122 dose reduction was required in 36.4% of patients with NHL and 63% of patients with MM, the majority of which was due to neutropenia and occurred during cycle 1 or 2. CC-122 systemic exposure in NHL and MM patients was generally comparable after administration of single and multiple doses. Peak concentrations were observed between 30 minutes and 2 hours (median Tmax concentration = 1.5 h). Four treated patients with DLBCL had objective responses; one patient with complete response (CR) and 3 with partial responses (PR). Responses were observed in patients with germinal center B cell (GCB), non-GCB and Myc/Bcl2 over-expressing DLBCL. Four treated patients with MM had PR, and two of these responders were progression free beyond 10 cycles. A single dose of CC-122 3mg resulted in decreased Aiolos protein expression at 1.5 and 5 hours compared with baseline in peripheral B cells (median 38% and 53%) and T cells (median 31% and 54%) in the combined NHL (n = 16) and MM (n = 19) cohorts. Decrease in expression of Aiolos protein from baseline was also observed in lymph node biopsies of patients with DLBCL. Furthermore, CC-122 treatment decreased CD19+ B cells (median = 57% of baseline), expanded CD4-/CD8+/CD45RA-/CD45RO+ cytotoxic memory T cells (median = 320% of baseline), and expanded CD4+/CD8-/CD45RA-/CD45RO+ helper memory T cells (median = 154% of baseline) in peripheral blood samples from patients with MM (n = 9) and NHL (n = 3-12) subjects. Additionally, ex vivo activation of T cells after a single dose of CC-122 compared with baseline, as measured by IL-2 production, increased by a median of 776% (NHL n = 3 and MM n = 7). Conclusions: CC-122 shows promising initial clinical and pharmacodynamic activity in heavily pretreated relapse/refractory NHL and MM patients. Biomarker analysis indicates that the 3 mg QD dose of CC-122 results in rapid CRBN target engagement and Aiolos degradation in the peripheral blood lymphocytes of patients with NHL and MM patients and in NHL tumor tissue. Exploration of an intermittent dosing to mitigate neutropenia-related dose reductions and interruptions is ongoing and clinical studies exploring drug combinations with CC-122 are underway. Disclosures Ribrag: Celgene Corp: Consultancy. Rasco:Celgene Corp: Membership on an entity's Board of Directors or advisory committees. Wei:Celgene Corp: Employment, Equity Ownership. James:Celgene Corp: Employment. Hagner:Celgene Corp: Employment, Equity Ownership. Gandhi:Celgene Corp: Employment, Equity Ownership. Chopra:Celgene Corp: Employment, Equity Ownership. DiMartino:Celgene Corp: Employment, Equity Ownership. Pourdehnad:Celgene Corp: Employment, Equity Ownership. Stoppa:Celgene Jansen: Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1721-1721
Author(s):  
Sabine Jeromin ◽  
Wolfgang Kern ◽  
Richard Schabath ◽  
Tamara Alpermann ◽  
Niroshan Nadarajah ◽  
...  

Abstract Background: Relapse or refractory disease is a challenging clinical problem in the majority of chronic lymphocytic leukemia (CLL) patients. Treatment influences the clonal composition by selection and eventually induction of additional genetic abnormalities. Aim: To characterize the clonal evolution in relapsed CLL patients by deep-sequencing analysis of mutations in ATM, BIRC3, NOTCH1, POT1, SF3B1, SAMHD1 and TP53. Patients and Methods: Sequential samples of 20 relapsed CLL patients at three time-points were evaluated: A: at diagnosis (n=16) or in untreated state (n=4), B: at first relapse (n=20) and C: at second relapse (n=2). Patients were treated with diverse treatment schemes and had temporarily achieved either complete or partial remission during the course of the disease. The median time from diagnosis to first-line treatment was 13 months (1 - 169 months). All geneswere sequenced by a deep sequencing approach (Illumina, San Diego, CA). IGHV mutational status was determined by direct Sanger sequencing at time-point A. Chromosome banding analysis (CBA) and FISH data on del(17p), del(11q), trisomy 12 (+12), and del(13q) were available in 33/42 and 36/42 samples, respectively. Results: Initially, samples at first relapse were sequenced. Mutations in SF3B1 (6/20, 30%), TP53 (5/20, 25%), ATM (5/20, 25%), NOTCH1 (4/20, 20%), and SAMHD1 (3/20, 15%) were detected at high frequencies. No mutations were detected in BIRC3 and POT1. In total, 75% of cases presented with at least one mutation (Figure 1): 8 (40%) cases had one, 6 (30%) cases had two and one patient had three genes concomitantly mutated (mut). Patients were also analyzed for IGHV mutational status at diagnosis and presented with unmutated status at a frequency of 85% (17/20). Subsequently, samples from cases with mutations were analyzed at time-point A. In 12/15 (80%) cases the mutations at relapse were already detectable at time-point A with a similar load indicating presence of the main clone before and after chemotherapy. However, in 7/15 (47%) patients new gene mutations were acquired either additionally to existing mutations (n=4) or in previously wild-type cases (n=3). In 5/7 (71%) cases mutations were located in TP53. TP53 mut were the only mutations that were not detected in samples before treatment (sensitivity of 3%). Thus, TP53 mutations might have been initiated by chemotherapy or exist in a minor subclone subsequently selected by chemotherapy. Furthermore, only 4 cases had low-level mutations (3-6% mutation load) at diagnosis in either SAMHD1 or SF3B1 that eventually increased in their burden during disease course. Of note, in two patients a multibranching clonal evolution could be identified (#2, #9). For patient #2 three time-points were analyzed. At diagnosis 2 ATM mutations were detected with mutation loads of about 20%, each. In the course of the disease these mutations were lost, whereas SF3B1 mut showed a stable mutation load in all three time-points of about 40%. In contrast, mutation load of SAMHD1 increased over time from 4% to 87%. CBA was performed at diagnosis and detected independent clones with del(11q) and del(13q). Accordingly, del(11q) detected by FISH at diagnosis was lost and the percentage of cells with del(13q) increased from diagnosis to time-point C. Therefore, patient #2 shows different genetic subclones in parallel that were eradicated or selected by chemotherapy. In patient #9 two SF3B1 mutations were initially detected with the same mutation load of 10%. After treatment one mutation was lost, whereas the load of the second mutation increased indicating at least two different subclones with only one of them being sensitive to chemotherapy. This might be due to different additional aberrations. Indeed, CBA identified two clones: one with +12 alone and one in combination with del(13q). FISH revealed unchanged percentage of +12 at time-point B, whereas del(13q) positive cells were diminished. Conclusions: In 75% of relapsed CLL cases mutations in SF3B1, TP53, ATM, NOTCH1, and SAMHD1 are present at high frequencies. 80% of these mutations are already detectable before treatment initiation representing the main clone. Remarkably, TP53 mutations were the only mutations that were not detected before but only after chemotherapy. Figure 1. Distribution of gene mutations in 15 CLL cases with mutations at diagnosis or before treatment (D) and at relapse (R). Red = mutated, grey = wild-type, white = not analyzed. Figure 1. Distribution of gene mutations in 15 CLL cases with mutations at diagnosis or before treatment (D) and at relapse (R). Red = mutated, grey = wild-type, white = not analyzed. Disclosures Jeromin: MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schabath:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3870-3870
Author(s):  
Claudia Haferlach ◽  
Melanie Zenger ◽  
Susanne Schnittger ◽  
Wolfgang Kern ◽  
Torsten Haferlach

Abstract Abstract 3870 Background and Aim: CLL is a chronic disease with heterogeneous clinical course. While a subset of patients requires early treatment others are followed without treatment for many years. Cytogenetic aberrations have major impact on the prognosis. The aim of this study was to evaluate 1) the frequency of gain of additional chromosome aberrations during the course of the disease (clonal evolution,CE) 2) the pattern of genetic abnormalities acquired during the CE 3) the association between genetic parameters at diagnosis and CE and 4) the impact of CE on clinical outcome. An additional aim was to compare monitoring by interphase FISH (IP-FISH) or chromosome banding analysis (CBA). Patients and Methods: Two different cohorts were evaluated: A) 363 CLL patients who were analyzed during the course of their disease at least at 2 time points by IP-FISH. In this cohort only patients were enrolled who were analyzed at each time point with the complete FISH panel using probes for 13q14 (D13S25, D13S319), 11q22 (ATM), 17p (TP53), 6q21/6q23, chromosome 12 centromer and IGH -CCND1. B) 245 CLL patients who were evaluated by CBA at least at 2 time points. 179 cases were included in both cohorts. Results: In cohort A 954 FISH analyses were performed in 363 cases (mean: 2.6, range: 2–14). The median time between the first and the last evaluation was 21.1 months (range 1.0–68.9 months). Overall, in 42 of 363 patients (11.6%) clonal evolution was observed, 9.3% of untreated and 16.8% of treated patients showed clonal evolution (p=0.05). The most frequently acquired abnormality was a 17p deletion detected in 12/42 (28.6%) cases, followed by deletion of 13q14 and 11q22 (9 cases each, 21.5%). In 6/131 (4.6%) cases with heterozygous 13q14 deletion at first analysis a homozygous 13q14 deletion was observed during follow up. In 290 of 363 the IGHV mutation status was available. An unmutated IGHV status tended to be associated with clonal evolution, 26/35 (74.3%) cases with and 147/255 (57.6%) patients without clonal evolution showed an unmutated IGHV status (p=0.067). No association between any specific abnormality detected by FISH and clonal evolution was observed. The median time between first FISH analysis and the first detection of clonal evolution was 25 months (range 2–65 months). In cohort B 618 CBA were performed in 245 cases (mean: 2.5, range: 2–8). The median time between the first and the last evaluation was 18.8 months (range 1.0–68.9 months). In 73 patients (30.0%) clonal evolution was observed. The most frequently acquired abnormality was loss of 17p detected in 26 cases, followed by deletion of 13q (n=21), and 11q (n=8). Other recurrent aberrations occurring during CE were gains of 8q (n=14), 13q (n=11), 17q (n=8), 1q (n=7), 3q (n=6), 16q (n=6), 4q (n=5), 1p (n=5), 9q (n=4), 15q (n=4), losses of 8p (n=10), 9q (n=8), 8q (n=7), 9p (n=7), 6q (n=7), 1q (n=6), 6p (n=5), 1p (n=5), 10q (n=4), 7q (n=3) and 14q32-rearrangement (n=6) with different partners (2p11, 4p16, 10p11, 2x 8q24, 19q13). In 202 of 245 patients the IGHV mutation status was available. An unmutated IGHV status was significantly more frequent in cases with as compared to patients without CE (44/62 (71.0%) vs 75/140 (53.6%), p=0.021). The median time between first CBA and the first detection of clonal evolution was 21 months (range 1–65 months). Clonal evolution was observed in 7/48 (14.6%) patients with normal karyotype, in 48/159 (30.2%) cases with non-complex aberrant karyotype and in 18/38 (47.4%) patients with complex karyotype (≥ 3 abnormalities) (p=0.04 for normal vs non-complex aberrant and p=0.056 for non-complex aberrant vs complex). For 135 of 245 cases clinical data with respect to treatment was available (45 cases with and 90 without CE). 33/45 (73%) patients with and 52/90 (57.8%) without clonal evolution had received treatment. A tendency towards a shorter overall survival was observed in patients with as compared to patients without CE detected by CBA (alive at 10 yrs 75.4% vs 93.5%). Conclusions: 1. Chromosome banding analysis detects clonal evolution more frequently than IP-FISH (30.0% vs 11.6%). 2. Clonal evolution occurs more frequently in patients with an unmutated IGHV status and an aberrant karyotype with the highest frequency in patients with complex karyotype. 3. Sequential analyses by FISH and CBA seem reasonable as especially 17p abnormalities occur frequently during the course of the disease, which impacts on treatment decisions. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Zenger:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document