scholarly journals Citron Rho-Interacting Serine/Threonine kinase (CIT) Is a Novel Therapeutic Target in Multiple Myeloma Cells

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3430-3430
Author(s):  
Yawara Kawano ◽  
Ilyas Sahin ◽  
Michele Moschetta ◽  
Jinhua Wang ◽  
Salomon Manier ◽  
...  

Abstract Introduction: Citron rho-interacting serine/threonine kinase (CIT) is a serine/threonine kinase which is a key component of the midbody and is essential for cytokinesis. CIT localizes to the central spindle and midbody and functions to promote efficient cytokinesis. CIT knockdown may disrupt cytokinesis and therefore cell growth. CIT has been reported to be upregulated and important for growth of several cancers. However, the significance of CIT has not been investigated in the field of multiple myeloma (MM). We therefore dissected the role of CIT in MM growth in vitro and in vivo. Materials and methods: CIT gene expression in MM cells was compared to normal plasma cells using public-available gene expression profile (GEP) data set (GSE6477). Kaplan-Meier curve for MM patient survival between high and low CIT expressing patients were examined by using the GEP data set (GSE4581). Protein expression of CIT in MM cells was confirmed by proteomic analysis and immunohistochemistry. Knockdown of CIT was performed in MM cell lines MM1s and OPM2 using lentiviral shRNAs. CIT knockdown was confirmed by reduced CIT mRNA in comparison to a scrambled control. Differences in cell proliferation and cell cycle between CIT knockdown cells and scramble control were analyzed by using thymidine uptake and PI staining, respectively. Cytokinesis failure was analyzed by immunofluorescence using alpha-tubulin antibody and DAPI. shCIT OPM2 (n=7) and the scrambled control cells (n=8) were injected subcutaneously into SCID-Bg mice (5x106 cells/mouse) and were followed for tumor development and survival. Results: CIT expression was significantly higher in MM patients’ plasma cells compared to healthy donors in GEP (p=0.02), proteomic analysis and immunohistochemistry. Also CIT expression was higher in relapsed patients compared to newly diagnosed patients by GEP. MM patients with high CIT expression had significantly worse overall survival compared to low CIT expressing patients (p=0.04). CIT knockdown MM cell lines showed reduced cell proliferation and G2 cell cycle arrest by thymidine uptake and PI staining compared to the scrambled control. Significantly, large amount of multinucleated cells, which indicates cytokinesis failure, were observed in the CIT knockdown cells compared to scrambled control. Reduced tumor growth (p<0.001) and prolonged survival (p<0.001) was observed in CIT knockdown MM cell line injected mice. Conclusions: shRNA knockdown of CIT in MM cells induces G2 arrest leading to cytokinesis failure in vitro with reduced cell proliferation in vivo. Since MM cells have significantly higher expression of CIT compared to normal plasma cells, CIT represents a novel therapeutic target for MM. Studies are ongoing to develop drugs to target CIT for MM treatment. Disclosures Anderson: Celgene: Consultancy; Sanofi-Aventis: Consultancy; Onyx: Consultancy; Acetylon: Scientific Founder, Scientific Founder Other; Oncoprep: Scientific Founder Other; Gilead Sciences: Consultancy. Ghobrial:Onyx: Advisory board Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.

2019 ◽  
Vol 3 (7) ◽  
pp. 995-1002 ◽  
Author(s):  
Ilyas Sahin ◽  
Yawara Kawano ◽  
Romanos Sklavenitis-Pistofidis ◽  
Michele Moschetta ◽  
Yuji Mishima ◽  
...  

Abstract Citron Rho-interacting serine/threonine kinase (CIT) is a serine/threonine kinase that acts as a key component of the midbody and is essential for cytokinesis. CIT has been reported to be highly expressed in some tumor tissues and to play a role in cancer proliferation; however, the significance of CIT has not been investigated in multiple myeloma (MM). Here, we identified, by protein microarray and immunohistochemistry, that CIT is 1 of the upregulated proteins in the plasma cells of MM patients compared with healthy controls. Analysis of a gene expression profile data set showed that MM patients with high CIT gene expression had significantly worse overall survival compared with MM patients with low CIT gene expression. CIT silencing in MM cell lines induced cytokinesis failure and resulted in decreased MM cell proliferation in vitro and in vivo. TP53 expression was found to be an independent predictor of CIT dependency, with low-TP53 cell lines exhibiting a strong dependency on CIT. This study provides the rationale for CIT being a potential therapeutic target in MM in future trials.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 272-272 ◽  
Author(s):  
Aldo M Roccaro ◽  
Antonio Sacco ◽  
Cristina Jimenez ◽  
Patricia Maiso ◽  
Michele Moschetta ◽  
...  

Abstract Background The C-X-C chemokine receptor type 4 (CXCR4) plays a crucial role in modulating the biology of B-cell lymphoproliferative disorders. Recent whole genome sequencing studies have identified unique CXCR4 mutations in 29% of the 55 evaluated patients with Waldenstrom Macroglobulinemia (WM). In this study, we sought to better define the mutation status of CXCR4 in B-cell malignancies and define the functional role of this mutation in the progression of WM in vivo. Methods Allele-specific(AS) PCR has been performed on bone marrow (BM)-derived tumor cells of patients with WM (n: 131); IgM monoclonal gammopathy of undetermined significance (MGUS; n: 40); as well as in patients with diffuse large cell lymphomas (DLBCL; n: 75), splenic marginal zone lymphoma (SMZL; n: 14), B-chronic lymphocytic leukemia (B-CLL; n: 37), hairy cell leukemia (HCL; n: 35), multiple myeloma (MM; n: 36), IgA/IgG MGUS (n: 22), lymphoplasmacytic lymphoma without WM criteria (n: 13), and amyloidosis (n: 6). CXCR4-loss and -gain of function studies have been performed on WM cells stably expressing either shRNA-CXCR4, CXCR4-ORF-GFP-tagged or scramble-RFP-tagged (generated via lentivirus-based infection). A mutagenesis kit has been used to generate the C1013GCXCR4 mutant protein (C1013GCXCR4) in WM cells, via lentivirus-based infection. CXCR4-knock-in or C1013GCXCR4-mutated cells and the corresponding controls have been injected i.v. into SCID/Bg mice and tumor dissemination has been evaluated ex vivo by immunohistochemistry IHC (human-CD20; -CXCR4). C1013GCXCR4-mutated cells have been characterized at mRNA levels (U133 plus2) using GSEA. A novel human anti-CXCR4 mAb (BMS-936564/MDX-1338; Bristol Myers Squibb, NY) has been tested in vitro (cell proliferation, MTT, adhesion and migration to primary WM BM mesenchymal stromal cells) and in vivo (10mg/kg i.p. x3-4/week). Tumor growth has been evaluated by IHC ex vivo (hCD20; hCXCR4) and by immunofluorescence. Results We examined the mutational status of C1013GCXCR4 and confirmed the presence of this specific mutation in 28% of the 131 cases evaluated. The mutation was also detected at the stage of IgM-MGUS (20%); while it was present in a minority of patients with DLBCL (1%) and SMZL (7%). Remarkably, it was absent in all MM (n=36) and IgA/IgG MGUS patients (n=22), and it was not detected in healthy subjects (n=32). The functional relevance of the C1013G-CXCR4 variant was next examined in vivo. Mice injected with C1013GCXCR4-cells presented with a significant dissemination of tumor cells, demonstrating involvement of liver, bone marrow, lymph nodes, kidney and lung. IHC showed the presence of CXCR4+ and CD20+ cells in all the tissues examined; and quantification of CXCR4 and CD20 positivity was higher in C1013GCXCR4-cells-, compared to parental(p)-WM cell-injected mice (NIS Elements software, Nikon, Melville, NY; P<0.05). In addition, C1013GCXCR4-cells were further characterized in vitro, showing increased adhesion and cell proliferation in the presence of primary WM BM-MSCs. These findings were also confirmed using CXCR4-overexpressing cells. In contrast CXCR4-knock-down cells presented the opposite behavior, where reduced adhesion and proliferation in presence of primary WM BM-MSCs were observed. By performing GSEA we demonstrated that genes related to invasiveness, cell proliferation, anti-apoptosis, and oncogenesis were all enriched in C1013GCXCR4-cells compared to the parental-WM cells. These findings let us hypothesize that C1013GCXCR4 may act as an activating mutation in WM cells. Indeed, in a different mouse model, CXCR4 over-expressing cells and scramble infected cells were injected into mice, showing similar phenotype to the one observed upon C1013GCXCR4-WM cell-injected-mice. Finally, the novel antibody BMS-936564/MDX-1338 exerted anti-WM activity both in vitro and in vivo, with anti-tumor effects observed also against the mutated variant. This was supported by inhibition of pro-survival pathways (p-ERK; pAKT); induction of pro-apototic proteins (cleaved-PARP and -caspase-9); up-regulation of p-GSK3beta, p-beta catenin and relative beta catenin degradation. Conclusion These findings demonstrate that C1013GCXCR4 acts as an activating mutation in WM; and it is targetable by using MDX936564/1338 thus providing the basis for translating these observations into clinical trials for WM patients. Disclosures: Kuhne: BMS: Employment. Cardarelli:BMS: Employment. Ghobrial:BMS: Advisory board, Advisory board Other, Research Funding; Onyx: Advisoryboard Other; Noxxon: Research Funding; Sanofi: Research Funding.


Author(s):  
Adrian Rafael Murillo-de-Ozores ◽  
Alejandro Rodriguez-Gama ◽  
Hector Carbajal-Contreras ◽  
Gerardo Gamba ◽  
Maria Castaneda-Bueno

With No Lysine (K) kinase 4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that cause Familial Hyperkalemic Hypertension (FHHt). This disease is mainly driven by increased downstream activation of the Ste20-related Proline Alanine Rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1)-NCC pathway, which increases salt reabsorption in the DCT and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


2010 ◽  
Vol 30 (8) ◽  
pp. 965-971 ◽  
Author(s):  
Roberto Davicino ◽  
Rosario Alonso ◽  
Claudia Anesini

Larrea divaricata is a plant widely used in folk medicine in Argentina. It has been demonstrated that an aqueous extract of L. divaricata possesses a biphasic effect on cell proliferation, at low concentrations exerts a stimulatory action and at high concentrations exerts anti-proliferative effects upon the T lymphoma BW 5147; therefore, we propose in this paper to test the effect of the extract ‘in vitro’ and ‘in vivo’ in another T-cell lymphoma named EL-4. It was analyzed ‘in vitro’ cell proliferation by tritiated thymidine uptake and the effect of the extract on tumors induced in mice analyzing tumor progression and survival.The results showed that the aqueous extract induced the proliferation of tumor cells at all the concentrations studied. The results ‘in vivo’ showed that the aqueous extract stimulated significantly the size of tumors and that untreated mice lived longer than those treated. It is important to be very careful when plant extracts are selected for the treatment of several diseases. Consequently, before using a plant extract, specific scientific studies must be undertaken on different models to certificate therapeutic and adverse effects. Moreover, it can be said that L. divaricata has a specific anti-tumor mechanism of action depending on the targets.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 277-277 ◽  
Author(s):  
Inger S. Nijhof ◽  
Willy A. Noort ◽  
Jeroen Lammerts van Bueren ◽  
Berris van Kessel ◽  
Joost M. Bakker ◽  
...  

Abstract Multiple myeloma (MM) remains an incurable malignancy of clonal plasma cells. Although the new generation of immunomodulatory agents, such as lenalidomide (LEN), and the potent proteasome inhibitor bortezomib (BORT) have significantly improved the overall survival of MM patients, all chemotherapy strategies are eventually hampered by the development of drug-resistance. The outcome of patients who are refractory to thalidomide, lenalidomide (LEN) and bortezomib (BORT) is very poor. Set out with the idea that targeted immunotherapy with human antibodies may offer new perspectives for MM patients, we have recently developed daratumumab (DARA), a CD38 human antibody with broad-spectrum killing activity, mainly via ADCC (antibody dependent cellular cytotoxicity) and CDC (complement dependent cytotoxicity). In our previous preclinical studies and in current clinical phase I/II trials, DARA induces marked anti-MM activity. Based on these encouraging results, we now explored the potential activity of DARA for patients who are refractory to LEN- and/or BORT. In a recently developed human-mouse hybrid model that allows the in vivo engraftment and outgrowth of patient-derived primary myeloma cells in immune deficient Rag2-/-gc-/- mice, single dose DARA treatment appeared to effectively inhibit the malignant expansion of primary MM cells derived from a LEN- and BORT-refractory patient, indicating the potential efficacy of DARA even in LEN/BORT refractory patients. To substantiate the conclusions of these in vivo data, we conducted in vitro assays, in which full BM-MNCs from LEN (n=11) and LEN/BORT (n=8) refractory patients were treated with DARA alone or the combination of DARA with LEN or BORT to induce MM cell lysis. As expected, LEN alone induced no or little lysis of MM cells in the LEN-refractory patients and also BORT was not able to induce any lysis in the BORT-refractory patients. On the contrary, DARA induced substantial levels of MM cell lysis in all LEN and LEN/BORT-refractory patients. This lysis was significantly enhanced by combination with LEN or BORT. The combination of DARA and BORT improved MM lysis by additive mechanisms. However, LEN improved DARA-mediated lysis of MM cells in a synergistic manner through the activation of effector cells involved in DARA-mediated ADCC. In conclusion, our results demonstrate that DARA is also effective against multiple myeloma cells derived from LEN- and BORT-refractory patients. Especially LEN seems to improve responses in a synergistic manner. Our results provide a rationale for clinical evaluation of DARA in combination with LEN to achieve more effective results in LEN- and BORT-refractory patients. Disclosures: Lammerts van Bueren: Genmab: Employment. Bakker:Genmab: Employment. Parren:Genmab: Employment. van de Donk:Celgene: Research Funding. Lokhorst:Genmab A/S: Consultancy, Research Funding; Celgene: Honoraria; Johnson-Cilag: Honoraria; Mudipharma: Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 275-275
Author(s):  
Siobhan Glavey ◽  
Salomon Manier ◽  
Antonio Sacco ◽  
Michaela R Reagan ◽  
Yuji Mishima ◽  
...  

Abstract Background Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The adhesion and trafficking of multiple myeloma (MM) cells is strongly influenced by glycosylation and multiple myeloma cells express a variety of adhesion molecules, including selectin ligands and integrins, which are typically dependent on glycosylation for their function. We have previously reported that the sialyltransferase ST3GAL6 is up-regulated in plasma cells from MM patients and that increased expression is associated with inferior overall survival (OS) in MM gene expression profiling (GEP) datasets. The functional significance of increased sialylation of MM cells has not previously been reported. Methods MM cell lines MM1s and RPMI-8226 were confirmed to have high expression levels of ST3GAL6 at the gene and protein level compared to healthy controls. Knockdown of ST3GAL6 was confirmed in MM cell lines RPMI-8226 and MM1s using lentiviral shRNAs targeting different regions in the ST3GAL6 mRNA. Specific ST3GAL6 knockdown was confirmed by reduced ST3GAL6 mRNA and protein expression in comparison to a scrambled control. In a calcein-AM fluorescence based adhesion assay we next evaluated the effects of ST3GAL6 knockdown on MM-cell adhesion to bone marrow stromal cells (BMSC’s) and fibronectin coated plates. Migration to 30nM SDF1-α was assessed using transwell plates comparing ST3GAL6 knockdown cells to scrambled controls. The commercially available sialyltransferase inhibitor 3Fax-Neu5Ac was used to pre-treat MM cells in vitro prior to assessment of apoptosis by flow cytometry. shST3GAL6 MM1s cells positive for green fluorescent protein and luciferin (GFP-Luc+) were injected into tail veins of SCID-Bg mice (5x106 cells, n=5/group) and mice were followed weekly using bioluminescent imaging (BLI) for tumor development. Bone marrow homing of tumor cells was assessed using in vivoconfocal imaging of the skull vasculature (n=3/group). Results Knockdown of ST3GAL6 in MM cell lines resulted in a 50% reduction in cell surface staining with the monoclonal antibody HECA-452. This indicated reduced expression of cutaneous lymphocyte associated antigen (CLA), a carbohydrate domain shared by sialyl Lewis X (sLex) and sialyl Lewis a (sLea) antigens, confirming suppression of ST3GAL6 activity. There was a significant reduction in the ability of knockdown cells to adhere to BMSC’s and fibronectin in-vitro compared to scrambled controls (P=0.016, 0.032 respectively). Migration ability of these cells in response to SDF1-α was also reduced (P=0.01). In vivo in a xenograft SCID-Bg mouse model shST3GAL6 cells demonstrated a reduced tumor burden as assessed by weekly BLI (P=0.017 at week 4). A consolidated map of the skull bone marrow niche in mice injected with shST3GAL6 MM1s GFP-Luc+ cells revealed a reduced homing ability of these cells in comparison to mice injected with scrambled control cells. Treatment of the MM cell lines MM1s and RPMI-8226 with a sialyltransferase inhibitor 3Fax-Neu5Ac resulted in almost complete elimination of cell surface sLex and/or sLea expression as determined by HECA-452 staining. Following pre-treatment with 3Fax-Neu5Ac, MM1S cells grown in co-culture with BMSC’s cells showed increased sensitivity to Bortezomib compared to cells treated with bortezomib alone. Conclusions shRNA knockdown of ST3GAL6 in MM cells significantly inhibits adhesion and migration in vitro with reduced homing and proliferation potential in vivo. In conjunction with the results of enzymatic inhibition this indicates that sialylation may play an important role in the malignant behavior of MM cells. Studies are ongoing to address the potential role of altered glycosylation in MM. Disclosures: Ghobrial: Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


2004 ◽  
Vol 72 (4) ◽  
pp. 2434-2437 ◽  
Author(s):  
Jose Echenique ◽  
Aras Kadioglu ◽  
Susana Romao ◽  
Peter W. Andrew ◽  
Marie-Claude Trombe

ABSTRACT In the Streptococcus pneumoniae genome, stkP, encoding a membrane-associated serine/threonine kinase, is not redundant (L. Novakova, S. Romao, J. Echenique, P. Branny, and M.-C. Trombe, unpublished results). The data presented here demonstrate that StkP belongs to the signaling network involved in competence triggering in vitro and lung infection and bloodstream invasion in vivo. In competence, functional StkP is required for activation of comCDE upstream of the autoregulated ring orchestrated by the competence-stimulating peptide. This is the first description of positive regulation of comCDE transcription in balance with its repression by CiaRH.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3100-3100 ◽  
Author(s):  
Ken Flanagan ◽  
Muntasir M Majumder ◽  
Romika Kumari ◽  
Juho Miettinen ◽  
Ana Slipicevic ◽  
...  

Background: Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by plasma cell secretion of misfolded light chains that assemble as amyloid fibrils and deposit on vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell directed therapeutics, aimed at preferentially eliminating the clonal population of amyloidogenic cells in bone marrow are expected to reduce production of toxic light chain and alleviate deposition of amyloid thereby restoring healthy organ function. Melphalan flufenamide ethyl ester, melflufen, is a peptidase potentiated alkylating agent with potent toxicity in myeloma cells. Melflufen is highly lipophilic, permitting rapid cellular uptake, and is subsequently enzymatically cleaved by aminopeptidases within cells resulting in augmented intracellular concentrations of toxic molecules, providing a more targeted and localized treatment. Previous data demonstrating multiple myeloma plasma cell sensitivity for melflufen suggests that the drug might be useful to directly eliminate amyloidogenic plasma cells, thereby reducing the amyloid load in patients. Furthermore, the increased intracellular concentrations of melflufen in myeloma cells indicates a potential reduction in systemic toxicity in patients, an important factor in the fragile amyloidosis patient population. To assess potential efficacy in amyloidosis patients and to explore the mechanism of action, we examined effects of melflufen on amyloidogenic plasma cells invitro and invivo. Methods: Cellular toxicity and apoptosis were measured in response to either melflufen or melphalan in multiple malignant human plasma cell lines, including the amyloidosis patient derived light chain secreting ALMC-1 and ALMC-2 cells, as well as primary bone marrow cells from AL amyloidosis patients, using annexin V and live/dead cell staining by multicolor flow cytometry, and measurement of cleaved caspases. Lambda light chain was measured in supernatant by ELISA, and intracellular levels were detected by flow cytometry. To assess efficacy of melflufen in vivo, the light chain secreting human myeloma cell line, JJN3, was transduced with luciferase and adoptively transferred into NSG mice. Cell death in response to melflufen or melphalan was measured by in vivo bioluminescence, and serum light chain was monitored. Results: Melflufen demonstrated increased potency against multiple myeloma cell lines compared to melphalan, inducing malignant plasma cell death at lower doses on established light chain secreting plasma cell lines. While ALMC-1 cells were sensitive to both melphalan and melflufen, the IC50 for melphalan at 960 nM was approximately 3-fold higher than melflufen (334 nM). However, ALMC-2 cells were relatively insensitive to melphalan (12600 nM), but maintained a 100-fold increase in sensitivity to melflufen (121 nM). Furthermore, while 40% of primary CD138+ plasma cells from patients with diagnosed AL amyloidosis responded to melflufen treatment in vitro, only 20% responded to melphalan with consistently superior IC50 values for melflufen (Figure 1). Light chain secreting cell lines and AL amyloidosis patient samples were further analyzed by single cell sequencing. We further examined differential effects on apoptosis and the unfolded protein response in vitro in response to either melflufen or melphalan. This is of particular interest in amyloidosis, where malignant antibody producing plasma cells possess an increased requirement for mechanisms to cope with the amplified load of unfolded protein and associated ER stress. As AL amyloidosis is ultimately a disease mediated by secretion of toxic immunoglobulin, we assessed the effects of melflufen on the production of light chain invitro, measuring a decrease in production of light chain in response to melflufen treatment. Finally, we took advantage of a recently described adoptive transfer mouse model of amyloidosis to assess the efficacy of melflufen and melphalan in eliminating amyloidogenic clones and reducing the levels of toxic serum light chain in vivo. Conclusions: These findings provide evidence that melflufen mediated toxicity, previously described in myeloma cells, extends to amyloidogenic plasma cells and further affects the ability of these cells to produce and secrete toxic light chain. This data supports the rationale for the evaluation of melflufen in patients with AL amyloidosis. Figure 1 Disclosures Flanagan: Oncopeptides AB: Employment. Slipicevic:Oncopeptides AB: Employment. Holstein:Celgene: Consultancy; Takeda: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Genentech: Membership on an entity's Board of Directors or advisory committees; Sorrento: Consultancy. Lehmann:Oncopeptides AB: Employment. Nupponen:Oncopeptides AB: Employment. Heckman:Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding; Orion Pharma: Research Funding.


2001 ◽  
Vol 12 (12) ◽  
pp. 3759-3772 ◽  
Author(s):  
Guisheng Zeng ◽  
Xianwen Yu ◽  
Mingjie Cai

The serine/threonine kinase Prk1p is known to be involved in the regulation of the actin cytoskeleton organization in budding yeast. One possible function of Prk1p is the negative regulation of Pan1p, an actin patch regulatory protein that forms a complex in vivo with at least two other proteins, Sla1p and End3p. In this report, we identified Sla1p as another substrate for Prk1p. The phosphorylation of Sla1p by Prk1p was established in vitro with the use of immunoprecipitated Prk1p and in vivo with the use ofPRK1 overexpression, and was further supported by the finding that immunoprecipitated Sla1p contained PRK1- and ARK1-dependent kinase activities. Stable complex formation between Prk1p and Sla1p/Pan1p in vivo could be observed once the phosphorylation reaction was blocked by mutation in the catalytic site of Prk1p. Elevation of Prk1p activities in wild-type cells resulted in a number of deficiencies, including those in colocalization of Pan1p and Sla1p, endocytosis, and cell wall morphogenesis, likely attributable to a disintegration of the Pan1p/Sla1p/End3p complex. These results lend a strong support to the model that the phosphorylation of the Pan1p/Sla1p/End3p complex by Prk1p is one of the important mechanisms by which the organization and functions of the actin cytoskeleton are regulated.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2813-2813
Author(s):  
Karthik Ramasamy ◽  
Lee Macpherson ◽  
Ghulam J Mufti ◽  
Stephen Schey ◽  
Yolanda Calle

Abstract Abstract 2813 Poster Board II-789 Osteoclast, in addition to eroding the bone resulting in lytic lesions, enhances plasma cell proliferation and survival via direct cell to cell contact. Src family protein tyrosine kinases (SFKs) and c-Abl kinase play important role downstream of integrin adhesion receptors, and regulate the cytoskeletal organisation, cell motility and gene expression in response to cell adhesion. We hypothesised targeting SFKs and Abl kinase with the small molecule tyrosine kinase inhibitor Dasatinib has potential to reduce adhesion of plasma cells to ECM proteins in the bone marrow and modify the microenvironment by inhibiting osteoclast function, specifically bone resorption. As a result, myeloma cells could be sensitised to drugs with cytotoxic properties such as dexamethasone. Osteoclasts were generated from primary bone marrow mononuclear cells of myeloma and MGUS patients (n=10). Using Immunofluorescence, we found that Dasatinib 100nM but not dexamethasone inhibited osteoclastogenesis and disrupted the actin cytoskeletal organisation with actin clusters formed in the periphery of the cell. There was absence of actin ring formation at sealing zones which is essential for bone resorption. This effect consistently led to impaired osteoclast function, evidenced by fewer resorption pits formed on rabbit dentine slices on toluidine blue staining. Experiments were repeated ≥ 3 times. In plasma cells, the combination of dexamethasone and Dasatinib synergistically (Calcusyn software) inhibited cell proliferation at clinically relevant concentrations and induced apoptosis of human and murine myeloma cell lines alone and in cocultures with human stromal cells ( p<.001). Dasatinib alone at 200 nM concentration does not inhibit plasma cell proliferation with maximal serum concentration achieved in Phase I CML trials being 180nM. Additionally, Dasatinib and Dexamethasone in combination inhibited secretion of IL-6 but not MIL -1 alpha in stromal cell cocultures. Dasatinib but not dexamethasone significantly inhibited adhesion of myeloma cell lines on Fibronectin despite integrin activation with Magnesium EGTA. This effect was mediated through down regulation of both Src and Abl phosphorylation. Both Dasatinib and Dexamethasone inhibited adhesion of PC on stromal cells and osteoclasts. Taken together, our in vitro results suggest that Dasatinib and dexamethasone could be an effective therapeutic combination with Dasatinib impairing adhesion of plasma cells to the bone marrow microenvironment as well as osteoclast function and resultant bone disease thereby sensitising myeloma cells to the cytotoxic effect of dexamethasone. We have also established that the combination of Dasatinib 75mg/kg and dexamethasone 1mg/kg is not toxic to C57BL/KaLwRij mice. The anti-myeloma efficacy of these drugs alone and in combination is being currently studied. The combination of Dasatinib 100 mg OD days 1-28 and Dexamethasone 20mg OD on Day 1-4, 15-18 has resulted in a partial response (EBMT criteria) in 2 multiply relapsed and steroid refractory myeloma patients without significant toxicity. Serum calcium levels fell commensurate with disease response and we are currently performing experiments to analyse the effect of the drug combination on osteoclast function in vivo. These findings warrant exploring this drug combination in steroid resistant myeloma and patients with extensive skeletal disease prospectively in a phase I/II trial. Disclosures: Off Label Use: Dasatinib is not licensed for Myeloma.


Sign in / Sign up

Export Citation Format

Share Document