Inhibition of p97 with the First-in-Class Small Molecule CB-5083: A Novel Strategy for Acute Myeloid Leukemia Therapy

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3766-3766
Author(s):  
Rita Tohme ◽  
Ronan Le Moigne ◽  
Bartlomiej P Przychodzen ◽  
Yingchun Han ◽  
Mark Rolfe ◽  
...  

Abstract Acute myeloid leukemia (AML) is one of the most prevalent and aggressive forms of leukemia. Currently utilized therapeutic agents do not achieve long-term survival for the majority of patients with this disease and new approaches are urgently needed to improve outcomes. Protein homeostasis is essential for many critical cellular processes including cell cycle progression, signal transduction, and cell death, but frequently becomes disrupted in cancer and this contributes to disease progression and drug resistance. Considering this, key regulators of protein degradation pathways are very attractive anticancer targets. The AAA ATPase p97 (VCP) is a master regulator of protein turnover that has been implicated in oncogenesis and malignant progression. However, its specific role(s) in AML biology and potential value as a novel ant-leukemic target have not been previously investigated. Our preliminary data suggested that p97 may be required for the proliferation and survival of AML cells, thus inhibition of its activity may be an effective approach to antagonize AML pathogenesis. CB-5083 is a first-in-class selective and potent inhibitor of p97 that has entered Phase I clinical trials. We investigated the efficacy and pharmacodynamic (PD) activity of CB-5083 in human AML cell lines, primary AML specimens, and a FLT3-ITD+ xenograft mouse model of AML. Here we report that CB-5083 potently diminished the viability of AML cell lines and primary CD34+ blasts obtained from patients. Notably, cellular sensitivity to CB-5083 was similar in 3 different paired sensitive and resistant cell line models of cytarabine resistance, suggesting that this novel agent may be effective for patients that are relapsed/refractory to conventional therapy. Acute exposure to CB-5083 ablated clonogenic survival, triggered the accumulation of ubiquitin-conjugated proteins, activated the unfolded protein response (UPR), disrupted STAT5 signaling, and induced apoptosis. The pro-apoptotic effects of CB-5083 were associated with activation of the endoplasmic reticulum (ER) resident initiator caspase-4. RNA sequencing (RNASeq) of AML cells following treatment with CB-5083 revealed the unique PD signature of this novel agent. The in vivo anti-leukemic activity of CB-5083 was investigated in a xenograft mouse model of AML established with the FLT3-ITD+ MV4-11 cell line. Oral administration of 100 mg/kg CB-5083 (once daily, 4 days on, 3 days off) was well tolerated, led to pathway inhibition as evidenced by poly-ubiquitin accumulation in tumor tissue, and induced disease regression. Our collective findings indicate that disruption of p97 activity with CB-5083 is a promising new approach for AML therapy that warrants further investigation. Disclosures Le Moigne: Cleave Biosciences: Employment. Rolfe:Cleave Biosciences: Employment. Djakovic:Cleave Biosciences: Employment. Anderson:Cleave Biosciences: Employment. Wustrow:Cleave Biosciences: Employment. Zhou:Cleave Biosciences: Employment. Wong:Cleave Biosciences: Employment.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1275-1275
Author(s):  
Sonja C Lück ◽  
Annika C Russ ◽  
Konstanze Döhner ◽  
Ursula Botzenhardt ◽  
Domagoj Vucic ◽  
...  

Abstract Abstract 1275 Poster Board I-297 Core binding factor (CBF) leukemias, characterized by translocations t(8;21) or inv(16)/t(16;16) targeting the core binding factor, constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, 40-50% of patients relapse, and the current classification system does not fully reflect the heterogeneity existing within the cytogenetic subgroups. Therefore, illuminating the biological mechanisms underlying these differences is important for an optimization of therapy. Previously, gene expression profiling (GEP) revealed two distinct CBF leukemia subgroups displaying significant outcome differences (Bullinger et al., Blood 2007). In order to further characterize these GEP defined CBF subgroups, we again used gene expression profiles to identify cell line models similar to the respective CBF cohorts. Treatment of these cell lines with cytarabine (araC) revealed a differential response to the drug as expected based on the expression patterns reflecting the CBF subgroups. In accordance, the cell lines resembling the inferior outcome CBF cohort (ME-1, MONO-MAC-1, OCI-AML2) were less sensitive to araC than those modeling the good prognostic subgroup (Kasumi-1, HEL, MV4-11). A previous gene set enrichment analysis had identified the pathways Caspase cascade in apoptosis and Role of mitochondria in apoptotic signaling among the most significant differentially regulated BioCarta pathways distinguishing the two CBF leukemia subgroups. Thus, we concluded that those pathways might be interesting targets for specific intervention, as deregulated apoptosis underlying the distinct subgroups should also result in a subgroup specific sensitivity to apoptotic stimuli. Therefore, we treated our model cell lines with the Smac mimetic BV6, which antagonizes inhibitor of apoptosis (IAP) proteins that are differentially expressed among our CBF cohorts. In general, sensitivity to BV6 treatment was higher in the cell lines corresponding to the subgroup with good outcome. Time-course experiments with the CBF leukemia cell line Kasumi-1 suggested a role for caspases in this response. Interestingly, combination treatment of araC and BV6 in Kasumi-1 showed a synergistic effect of these drugs, with the underlying mechanisms being currently further investigated. Based on the promising sensitivity to BV6 treatment in some cell lines, we next treated mononuclear cells (mostly leukemic blasts) derived from newly diagnosed AML patients with BV6 in vitro to evaluate BV6 potency in primary leukemia samples. Interestingly, in vitro BV6 treatment also discriminated AML cases into two distinct populations. Most patient samples were sensitive to BV6 monotherapy, but about one-third of cases were resistant even at higher BV6 dosage. GEP of BV6 sensitive patients (at 24h following either BV6 or DMSO treatment) provided insights into BV6-induced pathway alterations in the primary AML patient samples, which included apoptosis-related pathways. In contrast to the BV6 sensitive patients, GEP analyses of BV6 resistant cases revealed no differential regulation of apoptosis-related pathways in this cohort. These results provide evidence that targeting deregulated apoptosis pathways by Smac mimetics might represent a promising new therapeutic approach in AML and that GEP might be used to predict response to therapy, thereby enabling novel individual risk-adapted therapeutic approaches. Disclosures Vucic: Genentech, Inc.: Employment. Deshayes:Genentech, Inc.: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 581-581
Author(s):  
Patrick Griffin ◽  
Steffan T Nawrocki ◽  
Takashi Satou ◽  
Claudia M Espitia ◽  
Kevin R. Kelly ◽  
...  

Abstract Abstract 581 The long-term prognosis for the majority of patients diagnosed with acute myeloid leukemia (AML) is very poor due, in part, to pre-existing myelodysplasia, multidrug resistance, and co-existing morbidities that limit therapeutic options. Novel strategies are essential in order to improve clinical outcomes. TAK-901 is an investigational small molecule kinase inhibitor that is currently being evaluated in Phase I trials. In preclinical studies, TAK-901 has demonstrated significant effects against a number of kinases with important roles in cancer including the Aurora kinases, which are key regulators of mitosis and whose overexpression in cancer promotes genetic instability, malignant pathogenesis, and drug resistance. We hypothesized that simultaneously targeting the activity of the Auroras and other oncogenic kinases with TAK-901 would disrupt AML pathogenesis. In order to test our hypothesis, we investigated the efficacy and pharmacodynamic activity of TAK-901 human AML cell lines, primary AML specimens, and an orthotopic bioluminescent disseminated mouse model of AML. TAK-901 potently diminished the viability of a panel of 8 AML cell lines as well as primary cells obtained from patients with AML. Acute exposure to TAK-901 ablated clonogenic survival, triggered the accumulation of polyploid cells, and induced apoptosis. The cytostatic and cytotoxic effects of TAK-901 were associated with significantly increased expression of the cyclin-dependent kinase inhibitor p27, growth arrest and DNA-damage-inducible 45a (GADD45a), and the BH3-only pro-apoptotic protein PUMA. Chromatin immunoprecipitation (ChIP) assays revealed that the elevation in the expression of these genes caused by administration of TAK-901 was due to increased FOXO3a transcriptional activity. The in vivo anti-leukemic activity of TAK-901 was investigated in a disseminated xenograft mouse model of AML established by intravenous injection of luciferase-expressing MV4-11 cells. IVIS Xenogen imaging was utilized to monitor disease burden throughout the study. In this mouse model, administration of TAK-901 was very well-tolerated and significantly more effective than the standard of care drug cytarabine with respect to suppressing disease progression and prolonging overall survival. Analysis of specimens collected from mice demonstrated that TAK-901 inhibited the homing of AML cells to the bone marrow microenvironment and induced AML cell apoptosis in vivo. Our collective findings indicate that TAK-901 is a novel multi-targeted kinase inhibitor that has significant preclinical activity in AML models and warrants further investigation. Disclosures: Satou: Takeda Pharmaceuticals: Employment. Hasegawa:Takeda Pharmaceuticals: Employment. Romanelli:Millennium Pharmaceuticals: Employment. de Jong:Takeda San Diego: Employment. Carew:Millennium Pharmaceuticals: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3513-3513
Author(s):  
David B. Sykes ◽  
Mark K Haynes ◽  
Nicola Tolliday ◽  
Anna Waller ◽  
Julien M Cobert ◽  
...  

Abstract Abstract 3513 AML in adults is a devastating disease with a 5-year survival rate of 25%. We lack new treatments for AML, and the chemotherapy standard of care remains unchanged in thirty years. One success story in the treatment of AML has been the discovery of drugs that trigger the differentiation of leukemic blasts in the small subset of patients with acute promyelocytic leukemia. However, differentiation therapy is unfortunately not available for the remaining 90% of non-APL acute myeloid leukemia patients. Understanding and targeting the mechanism of differentiation arrest in AML has been under investigation for more than four decades. There is growing evidence to support the role of the homeobox transcription factors in normal hematopoietic differentiation as well as malignant hematopoiesis. The persistent, and inappropriate, expression of the homeobox gene HoxA9 has been described in the majority of acute myeloid leukemias. This implicates HoxA9 dysregulation as a common pathway of differentiation arrest in myeloid leukemias and suggests that by understanding and targeting this pathway, one might be able to overcome differentiation arrest. In cultures of primary murine bone marrow, constitutive expression of HoxA9 blocks myeloid differentiation and results in the outgrowth of immature myeloid cell lines. The mechanism by which HoxA9 causes differentiation arrest is not known and no compounds exist that inhibit HoxA9. We developed a murine cell line model in which the cells were blocked in differentiation by a conditional version of HoxA9. In this system, an estrogen-dependent ER-HoxA9 protein was generated by fusion with the estrogen receptor hormone-binding domain. When expressed in cultures of primary murine bone marrow, immortalized myeloblast cell lines can grow indefinitely in the presence of stem cell factor and beta-estradiol. Upon removal of beta-estradiol, and inactivation of HoxA9, these cell lines undergo synchronous and terminal myeloid differentiation. We took advantage of an available transgenic mouse model in which GFP was expressed downstream of the lysozyme promoter, a promoter expressed only in mature neutrophils and macrophages. Cell lines derived from the bone marrow of this lysozyme-GFP mouse were GFP-negative at baseline and brightly GFP-positive upon differentiation. In this manner, we generated a cell line with a built-in reporter of differentiation. These cells formed the basis of a high-throughput screen in which cells were incubated with small molecules for a period of four days in 384-well plate format. The cells were assayed by multi-parameter flow cytometry to assess for toxicity and differentiation. Compounds that triggered green fluorescence were scored as “HITS” and their pro-differentiation effects confirmed by analysis of morphology and cell surface markers. Given the availability of cells and the simple and reliable assay, we performed both a pilot screen of small molecules at The Broad Institute as well as an extensive screen of the NIH Molecular Libraries Small Molecule Repository. The screen of more than 350,000 small molecules was carried out in collaboration with the University of New Mexico Center for Molecular Discovery. We have identified one lead class of compounds - prostacyclin agonists – capable of promoting myeloid differentiation in this cell line model of AML. Using a parallel cell line derived from a prostacyclin receptor knock-out mouse, we confirmed that activity was due to signaling through the prostacyclin receptor. The role of prostacyclin signaling in myeloid differentiation has not been previously described. Analysis of gene expression demonstrated that the expression of the prostacyclin receptor is seen in ∼60% of in primary human AML samples. This is a potentially exciting finding as prostacyclin agonists (e.g. treprostinil) are clinically relevant as well as FDA-approved. Their potential role in the treatment of acute myeloid leukemia is unknown. Here we present the details of our high-throughput flow cytometry system and preliminary identification of pro-differentiation agents in AML. If successful, we anticipate that one of these small molecules may offer insight into a mechanism for overcoming differentiation arrest, and may also translate into a novel, clinically relevant treatment for acute myeloid leukemia. Disclosures: Sklar: IntelliCyt: Founder of IntelliCyt, the company that sells the HyperCyt high-throughput flow cytometry system. Other. Zon:Fate Therapeutics: Founder Other.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5126-5126
Author(s):  
Carter Thomas Davis ◽  
Arati V. Rao ◽  
Eross Guadalupe ◽  
Dale J. Christensen ◽  
J. Brice Weinberg

Abstract INTRODUCTION: Conventional treatment of acute myeloid leukemia (AML) remains largely unchanged for over thirty years. With poor overall survival and disease cure rates, novel therapies are needed. The SET oncoprotein has been implicated in AML as essential for proliferation through inhibition of the tumor suppressor protein phosphatase 2A (PP2A). Interaction between SET and PP2A leads to inactivation of PP2A, leaving cell survival and proliferation signals unchecked. PP2A has been postulated to be an important target in AML. Fingolimod (FTY720), an FDA approved drug for relapsing-remitting multiple sclerosis, is a sphingosine-1 phosphate receptor agonist that has off-target activity to activate PP2A. In this work, we show evidence of FTY720's efficacy in AML cells derived from cell lines and patients, and provide preliminary data regarding SET expression in AML cell lines. METHODS: Cytotoxicity experiments were performed using HL-60, THP-1, MV-4, and Kasumi-3 cell lines, as well as patient-derived samples of AML, obtained through an IRB-approved protocol. Cells were incubated overnight with varied concentrations of FTY720, azacitidine, idarubicin, cytarabine, or drugs in combination. After incubation, cells were analyzed by colorimetric assay. Percent cytotoxicity was estimated as a proportion of light absorbance compared with blank media and untreated control cells. Inhibitory concentration of 50% of cells (IC50) was estimated using GraphPad Prism software, version 6.0. Flow cytometry experiments for confirmation of cytotoxicity were also performed with antibodies against Annexin V and propidium iodide. For estimation of SET expression, we performed ELISA with antibodies against SETα and SETß and quantified measurements by light absorption. RESULTS: FTY720inhibits growth of AML cells independently in both cell lines and patient-derived samples. In the THP-1 cell line, we estimated the IC50 of FTY720 to be 3.4 μM (Figure 1). In the HL-60 cell line, we estimated the IC50 to be 2.5 μM. In patient-derived samples of AML, we had similar findings. The mean IC50 was 3.24 μM (SD = 1.32, n = 8). Flow cytometry of tested samples confirmed induction of both apoptosis and cell death within a 3-hour time frame (Figure 2). Samples were also incubated with combination of FTY720 and conventional cytotoxic chemotherapeutic agents used in AML (Table 1). In the HL-60 cell line, the following IC50s were estimated for these drugs: idarubicin (0.02 μM); cytarabine (0.6 μM); azacitidine (5.7 μM). In combination with FTY720, there was no appreciable change. Results of ELISA showed measurable but low SETα and SETß levels, when compared to a known positive control, the Ramos cell line for Burkitt's lymphoma (Table 2). In the MV-4 AML cell line, the SETα/ß ratio was 0.096. In Kasumi-3 cells, the α/ß ratio was measured at 0.063. DISCUSSION: These data support the assertion that FTY720 is a cytotoxic agent in AML. This effect is independent of other cytotoxic agents, as no additive or synergistic effect was demonstrated when drugs were combined. The micromolar cytotoxicity poses challenges to the adoption of this agent as an active drug in AML, as serum concentrations from currently prescribed doses in multiple sclerosis have been shown to achieve only nanomolar concentrations. It is notable that the volume of distribution of FTY720 is very high and over 90% is concentrated in blood cells, so actual cell concentrations may be substantially higher. Our work has not yielded the same results others have reported with increased SET α/ß ratios in AML cells. In other tumor types, high SET alpha ratios have been associated with higher SET activity; thus, these results would not be suggestive of such a role in AML. Despite our findings, the activity of FTY720 in these cells merits further investigation into SET expression in AML. We have recently a flow cytometric assay for SETα and SETß that can be used to quantify SET levels, and we plan to analyze patient samples used in cytotoxicity experiments to help identify the SET α/ß ratio in AML. We hope that these experiments will establish SET and PP2A as targets for drug development in AML. Figure 1 Cytotoxicity curve of FTY720 in THP-1 cells (n=3) Figure 1. Cytotoxicity curve of FTY720 in THP-1 cells (n=3) Figure 2 Flow cytometric analysis of FTY720 cytotoxicity in HL-60 cells. Figure 2. Flow cytometric analysis of FTY720 cytotoxicity in HL-60 cells. Disclosures Rao: Gilead, Inc.: Employment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3282-3282
Author(s):  
Kuan Boone Tan ◽  
Leong Uung Ling ◽  
Gigi Ngar Chee Chiu

Abstract Abstract 3282 The prognosis of patients with acute myeloid leukemia (AML) remains poor, despite the use of the first-line, anthracycline- and cytarabine-based induction chemotherapy aiming to induce complete remission in patients. Given the recent findings that intensive chemotherapy may not benefit older leukemia patients who are not candidates for stem cell transplantation (Kantarjian, H. et al, Blood, 2010; DOI: 10.1182/blood-2010-03-276485) and that the monoclonal antibody-based cytotoxic agent, gemtuzumab ozogamicin, has been voluntarily withdrawn from the market, there is a pressing need to find effective treatment for recurrent AML patients who are >60 years. Safingol [(2S, 3S)-2-amino-1,3-octadecanediol] is a potential anti-cancer bioactive lipid that induces apoptosis through PKC inhibition in leukemia cells and other cancer types. Owing to its poor solubility, safingol is administered as an oil-based emulsion; however, this formulation suffers from severe hemolysis as the dose-limiting toxicity in pre-clinical models, and its toxicity profile is yet to be determined from an ongoing Phase I clinical trial for advanced solid tumors. Liposome is a commonly used drug delivery system to solubilize hydrophobic drugs. It is anticipated that liposome encapsulation of safingol would yield a viable injectable drug product without the need of toxic vehicle such as ethanol or Cremophor-EL, and would substantially reduce the hemolytic toxicity of safingol. In this study, our intention is to develop a suitable liposome formulation of safingol and to test its therapeutic efficacy using human AML cell lines and primary patient samples. Safingol could be formulated into stable liposomes using distearyolphosphatidylcholine and cholesterol with encapsulation efficiency of ∼100%. Safingol was released from the liposomes with a sustained release profile, mainly by a diffusion-controlled mechanism. The extent of hemolysis of 0.5 mM safingol could be significantly reduced from 76% to 14% through liposome encapsulation, as determined by an in vitro hemolysis assay. The cytotoxicity of liposomal safingol was tested with MTT assay on various AML cell lines representing different subtypes, including KG-1 (M1), HL-60 (M2), NB4 (M3), U937 (M5), MV4-11 (M5) and HEL (M6), as well as K562, a cell line of blast crisis of chronic myelogenous leukemia (BC-CML). All cell lines tested responded well to the treatment of liposomal safingol, with IC50 values ranging from 1.5–14 μM. Among the various AML subtypes, NB4 was found to be the most sensitive cell line with the lowest IC50 value of 1.5±0.2 μM. Importantly, liposome encapsulation of safingol did not compromise the ability of the drug to induce apoptosis as compared to the free drug, which was mediated possibly through a mechanism dependent on the generation of reactive oxygen species and caspase activation. Liposomal safingol was further tested in 10 leukemic patient samples, and the formulation was able to induce complete loss of viability of the primary cell samples at 20 μM after 72 h of treatment. Taken together, our results demonstrated the therapeutic potential of liposomal safingol for the treatment of various AML subtypes. Further evaluation of the pharmacokinetics and the efficacy of the formulation in animal models is warranted. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2552-2552
Author(s):  
Lars Palmqvist ◽  
Nicolas Pineault ◽  
Bob Argiropoulos ◽  
Adrian Wan ◽  
Keith R. Humphries

Abstract The TALE family member and HOX cofactor MEIS1 is important in leukemic transformation. MEIS1 has, although non-leukemogenic on its own, been shown to strongly collaborate with several HOX genes and NUP98-HOX fusions to induce acute myeloid leukemia (AML). We have recently described a novel in vitro culture system of cell lines established from murine primary bone marrow cells transduced with the AML-associated fusion gene NUP98-HOXD13 or an engineered NUP98-HOXA10 fusion. These pre-leukemic NUP98-HOX cell lines are transplantable and can efficiently be converted into AML-inducing cells upon MEIS1 transduction. Conveniently, the MEIS1 transduced cells can be purified and preserve their leukemogenic potential even after extensive in vitro expansion. Thus, the availability of the NUP98-HOX cell lines system provided the opportunity to investigate and characterize the mechanism of MEIS1-mediated AML-conversion. Potentially interesting target or candidate genes were screened for expression changes between the parental pre-leukemic lines and AML-inducing MEIS1 transduced cell lines with quantitative RT-PCR and Western blotting. Aberrant expression or mutations of the receptor tyrosine kinase FLT3 gene is a common finding in human AML. Interestingly, Flt3 was found induced 5 to 10 fold in MEIS1 transduced cell lines compared to the parental cell lines. The observed increase in Flt3 expression provided the MEIS1 transduced cells with Flt3 ligand driven growth. This was not seen in the parental cell lines, which could not proliferate with Flt3 ligand as single cytokine or with a MEIS1-homeodomain mutant expressing cell line. Importantly, the Flt3 inhibitor AG1295 could block the proliferative effect of the Flt3 ligand in the MEIS1 transduced cell lines. To test whether Flt3 could substitute for MEIS1-mediated induction of AML in NUP98-HOX pre-leukemic cells, a NUP98-HOXA10 cell line was transduced with an MSCV-Flt3-IRES-YFP construct. The resulting Flt3-transduced cells were shown to express Flt3 at levels similar to that of MEIS1 transduced cells without any significant increase in endogenous Meis1 expression. Transplantation of these cells into mice led to lethal and transplantable AML with a median disease onset of 116 days (n=8) compared to 59 days for MEIS1 (n=4), whereas control transplants remained healthy (n=2). In conclusion, this study demonstrates that MEIS1 can induce Flt3 expression and that Flt3 can collaborate with NUP98-HOX fusion genes in the induction of acute myeloid leukemia. Furthermore, theses results suggest a model in which the leukemogenic synergism of MEIS1 on HOX-mediated leukemia might in part be mediated through FLT3-dependent pathways.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4063-4063 ◽  
Author(s):  
Shiva Bamezai ◽  
Jing He ◽  
Deniz Sahin ◽  
Fabian Mohr ◽  
Fabio Ciccarone ◽  
...  

Abstract DNA methylation patterns are highly deregulated in human acute myeloid leukemia (AML) cases and stratify AML patient samples into different subgroup. AML1-ETO is the most commonly occurring fusion gene in AML and these AML cases exhibit an aberrant and distinct methylation pattern. So far, the underlying mechanisms for this are only poorly understood. The TET1 dioxygenase has recently emerged as an important epigenetic modifier: by catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) TET1 plays an important role in active demethylation, thereby regulating a variety of biological processes. It was linked to tumorigenesis based on the observation that its expression is frequently deregulated in solid cancer. However, the role of TET1 in AML1-ETO+ (AE+)human AML cases is yet unexplored. Using quantitative real time (qRT)- PCR we now show that AE+ AML is characterized by high and aberrant expression of TET1: the gene was significantly higher expressed in the majority of AE+ patients (n=7, p<0.01) compared to other AML subtypes such as inv(16) (n=11), PML-RARα+ (n=31), cytogenetically normal (CN)-AML patients (n=33) and CD34+ normal BM cells (n=4). This observation was consistent with published cDNA microarray data on large patient cohorts (Haferlach et al., JCO 2010, p<0.008 t-test, p<0.01 Anova) and recently published transcriptome data (TCGA) of AML patients. In contrast to TET1, TET2 and TET3 did not show significant higher expression in AE+ patients compared to other AML subtypes. In line with patient data, TET1 was highest expressed in the AE+ AML cell line KASUMI-1 and SKNO-1 compared to other AML cell lines (p<0.05 and n=3). Compared to normal CD34+ and myeloid (CD33+, CD15+ and CD14+) cells (n=3), TET1 was 10-fold and 16-fold higher expressed in AE+ patient samples (n= 7). Aberrant expression of TET1 in AE+ leukemic cells was associated with hypomethylation of its promoter and enrichment for H3K4me3 euchromatic marks at its promoter as determined by LC/MS and ChIP-qPCR respectively. Knockdown (KD) of TET1 mRNA using two short hairpin RNAs (shRNAs) in AE+ AML cell lines impaired their cell growth and clonogenicity by over 50% in vitro (n=3 and p<0.01). shRNA mediated depletion of TET1 did not impact the cell growth and clonogenicity of the TET1 negative cell line RAJI, ruling out off target effects of the shRNAs (n=3). In mice, KD of Tet1 in leukemic bone marrow cells expressing the truncated leukemogenic AML1-ETO9a (AE9a) fusion, dramatically inhibited cell growth (>60% compared to scrambled, n=3, p<0.01), clonogenicity (>50-70% reduction in primary CFCs, p<0.01, n=3) and importantly delayed onset of leukemia in vivo (median survival 35 days for scr vs 80 days for shRNA mice, n=4/arm, p<0.03). Tet1-knock-out c-kit+ hematopoietic stem and progenitor cells (HSPCs) transduced with AE9a showed reduced primary colony formation and impaired serial replanting capacity in vitro compared to AE9a transduced Tet1-wild-type HSPCs (>50% and >70%, respectively; p<0.001, n=3). Global analysis of 5hmC and 5mC levels using hMeDIP/MeDIP-seq performed on TET1 depleted KASUMI-1 cells revealed lower global 5hmC levels and increase in 5mC as compared to cells transduced with scrambled control (n=2). 3324 promoter regions lost 5hmC and gained 5mC upon TET1 depletion (-5kTSS, Fold enrichment cut off <2-fold, q-value<1e5). Recent studies have shown that PARP activity induces TET1 expression by regulating its promoter epigenetically. We could show that aberrant TET1 expression could be antagonized by the PARP inhibitor olaparib in AE+ leukemic cell lines. Furthermore, olaparib treatment decreased 5hmC levels and reduced cell growth and clonogenicity of human AE+ cell lines and of the murine AE9a+ leukemic cell line in vitro (n=3, p<0.01). In conclusion, our data indicates that aberrant TET1 expression contributes to the growth of AE+ AML by maintaining the 5-hydroxymethylome and that the PARP inhibitor olaparib can at least partially antagonize the oncogenic effect of TET in AML. Disclosures Mulaw: NuGEN: Honoraria. Buske:Celltrion, Inc.: Consultancy, Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4202-4204 ◽  
Author(s):  
Ting-Lei Gu ◽  
Valerie L. Goss ◽  
Cynthia Reeves ◽  
Lana Popova ◽  
Julie Nardone ◽  
...  

Abstract The 8p11 myeloproliferative syndrome (EMS) is associated with translocations that disrupt the FGFR1 gene. To date, 8 fusion partners of FGFR1 have been identified. However, no primary leukemia cell lines were identified that contain any of these fusions. Here, we screened more than 40 acute myeloid leukemia cell lines for constitutive phosphorylation of STAT5 and applied an immunoaffinity profiling strategy to identify tyrosine-phosphorylated proteins in the KG-1 cell line. Mass spectrometry analysis of KG-1 cells revealed aberrant tyrosine phosphorylation of FGFR1. Subsequent analysis led to the identification of a fusion of the FGFR1OP2 gene to the FGFR1 gene. Small interfering RNA (siRNA) against FGFR1 specifically inhibited the growth and induced apoptosis of KG-1 cells. Thus, the KG-1 cell line provides an in vitro model for the study of FGFR1 fusions associated with leukemia and for the analysis of small molecule inhibitors against FGFR1 fusions.


2019 ◽  
Vol 20 (23) ◽  
pp. 5826 ◽  
Author(s):  
Tobias Gluexam ◽  
Alexander M. Grandits ◽  
Angela Schlerka ◽  
Chi Huu Nguyen ◽  
Julia Etzler ◽  
...  

The neuropeptide CGRP, acting through the G-protein coupled receptor CALCRL and its coreceptor RAMP1, plays a key role in migraines, which has led to the clinical development of several inhibitory compounds. Recently, high CALCRL expression has been shown to be associated with a poor prognosis in acute myeloid leukemia (AML). We investigate, therefore, the functional role of the CGRP-CALCRL axis in AML. To this end, in silico analyses, human AML cell lines, primary patient samples, and a C57BL/6-based mouse model of AML are used. We find that CALCRL is up-regulated at relapse of AML, in leukemic stem cells (LSCs) versus bulk leukemic cells, and in LSCs versus normal hematopoietic stem cells. CGRP protects receptor-positive AML cell lines and primary AML samples from apoptosis induced by cytostatic drugs used in AML therapy, and this effect is inhibited by specific antagonists. Furthermore, the CGRP antagonist olcegepant increases differentiation and reduces the leukemic burden as well as key stem cell properties in a mouse model of AML. These data provide a basis for further investigations into a possible role of CGRP-CALCRL inhibition in the therapy of AML.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-10
Author(s):  
Jayna J Mistry ◽  
Charlotte Hellmich ◽  
Amelia Lambert ◽  
Jamie A Moore ◽  
Aisha Jibril ◽  
...  

Acute myeloid leukemia (AML) is correlated with poor prognosis and a high mortality. Current AML treatment often fails to achieve complete remission and relapse is common, highlighting the need for more targeted treatments. Overexpression of BCL2 is a hallmark of AML progression and is often associated with a poor response to cytotoxic treatment. BCL2 inhibition by the BH3 mimetic Venetoclax has been shown to be effective in promoting AML cell death and recently Venetoclax has received FDA approval for the treatment of AML. However, some patients do not respond or can develop resistance, therefore multiple studies for combinational therapies for Venetoclax have been researched. We have previously demonstrated CD38 inhibition by daratumumab treatment inhibits mitochondrial transfer from mesenchymal stromal cell (MSC) to AML blasts in the bone marrow (BM) microenvironment, which results in a reduction in AML derived oxidative phosphorylation and subsequent reduced leukemia growth and improved animal survival. We therefore investigated the consequences of inhibiting CD38 using daratumumab and BCL2 using Venetoclax on the AML survival. Primary AML blasts were isolated from patient's BM. CD38 expression and BCL2 expression was assessed by flow cytometry analysis of AML. AML had significantly higher BCL2 expression and a slight increase in CD38 expression compared to CD34+ cells. Venetoclax alone caused a significant decrease in cell viability, however daratumumab or in combination with Venetoclax had no additive effect on AML survival. Since AML is highly reliant on the BM microevironment we cultured AML on MSC with either Venetoclax alone, daratumumab alone, or Venetoclax and daratumumab for 24 hours. Cells were then stained with Annexin V-FITC/PI and analysed using flow cytometry. Cells underwent significantly more apoptosis in the combination Venetoclax and daratumumab treatment when compared to control AML cells. To determine the effect of Venetoclax and daratumumab treatment in preclinical models we used an NSG xenograft mouse model of AML, we transplanted MV411-luc or patient derived AML and treated the animals with either vehicle control (PBS) daratumumab (5mg/kg) on day 7 and 14 alone, Venetoclax (100mg/kg/day) alone, or both daratumumab and Venetoclax followed by bioluminescence imaging. In vivo, treatment with combination daratumumab and Venetoclax significantly reduced tumor burden and improved survival compared to control and either drug alone in the patient derived AML xenograft mouse model and in MV411. These data support the further clinical investigation of Venetoclax and Daratumumab combination as a therapeutic approach for the treatment AML. Disclosures Bowles: AbbVie: Research Funding; Janssen: Research Funding. Rushworth:Janssen: Research Funding; AbbVie: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document