The Role of Rac and Pak in Neutrophil Histone Hypercitrullination and Neutrophil Extracellular Traps Formation

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 462-462 ◽  
Author(s):  
Mathilde Gavillet ◽  
Kimberly Martinod ◽  
Denisa D. Wagner ◽  
David A. Williams

Abstract Under specific activating conditions, polymorphonuclear neutrophils (PMNs) release neutrophil extracellular traps (NETs) composed of decondensed chromatin lined with microbicidal protein such as neutrophil elastase and myeloperoxidase. NETs contribute to innate immunity but can also foster autoimmune diseases and thrombus formation. NET formation (NETosis) requires reactive oxygen species (ROS) production by NADPH oxidase and histone hypercitrullination by peptidylarginine deiminase 4 (PAD4), allowing for chromatin decondensation. Rac GTPases are expressed in three isoforms: Rac1 is ubiquitously expressed and plays a role in PMN migration and oxidase function; Rac2 is hematopoietic-specific and the major isoform in PMNs and Rac3 is mostly neuronal. Rac1 and Rac2 regulate the cytoskeleton in PMNs, controlling actin polymerization, cell shape, adhesion and migration and are essential components of the NADPH oxidase complex. The present study aimed to explore the role of the Rac pathway on NETosis in PMNs, including the upstream guanosine exchange factor (GEF) activator, Vav, and a downstream effector of Rac, p21 activated kinase, Pak. We developed a flow cytometry-based quantification of H3 hypercitrullination (H3Cit). In response to phorbol myristate ester (PMA) stimulation, H3Cit is increased to 136% of basal in WT cells, compared with 103% in Rac2-/- (P<0.01) (Table). H3Cit levels observed by flow were confirmed in a NET formation assay. Rac2-/- PMNs formed significantly fewer NETs both spontaneously and after PMA stimulation (WT unstimulated 2.79%, Rac2-/- unstimulated 0.72%, WT+PMA 10.84%, Rac2-/-+PMA 1.39%, P< 0.05 for all pair comparisons). Furthermore, Rac2-/- mice demonstrated a trend towards reduced frequency of provoked thrombosis in an in vivo vena cava stenosis model (WT 78% and Rac2-/- 56% of mice with thrombus). Deletion of floxed Rac1 sequences in a Rac2-/- background in vivoallows generation and purification of PMNs lacking both Rac isoforms. Rac1Δ/Δ,Rac2-/- PMNs, which are defective in actin polymerization, had reduced basal H3Cit and a nearly complete lack of PMA-induced increase in H3Cit (136% vs 69%, WT vs Rac1Δ/Δ,Rac2-/-, P<0.01) (Table). Null knockouts of the GEFs Vav1 (hematopoietic-specific), Vav2, Vav3 or both Vav1 and 3 did not impair H3Cit response to PMA (Table). We next studied downstream effectors of Rac. Group A Paks include Pak1, 2 and 3 isoforms. Pretreatment of wild-type PMNs with either PF3758309 or IPA-3, two group A Pak inhibitors with distinct mechanisms of action, led to reduced H3Cit after PMA stimulation (induction reduced from 36% to 11% for both PF3758309 and IPA-3 treated (Table). To validate this in a genetic model, we studied Pak2Δ/Δ PMNs, since we have recently demonstrated the dependence of hematopoietic stem cell migration on Pak2. Pak2Δ/Δ demonstrated a reduced basal level of H3Cit and a significantly reduced PMA-induced increase in H3Cit (136% vs 94%, WT vs Pak2Δ/Δ, P<0.05, Table). In summary, we describe a flow-based assay that quantitates the early processes of NET formation and validated that this assay reliably predicts agonist-induced NET formation in a genetic model. The results establish that both Rac1 and Rac2, and the downstream effector Pak2, regulate histone H3 hypercitrullination and NET formation in PMNs, while suggesting that Vav does not activate the Rac pathway in PMA-induced NET formation. These data further delineate the role of the Rac pathway in NETosis, linking cytoskeleton and oxidase functions. Furthermore, these data indicate Pak could represent a therapeutic target for a wide array of pathological processes related to NETosis such as thrombosis and numerous autoimmune diseases. Table Intensity of H3Cit staining as determined by flow cytometry-based assay. Basal H3Cit level PMA-induced H3Cit PMA-induced change WT PMN 100±2% 136±5% 36% Rac2-/- 82±9% ns 103±15.3% ** 21% Rac1Δ/Δ, Rac2-/- 64±10% *** 69±10% ** 5% Vav1-/- 86±9% ns 145±15% ns 59% Vav2-/- 91±4% ns 134±18% ns 43% Vav3-/- 153±30% * 171±28% ns 18% Vav1,3-/- 125±20% ns 144±24% ns 19% WT+ PF 5nM 76±17% ns 87±8% * 11% WT+ IPA 5µM 100±4% ns 111±10% ns 11% Pak2Δ/Δ 75±7% * 94±11% * 19% Results are expressed as mean±SEM % of the untreated WT control of each experiment. Results are from ≥3 independent experiments. * P<0.05, **P<0.01. P<0.001, ns non-significant, by two-tailed t-test. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (13) ◽  
pp. 2619-2622 ◽  
Author(s):  
Matteo Bianchi ◽  
Abdul Hakkim ◽  
Volker Brinkmann ◽  
Ulrich Siler ◽  
Reinhard A. Seger ◽  
...  

AbstractChronic granulomatous disease (CGD) patients have impaired nicotinamide adenine dinucleotide phosphate (NADPH) oxidase function, resulting in poor antimicrobial activity of neutrophils, including the inability to generate neutrophil extracellular traps (NETs). Invasive aspergillosis is the leading cause of death in patients with CGD; it is unclear how neutrophils control Aspergillus species in healthy persons. The aim of this study was to determine whether gene therapy restores NET formation in CGD by complementation of NADPH oxidase function, and whether NETs have antimicrobial activity against Aspergillus nidulans. Here we show that reconstitution of NET formation by gene therapy in a patient with CGD restores neutrophil elimination of A nidulans conidia and hyphae and is associated with rapid cure of preexisting therapy refractory invasive pulmonary aspergillosis, underlining the role of functional NADPH oxidase in NET formation and antifungal activity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2200-2200 ◽  
Author(s):  
Akshay A D'Cruz ◽  
Meghan Bliss-Moreau ◽  
Maria Ericcson ◽  
Ben A Croker

Abstract Neutrophil extracellular traps (NETs) are networks of extracellular nuclear DNA and microbicidal proteins released from neutrophils in response to tissue damage and infection. Despite evidence of pathogenic roles for NETs in systemic lupus erythematosus, rheumatoid arthritis, diabetes, artherosclerosis and Alzheimer's disease, the major biochemical pathways controlling their formation remains poorly understood. Apoptosis does not contribute to NET formation but the role of regulated non-apoptotic cell death pathways such as necroptosis is not known. We have investigated the role of positive and negative regulators of necroptosis including receptor-interacting protein kinase-3 (RIPK3), mixed lineage kinase domain-like (MLKL), receptor-interacting protein kinase-1 (RIPK1) and Caspase-8. Using immunogold electron microscopy, flow cytometry, imaging flow cytometry and fluorescence microscopy, we demonstrate that necroptosis can drive NET formation via MLKL pore formation at the cell surface. This process is caspase-independent but reactive oxygen species-dependent. Genetically-modified mouse peripheral blood and bone marrow neutrophils were used to show that Caspase-8 and RIPK1 negatively regulate NET formation driven by RIPK3 and MLKL. Mice that lack MLKL are deficient in necroptosis and NET formation, and were sensitive to methicillin-resistant Staphylococcus aureus (MRSA). Neutrophil-specific Caspase-8-deficiency also leads to increased susceptibility to MRSA due to increased rates of necroptotic neutrophil death. Killing of MRSA by necroptotic neutrophils is sensitive to DNase, and is dependent on MLKL, suggesting that necroptosis-driven NET formation contributes to the bactericidal activity of neutrophils. Human peripheral blood neutrophils also generate NETs that are sensitive to pharmacological inhibitors of necroptosis, suggesting that targeting necroptosis in general may help combat autoimmune responses to DNA. This study provides a framework to investigate the role of extracellular DNA release and cell death in the setting of infection, autoimmunity and autoinflammatory disease. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Samantha L. Tucker ◽  
Demba Sarr ◽  
Balázs Rada

Abstract Background Neutrophils are key components of the exacerbated inflammation and tissue damage in cystic fibrosis (CF) airways. Neutrophil extracellular traps (NETs) trap and kill extracellular pathogens. While NETs are abundant in the airways of CF patients and have been hypothesized to contribute to lung damage in CF, the in vivo role of NETs remains controversial, partially due to lack of appropriate animal models. The goal of this study was to detect NETs and to further characterize neutrophil-mediated inflammation in the airways of mice overexpressing the epithelial sodium channel (βENaC-Tg mice on C57BL/6 background) in their lung with CF-like airway disease, in the absence of any apparent bacterial infections. Methods Histology scoring of lung tissues, flow cytometry, multiplex ELISA, immunohistochemistry and immunofluorescence were used to characterize NETs and the airway environment in uninfected, βENaC-Tg mice at 6 and 8 weeks of age, the most chronic time points so far studied in this model. Results Excessive neutrophilic infiltration characterized the lungs of uninfected, βENaC-Tg mice at 6 and 8 weeks of age. The bronchoalveolar lavage fluid (BALF) of βENaC-Tg mice contains increased levels of CF-associated cytokines and chemokines: KC, MIP-1α/β, MCP-1, G-CSF, IL-5, and IL-6. The BALF of βENaC-Tg mice contain MPO-DNA complexes, indicative of the presence of NETs. Immunofluorescence and flow cytometry of BALF neutrophils and lung tissues demonstrated increased histone citrullination, a NET-specific marker, in βENaC-Tg mice. Conclusions NETs are detected in the airways of βENaC-Tg mice, in the absence of bacterial infections. These data demonstrate the usefulness of the βENaC-Tg mouse to serve as a model for studying the role of NETs in chronic CF airway inflammation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Carolin Brings ◽  
Ron-Patrick Cadeddu ◽  
Julia Fröbel ◽  
Hubert Schelzig ◽  
Rainer Haas ◽  
...  

Introduction Increased susceptibility to infections in MDS is due to neutropenia as well as functional impairment of neutrophils. We investigated whether neutrophil dysfunction includes diminished formation of neutrophil extracellular traps (NETs). The latter are networks of extracellular fibers, primarily composed of DNA, which bind pathogens. This component of the immune system's first line of defense was first described in 2004 by Zychlinsky and coworkers. Formation of NETS is triggered by reactive oxygen species (ROS), which in neutrophils are mainly produced by NADPH-oxidase and myeloperoxidase (MPO). Methods Fluorescence microscopy was used to show NET formation in patients with MDS (n=12) (1 MDS del(5q), 1 MDS-RS-SLD, 1 MDS-RS-MLD, 5 MDS-MLD, 2 MDS-EB-1, 2 MDS-EB-2) in comparison to an age-adjusted normal control group (n=15). Neutrophils were isolated from peripheral blood by density gradient centifugation, sedimented on cover slips in 24-well plates, and incubated with phorbol-12-myristate-13-acetate (PMA) for 30 and 180 minutes to stimulate NET formation. Neutrophil elastase was detected by primary anti-NE (Abcam) plus secondary goat anti-rabbit Alexa 488 (FITC), histones by primary anti-histone (Millipore) plus secondary goat anti-mouse Alexa 568 (PE), and cell nuclei by DNA staining with DAPI. Fluorescent images were loaded into Image J/FIJI Software (https://imagej.nih.gov/ij/) for automatic cell detection and assessment of the proportion of cells undergoing NET formation, detectable by positive histone staining. Flow cytometry was used to further characterize NET formation and demonstrate the production of ROS by NADPH-oxidase and MPO. Intracellular MPO staining was positive for 96.7% and 99.1% of neutrophils in controls and MDS patients, respectively. Reactive oxygen species (ROS) were detected using dihydro-rhodamin 123 (DHR) for hydrogen peroxide, hydroethidine (HE) for superoxide anion, and 3`-(p-aminophenyl) fluorescein (APF) and 3`-(hydroxyphenyl) fluorescein (HPF) for hypochloride (HOCl). In order to block certain components of cellular ROS production, the following inhibitors were used: 4-aminobenzoic hydrazide (ABAH) to block MPO; 4-dimethylamino-antipyrine (AP) to block MPO and quench ROS; and diphenylen-iodonium chloride (DPI) to inhibit NADPH oxidase and mitochondrial respiratory complex I. Flow cytometry data were analysed using CellQuest Software (Becton Dickinson) and FCS Express Reader (De Novo Software). Results By fluorescence microscopy, marked morphological abnormalities of NET formation were observed. PMA-stimulated neutrophils of patients with MDS generated significantly fewer NETs than neutrophils from controls (increase from 17% to 67% vs. increase from 17% to 85% of cells, respectively) (p=0.02), see Fig. 1. MDS neutrophils showed significantly less cellular swelling after stimulation with PMA (p=0.04). Histone staining showed a more condensed chromatin in MDS neutrophils prior to stimulation (smaller mean fluorescence intensity (MFI) for PE; p=0.05). Upon stimulation with PMA, the decrease in MFI of DAPI, indicating chromatin decondensation, was significantly less in MDS neutrophils than controls (delta MFI 3467 vs. 4687, p=0.03). In addition, assessment of neutrophil elastase showed that its release from cytoplasmic granules (decreasing MFI for FITC) was diminished in patients with MDS (p=0.00002). On flow cytometry, forward scatter confirmed a significant difference in cell swelling after PMA stimulation (p=0.02). Sideward scatter showed a smaller decrease in granularity after stimulation with H2O2 (p=0.002). The morphological abnormalities did not seem to be attributable to diminished ROS production since measurement of PMA-stimulated ROS production using HE, and assessing oxidative burst activity using DHR did not reveal significant differences. However, H202-stimulated production of HOCl by MPO was lower in MDS patients, albeit only when MPO activity was simultaneously impeded by inhibitors (ABAH and AP). Inhibition of MPO activity was more easily achieved in patients with MDS (p=0.01), corroborating the notion of a partial MPO defect in MDS. Conclusions Our results indicate that NET formation is significantly impaired in MDS neutrophils. Although we found abnormalities of MPO-dependent generation of HOCl, impaired ROS production may not be the only cause of deficient NETosis in MDS. Figure Disclosures Gattermann: Novartis: Honoraria, Research Funding.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Tina Kirchner ◽  
Sonja Möller ◽  
Matthias Klinger ◽  
Werner Solbach ◽  
Tamás Laskay ◽  
...  

The formation of neutrophil extracellular traps (NETs) depends on the generation of reactive oxygen species (ROS). Previous studies revealed that both NADPH oxidase and myeloperoxidase (MPO) are required for NET release. However, the contribution of various ROS as well as the role of mitochondria-derived ROS has not been addressed so far. In the present study we aimed to investigate in a systematic and comprehensive manner the contribution of various ROS and ROS-generating pathways to the PMA-induced NET release. By using specific inhibitors, the role of both NADPH oxidase- and mitochondria-derived ROS as well as the contribution of superoxide dismutase (SOD) and MPO on the NET release was assessed. We could demonstrate that NADPH oxidase function is crucial for the formation of NETs. In addition, we could clearly show the involvement of MPO-derived ROS in NET release. Our results, however, did not provide evidence for the role of SOD- or mitochondria-derived ROS in NET formation.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
César Díaz-Godínez ◽  
Julio C. Carrero

AbstractNeutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.


Sign in / Sign up

Export Citation Format

Share Document