Differential Effects of Wnt Signaling on Proliferation and Hematopoietic Support of Adult and Fetal Bone Marrow-Derived MSCs

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5137-5137
Author(s):  
Maja Maria Paciejewska ◽  
Marijke Maijenburg ◽  
Christian Gilissen ◽  
Kim Vermeul ◽  
Marion Kleijer ◽  
...  

Abstract Human adult bone marrow-derived mesenchymal stromal cells MSC (ABMSC) are increasingly applied in the clinic to decrease graft versus host disease and to enhance hematopoietic recovery. Fetal bone marrow-derived MSC (FBMSC) display similar immune suppressive and regenerative capacities as adult MSC, and have been transplanted into patients. The proliferation capacity of FBMSC, however, is much larger than that of ABMSC. The aim of our studies is to understand the molecular mechanism of proliferation and hematopoietic support by MSC to optimize the expansion of functional MSC for clinical use. Comparison of gene expression between ABMSCs and FBMSCs identified 687 differentially expressed genes. Of these, 16 were Wnt-related, mainly Wnt-inhibitors and Frizzled receptors. Expression of SFRP4, WISP1, WISP2, WISP3, FZD1, FZD5, FZD8 and MYCBP2 was upregulated in ABMSC, whereas DKK1, DKK2, CCND2, WNT5a, MYC, FZD2, FZD6 and FZD7 are expressed at a higher level in FBMSC. Although the expression of few genes (e.g. DKK1) was culture density dependent, other genes such as Wnt5a, DKK2 and SFRP4 were consistently differentially expressed independent of culture conditions. Therefore we investigated the role of Wnt signaling in adult and fetal bone marrow-derived MSC. Wnt3a induced a concentration dependent increase of the canonical Wnt-target genes TCF and LEF in both ABMSC and FBMSC. However, ABMSC responded faster, and at a lower concentration of Wnt3a compared to FBMSC. In addition, Wnt3a increased the proliferation of ABMSC, but not of FBMSC. Interestingly, a complete medium change was already sufficient to increase TCF/LEF expression in ABMSC, but not in FBMSC, suggesting that ABMSC produced a soluble Wnt-inhibitor. Moreover, switching MSC conditioned medium between FBMSC and ABMSC indicated that FBMSC conditioned medium significantly stimulated the expansion of ABMSC while the reverse experiments did not show an inhibiting effect of ABMSC conditioned medium on the expansion of FBMSC. Thus, ABMSC produce a factor that only affects ABMSC, but not (the factors produced by) FBMSC. To block autocrine Wnt production, MSC were exposed for 48 h to the Inhibitor of Wnt Production 2 (IWP2). Abrogation of Wnt-production in FBMSC modestly decreased beta-catenin expression, and strongly decreased TCF/LEF expression, but did not affect ABMSC. Addition of IWP-2 to long-term cultures strongly inhibited proliferation of FBMSCs compared to ABMSCs. To unravel the role of MSC-produced Wnt factors in hematopoiesis, we co-cultured adult or fetal MSCs together with cord blood derived CD34+ cells in the presence or absence of IWP2 inhibitor. Addition of IWP2 to ABMSC decreased the short term support of hematopoietic stem and progenitors (HSPC), while IWP2 did not affect the support of HSPCs by FBMSC. Overall, ABMSCs provided a significant better short term hematopoietic support than FBMSCs. In conclusion, our data demonstrate that ABMSC produce both Wnt factors and inhibitors. FBMSC, in contrast, produce Wnt-related factors that seem to contribute more to the expansion capacity of FBMSC than to their hematopoietic support. To identify factors we current use mass spectroscopy of supernatant to determine the secretome. Modulation of (parts) of the Wnt pathway may improve clinical expansion protocols of ABMSC. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 586-586
Author(s):  
Marisa Bowers ◽  
YinWei Ho ◽  
Ravi Bhatia

Abstract Hematopoietic stem cells (HSCs) within the bone marrow (BM) microenvironment reside in close proximity to endosteal osteoblasts (OBs). Although OBs have been considered to provide a HSC niche, other studies suggest that perivascular mesenchymal cells or endothelial cells may be the primary HSC niches, and the specific role of OBs in regulation of HSCs requires further clarification. Moreover, the role of OBs in regulating leukemic stem cells (LSC) is even less well studied. To address these questions, we used a conditional OB ablation mouse model (Col2.3Δtk) in which a truncated version of the herpes simplex virus thymidine kinase (Δtk) is expressed under an OB-specific promoter. In these mice, daily intraperitoneal (IP) administration of ganciclovir (GCV) leads to production of a toxic DNA base analogue in OBs, resulting in their death. We crossed Col2.3Δtk mice with Col2.3GFP mice that specifically express GFP in OBs to facilitate assessment of OB ablation. We confirmed that 4 weeks of GCV administration resulted in ablation of endosteal OBs in this model using both immunofluorescence microscopy and flow cytometry analysis. OB ablation was associated with reduced BM cellularity (Δtk+ 3.7e7±3.0e6, Δtk- 4.8e7±3.8e6 per 4 lower extremity bones, p=0.04), but did not alter spleen (SP) cellularity (Δtk+ 5.1e7±5.3e6, Δtk- 6.3e7±7.4e6 cells per SP, p=0.19). OB ablation was also associated with significantly increased numbers of cells with long-term HSC (LTHSC) phenotype (Lin-Kit+Sca-1+Flt3-CD150+CD48-) in both the BM (Δtk+ 6490±1315, Δtk- 4236±922 per 4 lower extremity bones; p=0.03) and SP (Δtk+ 980±473, Δtk- 96±40 per SP; p=0.04). Significant increases in common myeloid progenitor (CMP) (Δtk+ 145114±43608, Δtk- 82200±26754; p=0.002) and granulocyte/monocyte progenitor (GMP) (Δtk+ 51411±17349, Δtk- 20206±9279, p=0.003, p=0.02) numbers were seen in SP of OB-ablated mice, whereas significant alterations in other hematopoietic populations in BM, SP or PB were not seen. We performed limiting-dilution competitive repopulation assays to determine the functional LTHSC potential of BM cells from OB-ablated and control mice. OB-ablated mice demonstrated a higher frequency of short-term repopulating cells compared to LTHSCs from non-ablated mice (5 weeks: Δtk+ 1 in 4,941; Δtk- 1 in 17,351 BM cells) but similar long-term engraftment (15 weeks: Δtk+ 1 in 22,853; Δtk- 1 in 23,137 BM cells). Transplantation of BM cells from primary transplant recipients into secondary recipients demonstrated similar long-term engraftment potential after second transplant. These results suggest that despite increased numbers of phenotypic LTHSCs in OB-ablated mice, the long-term repopulating and self-renewing capacity of BM cells remains unchanged in OB-ablated mice, but on the other hand there is an increase in functional short-term repopulating capacity. Next, to examine the role of OBs in regulation of Chronic Myelogenous Leukemia (CML) stem cells, we crossed the Col2.3GFPΔtk mice with an inducible transgenic BCR-ABL mouse model of CML (ScltTA-BCR/ABL). In these mice withdrawal of tetracycline results in induction of BCR-ABL expression in HSCs and development of a CML-like myeloproliferative disorder. GCV administration to achieve OB ablation was initiated one week prior to BCR-ABL induction by tetracycline withdrawal, and was continued for the duration of the experiment. CML development was monitored by checking blood counts every 2 weeks after induction and mice were followed for survival. We observed significantly accelerated development of CML in OB-ablated versus non-ablated mice, with 50% of the OB-ablated mice dying within 47 days of CML induction, whereas >50% of the non-ablated mice survived to day 73 (p=0.017). Collectively, these studies suggest that BM OBs are not essential for maintenance of long-term repopulating and self-renewing HSCs, but regulate the expansion of short-term HSCs in the BM. Our studies also indicate an important and previously unrecognized role for OBs in regulating the leukemogenicity of CML LSCs. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2012 ◽  
Vol 209 (3) ◽  
pp. 537-549 ◽  
Author(s):  
Anna Mansour ◽  
Grazia Abou-Ezzi ◽  
Ewa Sitnicka ◽  
Sten Eirik W. Jacobsen ◽  
Abdelilah Wakkach ◽  
...  

Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.


1987 ◽  
Vol 5 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Vincent S. Gallicchio ◽  
Thomas D. Watts ◽  
George P. Casale ◽  
Philip M. Bartholomew

Blood ◽  
2019 ◽  
Vol 133 (3) ◽  
pp. 224-236 ◽  
Author(s):  
Andrés García-García ◽  
Claudia Korn ◽  
María García-Fernández ◽  
Olivia Domingues ◽  
Javier Villadiego ◽  
...  

AbstractHematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow (BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic branch has remained unexplored. We have investigated the role of the cholinergic nervous system in the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, during the daytime, derepressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs and leukocytes via β3–adrenergic receptor. This egress is locally supported by light-triggered sympathetic cholinergic activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and leukocytes. This study shows how both branches of the autonomic nervous system cooperate to orchestrate daily traffic of HSPCs and leukocytes.


2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

2022 ◽  
pp. 1-10
Author(s):  
Patrick Wuchter ◽  
Anke Diehlmann ◽  
Harald Klüter

<b><i>Background:</i></b> The stem cell niche in human bone marrow provides scaffolds, cellular frameworks and essential soluble cues to support the stemness of hematopoietic stem and progenitor cells (HSPCs). To decipher this complex structure and the corresponding cellular interactions, a number of in vitro model systems have been developed. The cellular microenvironment is of key importance, and mesenchymal stromal cells (MSCs) represent one of the major cellular determinants of the niche. Regulation of the self-renewal and differentiation of HSPCs requires not only direct cellular contact and adhesion molecules, but also various cytokines and chemokines. The C-X-C chemokine receptor type 4/stromal cell-derived factor 1 axis plays a pivotal role in stem cell mobilization and homing. As we have learned in recent years, to realistically simulate the physiological in vivo situation, advanced model systems should be based on niche cells arranged in a three-dimensional (3D) structure. By providing a dynamic rather than static setup, microbioreactor systems offer a number of advantages. In addition, the role of low oxygen tension in the niche microenvironment and its impact on hematopoietic stem cells need to be taken into account and are discussed in this review. <b><i>Summary:</i></b> This review focuses on the role of MSCs as a part of the bone marrow niche, the interplay between MSCs and HSPCs and the most important regulatory factors that need to be considered when engineering artificial hematopoietic stem cell niche systems. <b><i>Conclusion:</i></b> Advanced 3D model systems using MSCs as niche cells and applying microbioreactor-based technology are capable of simulating the natural properties of the bone marrow niche more closely than ever before.


Author(s):  
Laura Mosteo ◽  
Joanna Storer ◽  
Kiran Batta ◽  
Emma J. Searle ◽  
Delfim Duarte ◽  
...  

Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Yanqing Gong ◽  
Jane Hoover-Plow ◽  
Ying Li

Ischemic heart disease, including myocardial infarction (MI), is the primary cause of death throughout the US. Granulocyte colony-stimulating factor (G-CSF) is used to mobilize hematopoietic progenitor and stem cells (HPSC) to improve cardiac recovery after MI. However, poor-mobilization to G-CSF is observed in 25% of patients and 10-20% of healthy donors. Therefore, a better understanding of the underlying mechanisms regulating G-CSF-induced cardiac repair may offer novel approaches for strengthening stem cell-mediated therapeutics. Our previous studies have identified an essential role of Plg in HPSC mobilization from bone marrow (BM) in response to G-CSF. Here, we investigate the role of Plg in G-CSF-stimulated cardiac repair after MI. Our data show that G-CSF significantly improves cardiac tissue repair including increasing neovascularization in the infarct area, and improving ejection fraction and LV internal diameter by echocardiogram in wild-type mice. No improvement in tissue repair and heart function by G-CSF is observed in Plg -/- mice, indicating that Plg is required for G-CSF-regulated cardiac repair after MI. To investigate whether Plg regulates HPSC recruitment to ischemia area, bone marrow transplantion (BMT) with EGFP-expressing BM cells was performed to visualize BM-derived stem cells in infarcted tissue. Our data show that G-CSF dramatically increases recruitment of GFP+ cells (by 16 fold) in WT mice but not in Plg -/- mice, suggesting that Plg is essential for HPSC recruitment from BM to the lesion sites after MI. In further studies, we investigated the role of Plg in the regulation of SDF-1/CXCR-4 axis, a major regulator for HPSC recruitment. Our results show that G-CSF significantly increases CXCR-4 expression in infarcted area in WT mice. While G-CSF-induced CXCR-4 expression is markedly decreased (80%) in Plg -/- mice, suggesting Plg may regulate CXCR-4 expression during HSPC recruitment to injured heart. Interestingly, Plg does not affect SDF-1 expression in response to G-CSF treatment. Taken together, our findings have identified a critical role of Plg in HSPC recruitment to the lesion site and subsequent tissue repair after MI. Thus, targeting Plg may offer a new therapeutic strategy to improve G-CSF-mediated cardiac repair after MI.


Sign in / Sign up

Export Citation Format

Share Document