PAX5-PML Induces Pro B Acute Lymphoblastic Leukemia in Mice

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 887-887
Author(s):  
Naoto Imoto ◽  
Shingo Kurahashi ◽  
Fumihiko Hayakawa ◽  
Takahiko Yasuda ◽  
Keiki Sugimoto ◽  
...  

Abstract PAX5 is a transcription factor required for B-cell development and maintenance. We previously showed that PAX5-PML, a fusion gene found in acute lymphoblastic leukemia (ALL), dominant negatively inhibited PAX5 transcriptional activity. Reported data including ours revealed that PAX5 fusion proteins had possible oncogenic ability; however, leukemogenicity of PAX5 fusion genes and other PAX5 mutations in mice model has not been clarified, yet. Here we demonstrated leukemia development in mice by introducing PAX5-PML. Pro B cells derived from mouse fetal liver were transfected with PAX5-PML expression vector and transplanted into mice. All 8 transplanted mice died with pro B ALL from day 63 to 158. Leukemic cells could be serially transplanted and mice died more rapidly with repetition (Figure A). Among the target genes transcriptionally activated by PAX5, expressions of BLNK, Fcer2a, and CD72 were significantly repressed in leukemia cells but repression of CD19 and CD79a were mild, suggesting the importance of down regulation of these genes for differentiation block. We compared mRNA expression profile between leukemia cells and normal pro B cells and gene set enrichement analysis (GSEA) identified candidates for second hits for development of leukemia. We analyzed the mechanism of the selective repression of CD19, Fcer2a, and BLNK and the significance of the second hit candidates, using a cell line established from leukemia cells of the third transplanted mouse. The results will show the meeting. Figure 1 Figure 1. Disclosures Sugimoto: Otsuka Pharmaceutical Co., Ltd: Employment. Naoe:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Novartis Pharma,: Research Funding; Bristol-Myers Squibb: Research Funding; Otsuka Pharmaceutical Co. LTD: Research Funding; FUJIFILM Corporation: Research Funding. Kiyoi:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD.: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Bristol-Myers Squibb: Research Funding; FUJIFILM Corporation: Research Funding.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2244-2244
Author(s):  
Minenori Eguchi-Ishimae ◽  
Mariko Eguchi ◽  
Zhouying Wu ◽  
Wen Ming ◽  
Hidehiko Iwabuki ◽  
...  

Abstract Leukemic cells of acute lymphoblastic leukemia (ALL) in infants are frequently characterised by chromosome translocations involving 11q23, resulting in the rearrangement of the mixed-lineage leukemia (MLL) gene and subsequent generation of MLL fusion gene. Among more than 50 genes which have been identified as the fusion partner of the MLL gene, fusion with AF4 is characteristically observed in infant ALL representing a hallmark of poor prognosis. Although recent progress of intensive chemotherapy with or without stem cell transplantation has improved its treatment outcome, the treatment is often accompanied by long-term side effects. Less toxic molecular targeting therapies are therefore necessary for infant ALL. We have previously reported that in infant ALL with MLL fusion gene, microRNA let-7b is significantly downregulated by DNA hypermethylation of its promoter region. The downregulation of let-7b is one of the consequences of oncogenic MLL fusion proteins contributing to leukemogenesis possibly through upregulation of let-7b-regulated target genes with oncogenic potential such as high mobility group AT-hook 2 (HMGA2). HMGA2 is a chromatin-remodelling factor, which alters chromatin architecture by binding to AT-rich regions in the DNA, either promoting or inhibiting the expression of its target genes. One of the targets of HMGA2 is CDKN2A gene which encodes 2 cell cycle regulators p16INK4A and p14ARF. This let-7b-HMGA2-CDKN2A axis regulates cellular growth and senescence of stem cells both in normal and pathological state such as cancer. We initially examined the expression of HMGA2 in leukemic cells obtained from 35 MLL-rearranged infant ALL patients (MLL-AF4, n = 26; MLL-AF9, n = 4; MLL-ENL, n = 5) using quantitative RT-PCR. As results, HMGA2 was highly expressed in most of the patients with MLL fusion gene, especially in MLL-AF4-positive cases, compared to those without the fusion. These results indicate that deregulation of let-7b-HMGA2 axis by MLL fusion may contribute to leukemogenesis and could be a possible target of molecular therapy against MLL-rearranged ALL. As let-7b is downregulated by promoter hypermethylation, demethylating agents such as 5-azacytidine could be applied to recover the expression of the gene in leukemic cells with MLL fusion gene. To test this possibility, leukemic cell lines with MLL-AF4 fusion gene were used. The administration of 5-azacytidine alone was able to restore the expression of suppressed let-7b as well as p16INK4A gene in the leukemic cells, but the effects was incomplete, showing persistent partial promoter methylation. In addition, the recovered expression disappeared when 5-azacytidine was removed. On the other hand, when HMGA2 inhibitor was combined with 5-azacytidine, the expression of let-7b was upregulated and sustained resulting in suppression of HMGA2 protein itself. This upregulation of let-7b and suppression of HMGA2 protein persisted even after the removal of 5-azacytidine, possibly through maintaining of the demethylating status by HMGA2 inhibitor. Inhibition of HMGA2 by either siRNA or HMGA2 inhibitor suppressed the growth of MLL-AF4-positive leukemic cells when analysed by MTT assay. The effects of HMGA2 inhibitor on cell growth inhibition became more prominent in combination with demethylating agent 5-azacytidine. Our results revealed the functional significance of let-7b and HMGA2 in controlling MLL-AF4-positive leukemic cell growth and the therapeutic potential of combining demethylating agent and the HMGA2 inhibitor in the treatment of MLL-AF4-positive ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3417-3423 ◽  
Author(s):  
Marina Bousquet ◽  
Cyril Broccardo ◽  
Cathy Quelen ◽  
Fabienne Meggetto ◽  
Emilienne Kuhlein ◽  
...  

Abstract We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 786-786 ◽  
Author(s):  
Kathryn G. Roberts ◽  
Yung-Li Yang ◽  
Debbie Payne-Turner ◽  
Richard C. Harvey ◽  
I-Ming Chen ◽  
...  

Abstract Introduction: Ph-like or BCR-ABL1-like B-progenitor acute lymphoblastic leukemia (ALL) is a high-risk subtype characterized by a gene expression profile similar to BCR-ABL1 ALL. The prevalence of Ph-like ALL rises from 10% in standard risk childhood ALL to over 25% in young adults. Next-generation sequencing of Ph-like ALL identified a variety of alterations involving kinase or cytokine receptor genes, including rearrangement, sequence mutation and copy number alterations. Chromosomal rearrangements in about one-third of Ph-like ALL cases create fusion genes of a variety of 5’ partners that involve ABL1-class genes (ABL1, ABL2, CSF1R and PDGFRB) or activate JAK family members (JAK2, TYK2, IL2RB) that are potentially amenable to treatment with ABL1-class or JAK-class tyrosine kinase inhibitors (TKIs). Notably, ABL2 (Abelson-related gene, ARG), a homolog of ABL1, has rarely been identified as a rearrangement partner in ALL. CSF1R (encoding the macrophage colony stimulating receptor) regulates the differentiation of macrophages, and is not normally expressed in lymphocytes. Likewise, rearrangements involving the JAK family member TYK2, the beta chain of the interleukin 2 cytokine receptor (IL2RB), and the neurotrophic tyrosine kinase receptor type 3 (NTRK3), have not been previously described in leukemia. The goals of this study were to assess the role of these kinase alterations in leukemogenesis, to determine the activation of signaling pathways, and to investigate the efficacy of TKIs. Methods: Kinase fusions were expressed in interleukin-3 dependent Ba/F3 cells, and co-expressed with the dominant negative isoform of IKAROS (IK6) in interleukin-7 dependent Arf-/- mouse pre-B cells. Xenograft models of 10 Ph-like ALL tumors - ETV6-ABL1, RANBP2-ABL1, PAG1-ABL2, RCSD1-ABL2, SSBP2-CSF1R, IGH-EPOR, ETV6-NTRK3, ATF7IP-JAK2, PAX5-JAK2 and ZEB2-PDGFRB - were generated by engrafting primary human leukemia cells into NOD-SCID IL2R gamma null (NSG) mice. Activation of kinase signaling was performed using phosphoflow cytometry analysis, and sensitivity to TKIs was assessed ex vivo and in vivo. Results: All kinase fusions (PAG1-ABL2, MYH9-IL2RB, ATF7IP-JAK2, ETV6-NTRK3 or MYB-TYK2) induced cytokine-independent proliferation of Ba/F3 cells. Mice transplanted with Arf-/- pre-B cells co-expressing IK6 and either RCSD1-ABL2 or SSBP2-CSF1R developed pre-B ALL (CD43+, B220+, CD19+, BP-1+ and IgM-) with a median latency of 36 and 40 days respectively, providing evidence that ABL2 and CSF1R fusions contribute to leukemogenesis. In human leukemic cells harvested from xenograft mice we observed distinct patterns of kinase signaling activation and TKI sensitivity for the different fusions. Xenograft cells expressing ABL1-class kinase fusions showed activation of STAT5 that was inhibited with imatinib or dasatinib. Phosphorylation of CRKL, a known target of ABL1 and ABL2, was only observed in cells expressing ABL1/2 fusions. Cells harboring ATF7IP-JAK2, PAX5-JAK2 or IGH-EPOR showed phosphorylation of STAT5 that was attenuated with the JAK2 inhibitor, ruxolitinib. In contrast, cells expressing ETV6-NTRK3 signaled through the MAPK pathway with constitutive pERK1/2 that was inhibited with the ALK-inhibitor, crizotinib. This TKI response profile was confirmed by cytotoxicity assays in xenograft cells, with ABL1-class fusions being sensitive to dasatinib (IC50 range 1-2nM), whilst cases harboring ATF7IP-JAK2 or EPOR rearrangement uniquely responded to ruxolitinib with IC50 values of 500nM and 850nM respectively. Interestingly, in human leukemic cells harboring the ETV6-NTRK3 fusion we observed selective inhibition with both crizotinib and the FLT3 inhibitor, lestaurtinib. Pre-clinical studies on three xenograft models of Ph-like ALL - ETV6-ABL1, RCSD1-ABL2 and SSBP2-CSF1R – showed significantly reduced leukemic burden in dasatinib treated mice (20mg/kg/day p.o) compared to vehicle treated mice. Conclusions: These data provide important insight on new targets of rearrangement in ALL and describe the first engineered mouse models of Ph-like B-ALL. Functional modeling of these alterations is essential to improve the clinical management of Ph-like ALL by identifying patients with specific genomic lesions at diagnosis and directing them to treatment with appropriate TKIs combined with chemotherapy, analogous to current treatment for BCR-ABL1 B-ALL. Disclosures Hunger: Bristol Myers Squibb: Consultancy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 128-128
Author(s):  
Ilaria Iacobucci ◽  
Kathryn G. Roberts ◽  
Yongjin Li ◽  
Debbie Payne-Turner ◽  
Marcus Valentine ◽  
...  

Abstract Introduction: BCR-ABL1-like, or Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), is characterized by a gene expression profile similar to BCR-ABL1-positive ALL, with a broad range of genetic alterations activating cytokine receptor and kinase signaling and poor outcome. We previously reported a rearrangement of EPOR, encoding the erythropoietin receptor, into the immunoglobulin heavy chain locus (IGH). The aims of this study were to define the frequency and genomic architecture of EPOR rearrangements in B-ALL and to examine their role in kinase signaling and lymphoid transformation. Methods: Whole genome and/or transcriptome sequencing was performed on 154 Ph-like ALL cases. Sanger sequencing and fluorescent in situ hybridization were used to confirm and map the EPOR rearrangements. Wild-type or EPOR rearranged alleles were expressed in interleukin-3 (IL-3)-dependent mouse hematopoietic Ba/F3 cells and interleukin-7 (IL-7)-dependent pre-B cells harboring alterations of Arf and/or the dominant negative IKZF1 allele IK6 observed in EPOR-rearranged ALL. Proliferation and signaling were examined in the absence or presence of erythropoietin (EPO). EPOR expression and signaling in cell lines and primary leukemic cells were examined by immunofluorescence, flow cytometry and immunoblotting. Epor-/- fetal liver cells were transduced with empty vector, EPOR wild-type or rearranged alleles and used for erythroid colony forming unit (CFU-E) and erythroid burst-forming unit (BFU-E) assays. Luciferase-marked xenografts of human EPOR-rearranged ALL were established in NOD-SCID-IL2R gamma (NSG) null mice, and signaling, EPO-dependent proliferation and sensitivity to the JAK inhibitor ruxolitinib were assessed ex vivo and in vivo. Results: Eight cases (5.2% of Ph-like ALL) harbored rearrangements of EPOR into either the IGH or immunoglobulin kappa light chain (IGK) loci with two consequences: i) inversion and insertion of EPOR 5’ untranscribed region into the the promoter and enhancer region of IGH/IGK; ii) truncation of the last coding exon of EPOR. Such rearrangements resulted in overexpression of a C-terminal truncated receptor that retained the phosphorylation site required for STAT5 activation, but lacked multiple intracytoplasmic tyrosine residues whose phosphorylation is required for normal negative regulation of the receptor. Notably, the locations of the truncation sites overlap with those arising from inherited mutations in primary familial congenital polycythemia, in which frameshift and nonsense mutations truncate the receptor. A real-time quantitative PCR assay was established to provide a diagnostic tool and to confirm that primary leukemia cells with these EPOR rearrangements overexpress N-terminal exons but lack expression of C-terminal truncated exon eight. The truncated alleles were expressed at higher levels than wild-type EPOR in IL-3-dependent Ba/F3 and IL-7-dependent Arf-/- mouse pre-B cells, and sustained cell proliferation and increased STAT5 phosphorylation following stimulation with exogenous EPO. Expression of wild-type or truncated EPOR in Epor-/- fetal liver cells promoted erythroid differentiation with formation of CFU-E and BFU-E colonies, indicating that truncated receptors sustain erythroid development. Xenografted EPOR-rearranged leukemic cells exhibited high levels of mutant EPOR on the cell surface, constitutive STAT5 phosphorylation and sensitivity to the JAK2 inhibitor ruxolitinib ex vivo and in vivo. Conclusions: We have identified a subset of Ph-like ALL cases characterized by rearrangements of truncated EPOR into the IGH/IGK chain loci. This represents an entirely new mechanism of EPOR deregulation and unexpectedly implicates EPOR signaling as an important factor influencing B-lymphoid malignancies that are amenable to JAK-STAT5 inhibition. Clinical trials testing ruxolitinib in ALL patients with EPOR rearrangements are warranted. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2821-2821
Author(s):  
Takahiko Yasuda ◽  
Dai Nishijima ◽  
Shinya Kojima ◽  
Masahito Kawazu ◽  
Toshihide Ueno ◽  
...  

Abstract Although survival rate for children with Acute Lymphoblastic Leukemia (ALL) now exceeds about 90%, the outcome of adult patients with ALL is extremely poor. These differences might be attributed to the lack of insights into pathogenesis and clinical behavior of adult-ALL. Gross chromosomal alterations including chromosome translocations and aneuploidy are considered as early events in ALL and constitute disease subtypes. To identify chromosome translocations underlying adult with Ph-negative B-ALL, we performed RNA-seq analysis on RNA from individuals with B-ALL who had been treated on the Japan Adult Leukemia Study Group (JALSG) ALL202-O protocol (n = 149). We successfully identified chromosome translocations in 100 patients (67.1%). ZNF384 fusions were most frequently detected in 30 patients (20.1%) and they had wide range of fusion partners. DUX4- and MEF2D- fusions were also recurrently found in 7 (4.7%) and 9 (6.0%) patients, respectively. Chromosome translocations activating kinase and cytokine receptor were found in 25 patients (16.8%) with Ph-like gene expression profile. These alterations were almost completely mutually exclusive indicating these are likely to be primary genetic events. For simplicity, here we define (1) fusions involving ZNF384, DUX4, MEF2D, CEBP and PAX5 as well as TCF3-PBX1 and ETV6-RUNX1 as Transcription Factor fusions (TF fusions; 49% of patients), (2) fusions involving CRLF2, JAK2, PDGFRB, EPOR and ABL as Kinase/cytokine-receptor Activating fusions (KA fusions; 15%) and (3) non-recurrent fusions or the absence of fusions/aneuploidy as B-others (30%). First, we analyzed impact of the patient age on types of fusion genes, based of combined data of ALL202-O cohort, childhood B-ALL cohort (Lilljebjörn H, et al. 2016: n = 189) and ALL202-U cohort (Yasuda T, et al. 2016: n = 54). We found that incidence of ZNF384-, CEBP- fusions and B-others increases as patients age, whereas ETV6-RUNX1 and PAX5 fusions were more prevalent in younger patients, exhibiting negative association with age. DUX4 fusions and TF fusions were most prevalent in Adolescent and Young Adult (AYA) generation. JAK2-, PDGFRB-, EPOR- and KA- fusions were positively correlated with age. Next, we analyzed association between patient survival and types of fusions. In Japanese adult B-ALL cohort (ALL202-O and ALL202-U cohort), we observed ZNF384-, DUX4- fusions and TCF3-PBX1 were associated with better disease-free survival than B-others. Furthermore, when combined, MEF2D- (n = 14), CEBP- (n = 4), PAX5- fusions (n = 2) and ETV6-RUNX1 (n = 2) exhibited significantly better disease-free survival than B-others, indicating TF fusions were associated with an improved outcome. In contrast, KA fusions were associated with poorer disease-free survival than B-others. KMT2A fusions were comparable with B-others regarding to patient disease-free survival. These results allowed us to develop a prognostic schema to identify three distinct risk profile groups, based on types of fusion genes and cytogenetics (Table1); favorable-risk (5-year rate of disease-free survival 67.4%), intermediate-risk (5-year rate of disease-free survival 42.5%) and adverse-risk (5-year rate of disease-free survival 9.6%). This prognostic schema predicted the outcome independently of age, sex and methotrexate dose in multivariate analysis (p < 0.001). In conclusion, we promoted a better understanding of the genetic basis of adult B-ALL by focusing on fusion genes. Each chromosome translocations were closely associated with age. ZNF384-, KA fusions and B-others were characteristic for older-adult patients (40-65 years old) with B-ALL. We clearly demonstrated specific primary chromosome abnormalities are strong prognostic marker. Functional properties of primary genetic events (TF fusions vs. KA fusions) might be a key determinant of biological characteristics and clinical outcome. Disclosures Kiyoi: Novartis Pharma K.K.: Research Funding; Celgene Corporation: Research Funding; Zenyaku Kogyo Co., Ltd.: Research Funding; FUJIFILM Corporation: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding; Bristol-Myers Squibb: Honoraria; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Sanofi K.K.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Astellas Pharma Inc.: Research Funding; Phizer Japan Inc.: Research Funding; Eisai Co., Ltd.: Research Funding. Naoe:Astellas Pharma Inc.: Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Pfizer Japan Inc.: Research Funding; Toyama Chemical Co., Ltd.: Research Funding.


Blood ◽  
2020 ◽  
Author(s):  
Nicolas Duployez ◽  
Laura Audrey Jamrog ◽  
Vincent Fregona ◽  
Camille Hamelle ◽  
Laurène Fenwarth ◽  
...  

In recent years, through whole genome analyses, convincing evidence for the contribution of genetic predisposition to childhood B-cell precursor - acute lymphoblastic leukemia (BCP-ALL) due to altered PAX5 has been provided. A recurrent mutation p.Gly183Ser affecting the octapeptide domain has been described in three unrelated families and a p.Arg38His mutation affecting the DNA-binding paired domain reported in another one. We strengthen here the assumption of the inherited character of familial BCP-ALL by identifying the PAX5 p.Arg38His mutation in a family in which the three children developed BCP-ALL. One relapsed two years after his initial diagnosis and was allografted with his brother's cells before the latter developed BCP-ALL. The patient allografted relapsed later from donor-related cells. By syngeneic transplantations in mice, we showed that p.Arg38His expression does not abrogate the engraftment capacity of transduced Pax5-/- pro-B cells unlike wild type PAX5-rescued Pax5-/- pro-B cells and can predispose to BCP-ALL. Through functional and molecular analyses, we demonstrated that p.Arg38His acts as a hypomorphic variant altering the pattern of expression of PAX5 target genes. Our data highlight the importance of transcriptional deregulation, particularly of genes involved in B cell differentiation in familial BCP-ALL. We demonstrated that inherited genetic basis of susceptibility to BCP-ALL has been underestimated and should be considered before any familial allograft.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1322-1322
Author(s):  
Manabu Kusakabe ◽  
Ann Chong Sun ◽  
Kateryna Tyshchenko ◽  
Rachel Wong ◽  
Aastha Nanda ◽  
...  

Abstract Mechanistic studies in human cancer have relied heavily on established cell lines and genetically engineered mouse models, but these are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts (PDX); however, as an experimental model these are hampered by their variable genetic background, logistic challenges in establishing and distributing diverse collections, and the fact they cannot be independently reproduced. We report here a completely synthetic, efficient, and highly reproducible means for generating T-cell acute lymphoblastic leukemia (T-ALL) de novo by lentiviral transduction of normal CD34+ human cord blood (CB) derived hematopoietic progenitors with a combination of known T-ALL oncogenes. Transduced CB cells exhibit differentiation arrest and multi-log expansion when cultured in vitro on OP9-DL1 feeders, and generate serially transplantable, aggressive leukemia when injected into immunodeficient NSG mice with latencies as short as 80 days (median 161 days, range 79-321 days). RNA-seq analysis of synthetic CB leukemias confirmed their reproducibility and similarity to PDX tumors, while whole exome sequencing revealed ongoing clonal evolution in vivo with acquisition of secondary mutations that are seen recurrently in natural human disease. The in vitro component of this synthetic system affords direct access to "pre-leukemia" cells undergoing the very first molecular changes as they are redirected from normal to malignant developmental trajectories. Accordingly, we performed RNA-seq and modified histone ChIP-seq on nascently transduced CB cells harvested from the first 2-3 weeks in culture. We identified coordinate upregulation of multiple anterior HOXB genes (HOXB2-B5) with contiguous H3K27 demethylation/acetylation as a striking feature in these early pre-leukemia cells. Interestingly, we also found coordinate upregulation of these same HOXB genes in a cohort of 264 patient T-ALLs (COG TARGET study) and that they defined a subset of patients with significantly poorer event-free survival (Log-rank p-value = 0.0132). Patients in the "HOXB high" subgroup are distinct from those with ETP-ALL, but are enriched within TAL1, NKX2-1, and "unknown" transcription factor genetic subgroups. We further show by shRNA-mediated knockdown that HOXB gene expression confers growth advantage in nascently transduced CB cells, established synthetic CB leukemias, and a subset of established human T-ALL cell lines. Of note, while there is prior literature on the role of HOXA genes in AML and T-ALL, and of HOXB genes in normal HSC expansion, this is the first report to our knowledge of a role for HOXB genes in human T-ALL despite over 2 decades of studies relying mostly on mouse leukemia and cell line models. The synthetic approach we have taken here allows investigation of both early and late events in human leukemogenesis and delivers an efficient and reproducible experimental platform that can support functional testing of individual genetic variants necessary for precision medicine efforts and targeted drug screening/validation. Further, since all tumors including PDXs continue to evolve during serial propagation in vivo, synthetic tumors represent perhaps the only means by which we can explore early events in cellular transformation and segregate their biology from confounding effects of multiple and varied secondary events that accumulate in highly "evolved" samples. Disclosures Steidl: Seattle Genetics: Consultancy; Tioma: Research Funding; Bristol-Myers Squibb: Research Funding; Roche: Consultancy; Juno Therapeutics: Consultancy; Nanostring: Patents & Royalties: patent holding.


2021 ◽  
Author(s):  
Santosh Kumar Paidi ◽  
Piyush Raj ◽  
Rosalie Bordett ◽  
Chi Zhang ◽  
Sukrut Hemant Karandikar ◽  
...  

AbstractAcute lymphoblastic leukemia (ALL) is one of the most common malignancies which account for nearly one-third of all pediatric cancers. The current diagnostic assays are time-consuming, labor-intensive, and require expensive reagents. Here, we report a label-free approach featuring diffraction phase imaging and Raman microscopy that can retrieve both morphological and molecular attributes for label-free optical phenotyping of individual B cells. By investigating leukemia cell lines of early and late stages along with the healthy B cells, we show that phase image can capture subtle morphological differences among the healthy, early, and late stages of leukemic cells. By exploiting its biomolecular specificity, we demonstrate that Raman microscopy is capable of accurately identifying not only different stages of leukemia cells, but also individual cell lines at each stage. Overall, our study provides a rationale for employing this hybrid modality to screen leukemia cells using the widefield QPI and using Raman microscopy for accurate differentiation of early and late-stage phenotypes. This contrast-free and rapid diagnostic tool exhibits great promise for clinical diagnosis and staging of leukemia in the near future.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 833-833
Author(s):  
Shotaro Iwamoto ◽  
Keichiro Mihara ◽  
James R. Downing ◽  
Ching-Hon Pui ◽  
Dario Campana

Abstract Owing to their low expression of asparagine synthetase (ASNS), acute lymphoblastic leukemia (ALL) cells have low asparagine biosynthesis and are exquisitely sensitive to asparagine depletion caused by L-asparaginase. Differences in susceptibility to L-asparaginase have been attributed to the varying levels of ASNS mRNA in leukemic cells, but recent studies have challenged this concept. We found that among leukemic cells from 288 children with ALL analyzed by Affymetrix U133A GeneChip, ASNS levels were higher in patients with T-lineage ALL (P &lt;0.001), and lower in patients with TEL-AML1 (P = 0.033) or hyperdiploid &gt;50 chromosomes (P &lt;0.001) B-lineage ALL. However, ASNS expression was not significantly related to response to remission induction therapy as determined by minimal residual disease measurements on day 46 of treatment. ALL cells grow in direct contact with bone marrow mesenchymal cells, which form the microenvironmental niches essential for their expansion. We observed that ASNS levels in mesenchymal cells were, on average, 20 times higher than those expressed by ALL cells by GeneChip analysis, real-time PCR and Western blotting with an anti-ASNS specific monoclonal antibody (gift of Dr. M. Kilberg, U. of Florida). When ALL cell lines (380, REH, RS4;11) were exposed to L-asparaginase in the presence of mesenchymal cells, cytotoxicity significantly decreased. To test whether the protective effect of mesenchymal cells was related to their ASNS expression, we used RNA interference (RNAi) to stably downregulate ASNS expression. This profoundly diminished their capacity to protect ALL cells from L-asparaginase cytotoxicity. We then investigated whether enforced expression of ASNS in mesenchymal cells using a MSCV retroviral vector could augment their protective capacity. Overexpression of ASNS significantly augmented the capacity of mesenchymal cells to protect ALL cells from L-asparaginase cytotoxicity. ASNS expression in mesenchymal cells was related not only to their capacity to protect ALL cells lines but also primary ALL cells obtained from 5 patients with newly diagnosed ALL. We found that mesenchymal cells secreted asparagine and that levels of asparagine in culture supernatants collected from mesenchymal cells after 24 hours of culture were directly related to levels of ASNS expression in the cells; asparagine in supernatants of mesenchymal cells treated with the RNAi target sequence was nearly undetectable. In line with these results, the protective effects of mesenchymal cells were also detectable when ALL cells were placed on a microporous membrane that prevented contact with mesenchymal, and when they were cultured with mesenchymal cell-conditioned medium. By contrast, addition of a mixture of mesenchymal cell-derived cytokines (IL-1 alpha and beta, IL-3, IL-6, IL-7, IL-11, SCF and Flt3 ligand) instead of mesenchymal cell-conditioned medium had no effect on L-asparaginase cytotoxicity. These results reveal an unexpected mechanism of drug resistance in ALL and indicate that microenvironmental niches can form a safe haven for leukemia cells, thus sustaining minimal residual disease. The role of mesenchymal cells in the response to other anti-leukemic drugs requires further investigation. A better understanding of the molecular mechanisms involved in the interaction between ALL cells and the bone marrow microenvironment may ultimately lead to innovative ways to enhance anti-leukemia therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2511-2511
Author(s):  
Manon Queudeville ◽  
Hannah Kunze ◽  
Sarah M. Eckhoff ◽  
Klaus-Michael Debatin ◽  
Lueder H. Meyer

Abstract Oncogenesis and tumor progression are supported by alterations in cellular signaling. We used phospho-specific antibodies in flow cytometry to analyze specific signaling profiles of leukemia cells at a single cell level in 7 B cell precursor (BCP)-ALL leukemia cell lines and 7 primary pediatric BCP-ALL xenograft samples. Peripheral blood lymphocytes gated on CD19-positive B cells were used as normal nonmalignant controls. Cells were stimulated by different stimulants and cytokines (PMA, anisomycin, IL-4, IL-6, IL-7, IL-10 and IFN-α) and activation of various phosphoepitopes (pERK, pp38, pJNK, pStat1, pStat3, pStat5, pStat6) was analyzed and compared to the basal state of unstimulated samples. Signaling profiles of normal B-lymphocytes were compared to those of the BCPALL cell lines as well as to the BCP-ALL xenograft samples. Significance of differences was assessed by the nonparametric Mann-Whitney U-test. Basal phosphorylation was significantly higher in the leukemia cell lines than in normal lymphocytes. Similarly, basal phosphorylation of all analyzed epitopes in xenografts exceeded the phosphorylation state of normal B-lymphocytes (with the exception of p38 phosphorylation, where there was no significant difference). Interestingly, the BCP-leukemia cell lines also had significantly higher basal phosphorylation levels than the primary BCP-ALL xenografts. However, when comparing the amounts of phosphorylation before and after stimulation mature normal B-cells displayed significantly higher profiles compared to the leukemia cell lines e.g. for pp38 and pJNK after stimulation with PMA (P= .001), for pStat3 after stimulation with IL-6 (P= .002) and IL-10 (P= .037) and for pStat6 (P= .001) after stimulation with IL-4. Conversely, the leukemia cell lines showed increased phosphorylation of p38 after stimulation with anisomycin (P= .021) as well as higher Stat5 phosphorylation after stimulation with IL-7 (P= .021) compared to normal lymphocytes. In normal B-cells compared to xenografts higher levels were found after stimulation with PMA for pp38 (P= .007), for pJNK after PMA stimulation (P= .001), for pStat3 after IL-6 (P=.003) and for pStat6 after IL-4 (P= .002) stimulation while the xenograft samples displayed stronger reaction to stimulation with anisomycin for pp38 (P= .037) and to stimulation with IL-7 for pStat5 (P= .028). The level of phosphorylation after treatment with different stimulants in the xenografted leukemia samples was similar to that of the leukemia cell lines although the cell lines displayed higher basal phosphorylation values. The BCP-leukemia cell lines and the BCP xenograft samples both displayed high levels of constitutive phosphorylation in general reducing their ability to react to a given stimulus compared to normal B-lymphocytes. With the most important exception of Stat5: we consistently found that Stat5 phosphorylation is increased in acute lymphoblastic leukemia cell lines and primary xenografts after stimulation with IL-7 compared to normal B-lymphocytes. Stat5 is known to enhance proliferation and protect from apoptosis and our data now strongly suggest that Stat5 and Stat5 dependent pathways are critically involved in leukemogenesis. Since we could identify significant and specific phosphorylation signatures characteristic for leukemia cells, this provides a strategy to define pathways important for continued survival, proliferation and resistance of leukemia and allows identification of therapeutic targets and novel biomarkers associated with clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document