scholarly journals HMGA2 As a Potential Molecular Target in MLL-AF4 Positive Infant Acute Lymphoblastic Leukemia

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2244-2244
Author(s):  
Minenori Eguchi-Ishimae ◽  
Mariko Eguchi ◽  
Zhouying Wu ◽  
Wen Ming ◽  
Hidehiko Iwabuki ◽  
...  

Abstract Leukemic cells of acute lymphoblastic leukemia (ALL) in infants are frequently characterised by chromosome translocations involving 11q23, resulting in the rearrangement of the mixed-lineage leukemia (MLL) gene and subsequent generation of MLL fusion gene. Among more than 50 genes which have been identified as the fusion partner of the MLL gene, fusion with AF4 is characteristically observed in infant ALL representing a hallmark of poor prognosis. Although recent progress of intensive chemotherapy with or without stem cell transplantation has improved its treatment outcome, the treatment is often accompanied by long-term side effects. Less toxic molecular targeting therapies are therefore necessary for infant ALL. We have previously reported that in infant ALL with MLL fusion gene, microRNA let-7b is significantly downregulated by DNA hypermethylation of its promoter region. The downregulation of let-7b is one of the consequences of oncogenic MLL fusion proteins contributing to leukemogenesis possibly through upregulation of let-7b-regulated target genes with oncogenic potential such as high mobility group AT-hook 2 (HMGA2). HMGA2 is a chromatin-remodelling factor, which alters chromatin architecture by binding to AT-rich regions in the DNA, either promoting or inhibiting the expression of its target genes. One of the targets of HMGA2 is CDKN2A gene which encodes 2 cell cycle regulators p16INK4A and p14ARF. This let-7b-HMGA2-CDKN2A axis regulates cellular growth and senescence of stem cells both in normal and pathological state such as cancer. We initially examined the expression of HMGA2 in leukemic cells obtained from 35 MLL-rearranged infant ALL patients (MLL-AF4, n = 26; MLL-AF9, n = 4; MLL-ENL, n = 5) using quantitative RT-PCR. As results, HMGA2 was highly expressed in most of the patients with MLL fusion gene, especially in MLL-AF4-positive cases, compared to those without the fusion. These results indicate that deregulation of let-7b-HMGA2 axis by MLL fusion may contribute to leukemogenesis and could be a possible target of molecular therapy against MLL-rearranged ALL. As let-7b is downregulated by promoter hypermethylation, demethylating agents such as 5-azacytidine could be applied to recover the expression of the gene in leukemic cells with MLL fusion gene. To test this possibility, leukemic cell lines with MLL-AF4 fusion gene were used. The administration of 5-azacytidine alone was able to restore the expression of suppressed let-7b as well as p16INK4A gene in the leukemic cells, but the effects was incomplete, showing persistent partial promoter methylation. In addition, the recovered expression disappeared when 5-azacytidine was removed. On the other hand, when HMGA2 inhibitor was combined with 5-azacytidine, the expression of let-7b was upregulated and sustained resulting in suppression of HMGA2 protein itself. This upregulation of let-7b and suppression of HMGA2 protein persisted even after the removal of 5-azacytidine, possibly through maintaining of the demethylating status by HMGA2 inhibitor. Inhibition of HMGA2 by either siRNA or HMGA2 inhibitor suppressed the growth of MLL-AF4-positive leukemic cells when analysed by MTT assay. The effects of HMGA2 inhibitor on cell growth inhibition became more prominent in combination with demethylating agent 5-azacytidine. Our results revealed the functional significance of let-7b and HMGA2 in controlling MLL-AF4-positive leukemic cell growth and the therapeutic potential of combining demethylating agent and the HMGA2 inhibitor in the treatment of MLL-AF4-positive ALL. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3735-3744 ◽  
Author(s):  
Hikari Nishigaki ◽  
Chikako Ito ◽  
Atsushi Manabe ◽  
Masa-aki Kumagai ◽  
Elaine Coustan-Smith ◽  
...  

We used a stroma-supported culture method to study the prevalence and growth characteristics of malignant stem cells in acute lymphoblastic leukemia (ALL). In 51 of 108 B-lineage ALL samples, bone marrow-derived stroma not only inhibited apoptosis of ALL cells but also supported their proliferation in serum-free medium. When single leukemic cells were placed in the stroma-coated wells of microtiter plates, the percentage of wells with leukemic cell growth after 2 to 5 months of culture ranged from 6% to 20% (median, 15%; 5 experiments). The immunophenotypes and genetic features of cells recovered from these cultures were identical to those noted before culture. All cells maintained their stroma dependency and self-renewal capacity. Leukemic clones derived from single cells contained approximately 103 to 106 cells after 1 month of culture; other clones became detectable only after prolonged culture. Cell growth in stroma-coated wells correlated with the number of initially seeded cells (1 or 10; r = .87). However, the observed percentages of positive wells seeded with 10 cells always exceeded values predicted from results with single-cell–initiated cultures (P < .003 by paired t-test), suggesting stimulation of leukemic cell growth by paracrine factors. In conclusion, the proportion of ALL cells with clonogenic potential may be considerably higher than previously thought.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 887-887
Author(s):  
Naoto Imoto ◽  
Shingo Kurahashi ◽  
Fumihiko Hayakawa ◽  
Takahiko Yasuda ◽  
Keiki Sugimoto ◽  
...  

Abstract PAX5 is a transcription factor required for B-cell development and maintenance. We previously showed that PAX5-PML, a fusion gene found in acute lymphoblastic leukemia (ALL), dominant negatively inhibited PAX5 transcriptional activity. Reported data including ours revealed that PAX5 fusion proteins had possible oncogenic ability; however, leukemogenicity of PAX5 fusion genes and other PAX5 mutations in mice model has not been clarified, yet. Here we demonstrated leukemia development in mice by introducing PAX5-PML. Pro B cells derived from mouse fetal liver were transfected with PAX5-PML expression vector and transplanted into mice. All 8 transplanted mice died with pro B ALL from day 63 to 158. Leukemic cells could be serially transplanted and mice died more rapidly with repetition (Figure A). Among the target genes transcriptionally activated by PAX5, expressions of BLNK, Fcer2a, and CD72 were significantly repressed in leukemia cells but repression of CD19 and CD79a were mild, suggesting the importance of down regulation of these genes for differentiation block. We compared mRNA expression profile between leukemia cells and normal pro B cells and gene set enrichement analysis (GSEA) identified candidates for second hits for development of leukemia. We analyzed the mechanism of the selective repression of CD19, Fcer2a, and BLNK and the significance of the second hit candidates, using a cell line established from leukemia cells of the third transplanted mouse. The results will show the meeting. Figure 1 Figure 1. Disclosures Sugimoto: Otsuka Pharmaceutical Co., Ltd: Employment. Naoe:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Novartis Pharma,: Research Funding; Bristol-Myers Squibb: Research Funding; Otsuka Pharmaceutical Co. LTD: Research Funding; FUJIFILM Corporation: Research Funding. Kiyoi:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD.: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Bristol-Myers Squibb: Research Funding; FUJIFILM Corporation: Research Funding.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3735-3744 ◽  
Author(s):  
Hikari Nishigaki ◽  
Chikako Ito ◽  
Atsushi Manabe ◽  
Masa-aki Kumagai ◽  
Elaine Coustan-Smith ◽  
...  

Abstract We used a stroma-supported culture method to study the prevalence and growth characteristics of malignant stem cells in acute lymphoblastic leukemia (ALL). In 51 of 108 B-lineage ALL samples, bone marrow-derived stroma not only inhibited apoptosis of ALL cells but also supported their proliferation in serum-free medium. When single leukemic cells were placed in the stroma-coated wells of microtiter plates, the percentage of wells with leukemic cell growth after 2 to 5 months of culture ranged from 6% to 20% (median, 15%; 5 experiments). The immunophenotypes and genetic features of cells recovered from these cultures were identical to those noted before culture. All cells maintained their stroma dependency and self-renewal capacity. Leukemic clones derived from single cells contained approximately 103 to 106 cells after 1 month of culture; other clones became detectable only after prolonged culture. Cell growth in stroma-coated wells correlated with the number of initially seeded cells (1 or 10; r = .87). However, the observed percentages of positive wells seeded with 10 cells always exceeded values predicted from results with single-cell–initiated cultures (P < .003 by paired t-test), suggesting stimulation of leukemic cell growth by paracrine factors. In conclusion, the proportion of ALL cells with clonogenic potential may be considerably higher than previously thought.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3417-3423 ◽  
Author(s):  
Marina Bousquet ◽  
Cyril Broccardo ◽  
Cathy Quelen ◽  
Fabienne Meggetto ◽  
Emilienne Kuhlein ◽  
...  

Abstract We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


1999 ◽  
Vol 17 (1) ◽  
pp. 191-191 ◽  
Author(s):  
Jeffrey E. Rubnitz ◽  
Bruce M. Camitta ◽  
Hazem Mahmoud ◽  
Susana C. Raimondi ◽  
Andrew J. Carroll ◽  
...  

PURPOSE: To determine the molecular characteristics, clinical features, and treatment outcomes of children with acute lymphoblastic leukemia (ALL) and the t(11;19)(q23;p13.3) translocation. PATIENTS AND METHODS: A retrospective analysis of leukemic cell karyotypes obtained from patients with new diagnoses of ALL who were treated at St. Jude Children's Research Hospital or by the Pediatric Oncology Group was performed to identify cases with the t(11;19)(q23;p13.3) translocation. Molecular analyses were performed on these cases to determine the status of the MLL gene and the presence of the MLL-ENL fusion transcript. RESULTS: Among 3,578 patients with ALL and successful cytogenetic analysis, we identified 35 patients with the t(11;19)(q23;p13.3) translocation: 13 infants and 11 older children had B-precursor leukemia, whereas 11 patients had a T-cell phenotype. Although all of the cases examined had MLL rearrangements and MLL-ENL fusion transcripts, outcome varied according to age and immunophenotype. Among B-precursor cases, only two of the 13 infants remain in complete remission, compared with six of the 11 older children. Most strikingly, no relapses have occurred among B-precursor patients 1 to 9 years of age or among T-cell patients. CONCLUSION: Although MLL gene rearrangements are generally associated with a dismal outcome in ALL, two distinct subsets with MLL-ENL fusions have an excellent prognosis. Our results suggest that patients with this genetic abnormality who have T-cell ALL or are 1 to 9 years of age should not be considered candidates for hematopoietic stem-cell transplantation during their first remission.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 873-878 ◽  
Author(s):  
FM Uckun ◽  
H Sather ◽  
G Reaman ◽  
J Shuster ◽  
V Land ◽  
...  

Mice with severe combined immunodeficiency (SCID) provide a model system to examine the in vivo homing, engraftment, and growth patterns of normal and malignant human hematopoietic cells. The relation between leukemic cell growth in this model and the treatment outcome in patients from whom cells were derived has not been established. Leukemic cells from 42 children with newly diagnosed high-risk B- lineage acute lymphoblastic leukemia were inoculated intravenously into CB.17 SCID mice. Mice were killed at 12 weeks or when they became moribund as a result of disseminated leukemia. All mice were necropsied and subjected to a series of laboratory studies to assess their burden of human leukemic cells. Twenty-three patients whose leukemic cells caused histopathologically detectable leukemia in SCID mice had a significantly higher relapse rate than the 19 patients whose leukemic cells did not (estimated 5-year event-free survival: 29.5% v 94.7%; 95% confidence intervals, 11.2% to 50.7% v 68.1% to 99.2%; P < .0001 by log- rank test). The occurrence of overt leukemia in SCID mice was was a highly significant predictor of patient relapse. The estimated instantaneous risk of relapse for patients whose leukemic cells caused overt leukemia in SCID mice was 21.5-fold greater than that for the remaining patients. Thus, growth of human leukemic cells in SCID mice is a strong and independent predictor of relapse in patients with newly diagnosed high-risk B-lineage acute lymphoblastic leukemia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 844-844
Author(s):  
Yiguo Hu ◽  
Linghong Kong ◽  
Kevin Staples ◽  
Kevin Mills ◽  
John G. Monroe ◽  
...  

Abstract The BCR-ABL oncogene induces human Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL) and chronic myeloid leukemia (CML) that advances to acute phase of CML called blast crisis. In this acute phase, CML patients can develop either B-ALL or acute myeloid leukemia. In B-ALL, differentiation of leukemic cells are blocked at pro-/pre-B stage, and the underlying mechanism is unknown. We hypothesize that this blockade of B-cell differentiation may be important for the development of B-ALL induced by BCR-ABL, and if so, promotion of B-leukemic cell differentiation would create a novel therapeutic strategy for B-ALL. To test this hypothesis, we first compared the percentages of IgM+ B-leukemic cells in BALB/c and C57BL/6 (B6) mice with BCR-ABL-induced B-ALL, because we have previously found that B-ALL develops more quickly in BALB/c mice than in B6 mice (Li et al, J. Exp. Med.189:1399–1412, 1999). We expressed BCR-ABL in bone marrow (BM) using retroviral transduction and transplantation in these two different strains of inbred mice to induce B-ALL. There were significantly more peripheral blood B220+ B cells in BALB/c B-ALL mice than those in B6 mice, correlating to faster B-ALL in BALB/c mice than in B6 mice. Among these B220+ cells, IgM+ cells were much less in BALB/c mice than in B6 mice. We also compared rearrangement of the B cell antigen receptor (BCR) heavy chains (m chains) between BALB/c and B6 backgrounds using BCR-ABL-expressing pro-B cell lines isolated from the B-ALL mice. Normal m chains rearrangement was found in B6 leukemic cells, but not in BALB/c leukemic cells. These results indicate that more differentiated B-leukemic cells are associated with less aggressive disease. To further demonstrate the role of blockade of B-cell differentiation in B-ALL development, we induced B-leukemic cell differentiation by co-expression of BCR-ABL and intact immunoregulatory tyrosine activation motifs (ITAM) contained in immunoglobulin (Ig)_/Igß complexes in BM cells of B-ALL mice, comparing to expression of BCR-ABL alone. We treated these mice with imatinib (orally, 100 mg/kg, twice a day). The treated mice with B-ALL induced by co-expression of BCR-ABL and ITAM lived three-week longer than those with B-ALL induced by BCR-ABL only, with some mice in long-term remission. Prolonged survival was associated with 50% increased B220+/IgM+ B-leukemic cells in peripheral blood of the mice. Taken together, our results demonstrate that blockade of B-cell differentiation is critical for the development of B-ALL induced by BCR-ABL, and provide a rationale for combination therapy of B-ALL with imatinib and induction of leukemic cell differentiation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2792-2792
Author(s):  
Renate Panzer-Gruemayer ◽  
Gerd Krapf ◽  
Dominik Beck ◽  
Gerhard Fuka ◽  
Christian Bieglmayer ◽  
...  

Abstract The chromosomal translocation t(12;21)(p13;q22) resulting in the TEL/AML1 (also known as ETV6/ RUNX1) fusion gene is the most frequent translocation in childhood B cell precursor (BCP) ALL. This type of ALL is characterized by a unique molecular signature, which includes the overexpression of the gene for the erythropoietin receptor (EpoR). So far, it is not known what causes the overexpression of the EpoR gene or whether it has any effect on the t(12;21) positive leukemia. We therefore aimed to evaluate potential mechanisms responsible for the upregulation of the EpoR in t(12;21) leukemias and to find out whether signalling via this receptor affects survival or proliferation of leukemic cells. In addition, we planned to explore signalling pathways linked to the respective effects and to elucidate relevant mechanisms that might be essential for cell survival. We first excluded the possibility that the EpoR expression is upregulated as a consequence of high Epo levels in the plasma that are induced by the patients’ low hemoglobin (Hb) levels. While Hb levels from patients with t(12;21)+ ALL were significantly lower compared to those with other subtypes of BCP ALL (median, 6,15g/dL and 7,9g/dL, respectively; p<0.001 Wilcoxon 2- sample test), which correlated with high Epo levels in the plasma, the extent of EpoR mRNA expression of leukemic cells was independent of the respective amount of Epo in the individual patient’s plasma. Next, the influence of Epo on t(12;21) + leukemic cell lines was evaluated and revealed a consistent time and dose dependent increase in proliferation (Epo concentrations 10, 50, 100U/ml for 72 hours) determined by 3H-Thymidine incorporation. This effect was abrogated upon addition of a blocking anti-EpoR antibody thereby confirming the specificity of EpoR signalling. Since Epo may have apoptosis-modulating potential in EpoR expressing malignant cells, we tested its influence on drug-induced apoptosis. For this purpose IC50 concentrations of drugs that are commonly used for the treatment of children with BCP ALL were used. A reduction of glucocorticoid (GC)-induced apoptosis by Epo was demonstrated in t(12;21)+ cell lines while no effect was seen in combination with other drugs or in t(12;21) negative cell lines. Preliminary data indicate that NF-kappa B as well as PI3K/Akt pathways are triggered by Epo, implying that they play a role in this rescue mechanism. Given that cell lines may have intrinsic changes, we are presently evaluating whether the observed results can also be reproduced in primary leukemic cells. In support of this assumption are results in a limited number of primary t(12;21)+ leukemias showing a superior survival (MTT assay) and reduced apoptosis rate to GC when cultured in the presence of Epo. These findings are in contrast to those in t(12;21) negative BCP ALLs. In conclusion, our data indicate that overexpression of EpoR in t(12;21) positive leukemias is not induced by low Hb, a feature that is generally observed in patients with this type of leukemia. Binding of Epo to its receptor in vitro leads to enhanced survival and negatively affects the sensitivity to GCs. Whether these findings have any implications on the treatment and care of patients with t(12;21)+ leukemia needs to be addressed in further studies. Financial support: OENB10720, FWF P17551-B14 and GENAU-CHILD Projekt GZ200.136/1 - VI/1/2005 to RPG.


Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 812-820 ◽  
Author(s):  
Patrick Brown ◽  
Mark Levis ◽  
Sheila Shurtleff ◽  
Dario Campana ◽  
James Downing ◽  
...  

AbstractFMS-like tyrosine kinase 3 (FLT3) is almost universally expressed in B-precursor childhood acute lymphoblastic leukemia (ALL). Cases of ALL with MLL gene rearrangements and those with high hyperdiploidy (&gt; 50 chromosomes) express the highest levels of FLT3, and activating mutations of FLT3 occur in 18% of MLL-rearranged and 28% of hyperdiploid ALL cases. We determined the antileukemic activity of CEP-701, a potent and selective FLT3 inhibitor, in 8 ALL cell lines and 39 bone marrow samples obtained at diagnosis from infants and children with various subtypes of ALL. CEP-701 induced pronounced apoptotic responses in a higher percentage of samples that expressed high levels of FLT3 (74%, n = 23) compared with samples with low levels of expression (8%, n = 13; P = .0003). Sensitivity to FLT3 inhibition was particularly high in samples with MLL gene rearrangements (82%, n = 11; P = .0005), high hyperdiploidy (100%, n = 5; P = .0007), and/or FLT3 mutations (100%, n = 4; P = .0021). Seven of 7 sensitive samples examined by immunoblotting demonstrated constitutively phosphorylated FLT3 that was potently inhibited by CEP-701, whereas 0 of 6 resistant samples expressed constitutively phosphorylated FLT3. We conclude that the FLT3 inhibitor CEP-701 effectively suppresses FLT3-driven leukemic cell survival. Clinical testing of CEP-701 as a novel molecularly targeted agent for the treatment of childhood ALL is warranted.


Sign in / Sign up

Export Citation Format

Share Document