scholarly journals The State of Chromatin Condensation, the Expression of Genes Involved in DNA Damage Response and the DNA Repair Capacity Affect the Drug Sensitivity of PBMCs of Myeloma Patients Treated with Melphalan

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3628-3628 ◽  
Author(s):  
Maria Gkotzamanidou ◽  
Evangelos Terpos ◽  
Nikhil C. Munshi ◽  
Vassilis L. Souliotis ◽  
Meletios A. Dimopoulos

Abstract Melphalan is an interstrand cross-link (ICL)-inducing agent and one of the most active chemotherapeuticdrugs in the treatment of multiple myeloma (MM). However, the molecular mechanisms contributing to differential response of MM patients to melphalan are poorly understood. Herein, we investigated the underlying mechanisms in processing and repair of melphalan-induced DNA lesions and their potent contribution to the outcome of anti-myeloma therapy. We studied peripheral blood mononuclear cells (PBMCs) from 15 newly diagnosed multiple myeloma (MM) patients (8M/7F; median age 61 years) responders (≥PR, n=9) and non-responders (< PR, n=6) to subsequent melphalan therapy. PBMCs from 25 healthy controls were also included in this study (HC; 14M/11F, median age 58 years). PBMCs were ex vivo treated with melphalan and the extent of the DNA damage formation/repair (monoadducts by using Southern blot; ICLs by using a quantitative PCR-based assay; double strand breaks (DSBs) using immunofluorescence quantification of γH2AX foci), the induction of the apoptotic pathway by using a photometric enzyme-immunoassay and the local chromatin condensation by using micrococcal nuclease digestion were examined. Finally, the expression of a focused panel of 84 genes involved in DNA damage response (DDR) pathways (ATM/ATR signaling, DNA repair pathways, cell cycle regulation, apoptosis) was also evaluated. Following ex vivo treatment of PBMCs with melphalan, in all individuals examined biphasic DNA repair kinetics were observed, including a fast first-phase of repair and a much slower second phase. Interestingly, the accumulation of monoadducts was inversely correlated with the first-phase repair capacity of the PBMCs, being significantly higher in HC than in responders and lowest in non-responders (all P<0.001). The second phase repair capacity showed no differences in all individuals analyzed. Also, although ICLs "unhooking" rates were similar in all individuals, accumulation of ICLs was significantly higher in HC compared to responders' PBMCs (P<0.01), due to higher levels of monoadducts that are precursors of ICLs left unrepaired in these cells, resulting in higher formation of ICLs. Minimal amounts of ICLs were observed in non-responders. Moreover, DSBs burden was significantly higher in HC than in responders, due to higher accumulation of ICL, which are precursors of DSBs and lower rates of DSB repair in these cells (P<0.01). Again, minimal amounts of DSBs were observed in non-responders. Interestingly, apoptosis rate of PBMCs was inversely correlated with the repair efficiency of both the first-phase monoadducts and the DSBs, with the apoptosis being significantly higher in HC compared to responders and lowest in non-responders (all P<0.05). In untreated PBMCs, we found an inverse correlation between the local chromatin condensation and the repair capacity. Therefore, we observed a progressive, significant increase in the looseness of the local chromatin structure, from HC to MM patients, with responders showing more condensed chromatin structure compared to non-responders (all P<0.05). Interestingly, by using a-amanitin, an inducer of chromatin condensation, PBMCs from non-responders showed the DNA repair capacity and the melphalan sensitivity similar to PBMCs from responders, suggesting that the state of the chromatin structure contributes to the response to melphalan therapy. Finally, microarray analyses of untreated PBMCs consistently point to an altered expression of several DNA damage response-related genes in MM patients compared to HC. Particularly, responders' PBMCs showed upregulation of 4 genes (ATR, CHEK2, XPA, XRCC1) and downregulation of 5 genes (ATM, MPG, UNG, CDKN1A, CDC25C) compared to non-responders (in all cases, fold changes between groups were >2, P<0.001), suggesting that changes in the molecular components of the DDR pathways correlate with the outcome of melphalan therapy. We conclude that the state of chromatin condensation, the expression of genes involved in DDR pathways and the repair capacity of monoadducts and DSBs affect the drug sensitivity of PBMCs and maybe used for the prediction of response of myeloma patients to melphalan therapy. Disclosures Terpos: Celgene: Honoraria, Other: travel expenses; Novartis: Honoraria; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel expenses. Munshi:celgene: Membership on an entity's Board of Directors or advisory committees; onyx: Membership on an entity's Board of Directors or advisory committees; millenium: Membership on an entity's Board of Directors or advisory committees; novartis: Membership on an entity's Board of Directors or advisory committees. Dimopoulos:Janssen-Cilag: Honoraria; Novartis: Honoraria; Genesis: Honoraria; Amgen: Honoraria; Onyx: Honoraria; Celgene: Honoraria; Janssen: Honoraria.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4437-4437
Author(s):  
Maria Gkotzamanidou ◽  
Evangelos Terpos ◽  
Nikhil C Munshi ◽  
Vassilis L. Souliotis ◽  
Meletios A Dimopoulos

Abstract Repair of DNA and, thus, preservation of the genetic code are critical for normal cellular function. However, tumor cells use DNA repair pathways to develop resistance to chemotherapy. Therefore, inhibiting DNA repair may override this drug resistance. Herein, we further investigate the mechanistic basis of the link between DNA repair efficiency and response to anti-myeloma therapy and provide evidence that histone modifiers might prove efficacious when used in combination with DNA-damaging agents. We studied clonal bone marrow plasma cells (BMPCs) and peripheral blood mononuclear cells (PBMCs) of 26 unselected newly diagnosed multiple myeloma (MM) patients (12F/14M; median age 60 years, range 42-66) who responded (n=17) or did not respond (n=9) to subsequent melphalan therapy. PBMCs from healthy controls (n=25) were also included in the study. Cells were ex vivotreated with melphalan alone or in the presence of histone deacetylase inhibitor HDACi) vorinostat or the Non-Homologous End-Joining (NHEJ) inhibitor SCR7 and the extent of the DNA damage formation/repair (monoadducts by using Southern blot analysis; interstrand crosslinks by using quantitative-PCR; double-strand breaks repair using immunofluorescence quantification of γH2AX foci by confocal microscopy), the induction of the apoptotic pathway (using a photometric enzyme-immunoassay) and the local chromatin condensation were evaluated. Finally, the expression of a focused panel of 84 genes involved in DNA damage response pathways (ATM/ATR signaling, DNA repair pathways, cell cycle regulation, apoptosis) was also examined. Both BMPCs and PBMCs from responders to melphalan therapy showed more condensed chromatin structure and slower rates of DNA repair activity (P<0.0022) compared to non-responders. Moreover, apoptosis rates of both BMPCs and PBMCs were inversely correlated with individual DNA repair efficiency, being higher in responders' cells compared to those of non-responders (P=0.0011). PBMCs from MM patients showed higher looseness of chromatin structure, increased DNA repair activity and higher apoptosis rates compared to healthy controls. Microarray analyses of untreated PBMCs consistently point to an altered expression of several DNA damage response-related genes in MM patients' responders to subsequent therapy compared to non-responders. Particularly, responders' PBMCs showed upregulation of ATR, BLM, DDB1, EXO1, FANCA, MRE11A, MSH2, PCNA, RAD50, RAD51, RPA1, XPA, XPC, XRCC1 and TP53 genes and downregulation of ATM, CDC25C, CDKN1A, CHEK2, ERCC1, MPG, PNKP and UNG genes compared to non-responders (in all cases, fold changes between groups were >2, P<0.001), suggesting that perturbation in the molecular components of DNA damage response pathways plays an important role in the therapeutic action of the genotoxic drugs. Interestingly, co-treatment of cells with melphalan and the NHEJ inhibitor SCR7 significantly reduced the rates of DNA damage repair and increased melphalan sensitivity of both BMPCs and PBMCs. Moreover, co-treatment of BMPCs with melphalan and the HDACi vorinostat resulted in hyperacetylation of histone H4, increased DNA damage burden and higher apoptosis rates of these cells. On the other hand, co-treatment of PBMCs with melphalan in the presence of vorinostat did not significantly alter the melphalan-induced DNA damage burden and the apoptosis rates of these cells. Interestingly, using Western blot analysis, we found that vorinostat decreased the levels of critical DNA repair proteins (Rad50, Mre11, Ku70, Ku86, DNA-PKcs) in malignant BMPCs, while it did not suppressed these DNA proteins in PBMCs, a finding that can explain, in part, the selectivity of vorinostat in causing cell death in malignant cells at concentrations that cause little or no normal cell death. Collectively, responders to melphalan therapy are characterized by slower rates of DNA repair mechanisms, resulting in higher accumulation of the cytotoxic DNA lesions, which in turn triggers the induction of the apoptotic pathway, a priority for successful clinical outcome. The enhancement of melphalan cytotoxicity by DNA repair modifiers offers a promising strategy toward treatment of MM and improvement of existing regimens. Disclosures Terpos: Novartis: Honoraria; Celgene: Honoraria; Takeda: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Other: Travel expenses, Research Funding; Genesis: Consultancy, Honoraria, Other: Travel expenses; Amgen: Consultancy, Honoraria, Other: Travel expenses, Research Funding. Dimopoulos:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genesis: Consultancy, Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 76-76
Author(s):  
Ilaria Iacobucci ◽  
Federica Cattina ◽  
Silvia Pomella ◽  
Annalisa Lonetti ◽  
Enrico Derenzini ◽  
...  

Abstract Abstract 76 Checkpoint kinase 1 (Chk1) and 2 (Chk2) are serine/threonine kinases regulated by Ataxia-Telangiectasia and Rad3-related (ATR) kinases and involved in the DNA damage response and in the regulation of cell cycle progression at S-G2 phase. Deregulation of these pathways has been previously described in BCR-ABL positive cells and involved in chemoresistance. Based on the potential utility of DNA checkpoint inhibition in enhancing tumor cell death, in this study we aimed to investigate the preclinical activity of PF-0477736 (Pfizer), a potent and selective Chk1/2 inhibitor, in Ph+ ALL and to determine potential biomarkers of functional inhibition. We first examined Chk1 and Chk2 mRNA expression levels in 45 newly diagnosed Ph+ ALL patients, in their paired remission samples, in 14 relapsed cases and in 3 Ph+ cell lines (BV-173, SUPB-15 and K562) by Fluidigm Dynamic Array real-time qPCR assay (Fluidigm Corporation). Higher transcript levels of Chk1 but not Chk2 were found in newly diagnosed patients compared to remission samples (p = 0.0009 for Chk1 and p= 0.8183 for Chk2). Chk1 transcript levels were comparable between diagnosis and relapsed cases (p = 0.5728), suggesting that the ATR-Chk1 pathway is strongly activated in Bcr-Abl-positive cells. This was confirmed by phosphorylation of Chk1 Ser317 by western blotting analysis in Ph+ cell lines. We then evaluated the effect of PF-0477736 as single agent on cell viability using the Cell Proliferation Reagent WST-1 (Roche). BV-173, SUPB-15 and K562 cell lines were incubated with increasing concentration of PF-0477736 (0.005-2 μM) for 24, 48 and 72 hours. PF-0477736 inhibition of Chk1 resulted in dose and time-dependent cytotoxicity with IC50 at 24 hours of 0.1–0.5 μM, with BV-173 being the most sensitive, while K562 the most resistant. These results were confirmed in primary blasts cells from a Ph+ ALL patient with wild-type Bcr-Abl and from 3 cases harboring the T315I Bcr-Abl mutation found to be insensitive to the available TKIs (IC50 ranged from 0.1–0.5 μM at 48 hours). Consistent with the WST-1 results, Annexin V/Propidium Iodide staining analysis showed a significant increase of apoptosis at 24 and 48 hours in both cell lines and primary cells. To test whether increased apoptosis resulted from Chk1 inhibition, we assessed the changes in phosphorylation of Cdc25c phosphatase, which is inactivated by Chk1 to prevent mitotic entry, and of γH2AX, which is increased in response to DNA damage. Western blot analysis showed that PF-0477736 decreases the inhibitory phosphorylation of Cdc25c Ser216 and increases levels of γH2AX. Since multiple studies reported a higher activity of PF-0477736 against p53-defective cancer cells, we performed a mutational screening by amplification and subsequent sequencing of all coding exons of p53. All cell lines except for K562 and primary leukemia cells lacked mutations in the p53 gene, demonstrating that in Ph+ ALL PF-0477736 is highly effective also on p53 wild-type tumor cells. Finally, in order to elucidate the mechanisms of action of PF-0477736 and to determine biomarkers of response, gene expression profiling analysis (Affymetrix GeneChip Human Gene 1.0 ST) was performed on 3 treated Ph+ cell lines and their untreated counterparts. Consistent with a specific Chk1-mechanism of action, treatment resulted in differential expression (p < 0.05) of 211 genes including those involved in apoptosis and cell cycle (CEBPB, CUL1, Histone H1-H2A, 2B family clusters, Histone H4, DHX15, SNCB, FOS) and DNA damage, such as DNA-damage-inducible transcript 3 (DDIT3) and growth-arrest and DNA damage-inducible proteins GADD34 and GADD45a, suggesting that PF-0477736 contributes to a checkpoint abrogation and to an activation of DNA damage response in Ph+ ALL cells. In conclusion, for the first time we demonstrate in a large cohort of Ph+ ALL patients an over-expression of Chk1, providing a strong rational for its inhibition. In vitro treatment of Ph+ ALL cells with PF-0477736 alone resulted in reduction of inhibitory phosphorylation of Cdc25c, inhibition of proliferation and induction of biomarkers of DNA damage and apoptosis, suggesting that single-agent Chk1/2 inhibition may be an effective treatment strategy for Ph+ ALL. Supported by European LeukemiaNet, AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2006, PRIN 2009, PIO program, Programma Ricerca Regione-Università 2007–2009. PF-0477736 provided by Pfizer. Disclosures: Baccarani: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees. Martinelli:Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Pfizer: Consultancy.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Takayuki Saitoh ◽  
Tsukasa Oda

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1156
Author(s):  
Jiachen Xuan ◽  
Kezia Gitareja ◽  
Natalie Brajanovski ◽  
Elaine Sanij

The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400–600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.


2020 ◽  
Vol 35 (3) ◽  
pp. 529-544 ◽  
Author(s):  
F Horta ◽  
S Catt ◽  
P Ramachandran ◽  
B Vollenhoven ◽  
P Temple-Smith

Abstract STUDY QUESTION Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage? SUMMARY ANSWER Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa. WHAT IS KNOWN ALREADY The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage. STUDY DESIGN, SIZE, DURATION Oocytes from two age groups of 30 super-ovulated female mice (young: 5–8 weeks old, n = 15; old: 42–45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11–30%, and 30 Gy: &gt;30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling. PARTICIPANTS/MATERIALS, SETTING, METHODS Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6–8 h post-fertilisation) and two-cell embryos (22–24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software. MAIN RESULTS AND THE ROLE OF CHANCE The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P &lt; 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher’s exact]. However, blastocyst rates were significantly different (P &lt; 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P &lt; 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P &lt; 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P &lt; 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity. LARGE-SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect. WIDER IMPLICATIONS OF THE FINDINGS Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.


Author(s):  
Chang-Jin Lee ◽  
Min-Ji Yoon ◽  
Dong Hyun Kim ◽  
Tae Uk Kim ◽  
Youn-Jung Kang

AbstractProfilin-1 (PFN1) regulates actin polymerization and cytoskeletal growth. Despite the essential roles of PFN1 in cell integration, its subcellular function in keratinocyte has not been elucidated yet. Here we characterize the specific regulation of PFN1 in DNA damage response and repair machinery. PFN1 depletion accelerated DNA damage-mediated apoptosis exhibiting PTEN loss of function instigated by increased phosphorylated inactivation followed by high levels of AKT activation. PFN1 changed its predominant cytoplasmic localization to the nucleus upon DNA damage and subsequently restored the cytoplasmic compartment during the recovery time. Even though γH2AX was recruited at the sites of DNA double strand breaks in response to DNA damage, PFN1-deficient cells failed to recruit DNA repair factors, whereas control cells exhibited significant increases of these genes. Additionally, PFN1 depletion resulted in disruption of PTEN-AKT cascade upon DNA damage and CHK1-mediated cell cycle arrest was not recovered even after the recovery time exhibiting γH2AX accumulation. This might suggest PFN1 roles in regulating DNA damage response and repair machinery to protect cells from DNA damage. Future studies addressing the crosstalk and regulation of PTEN-related DNA damage sensing and repair pathway choice by PFN1 may further aid to identify new mechanistic insights for various DNA repair disorders.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A944-A944
Author(s):  
Anand Kornepati ◽  
Clare Murray ◽  
Barbara Avalos ◽  
Cody Rogers ◽  
Kavya Ramkumar ◽  
...  

BackgroundTumor surface-expressed programmed death-ligand 1 (PD-L1) suppresses immunity when it engages programmed death-1 (PD-1) on anti-tumor immune cells in canonical PD-L1/PD-1.1 Non-canonical, tumour-intrinsic PD-L1 signals can mediate treatment resistance2–6 but mechanisms remain incompletely understood. Targeting non-canonical, cell-intrinsic PD-L1 signals, especially modulation of the DNA damage response (DDR), remains largely untapped.MethodsWe made PD-L1 knockout (PD-L1 KO) murine transplantable and human cell lines representing melanoma, bladder, and breast histologies. We used biochemical, genetic, and cell-biology techniques for mechanistic insights into tumor-intrinsic PD-L1 control of specific DDR and DNA repair pathways. We generated a novel inducible melanoma GEMM lacking PD-L1 only in melanocytes to corroborate DDR alterations observed in PD-L1 KO of established tumors.ResultsGenetic tumor PD-L1 depletion destabilized Chk2 and impaired ATM/Chk2, but not ATR/Chk1 DDR. PD-L1KO increased DNA damage (γH2AX) and impaired homologous recombination DNA repair (p-RPA32, BRCA1, RAD51 nuclear foci) and function (DR-GFP reporter). PD-L1 KO cells were significantly more sensitive versus controls to DDR inhibitors (DDRi) against ATR, Chk1, and PARP but not ATM in multiple human and mouse tumor models in vitro and in vivo in NSG mice. PD-1 independent, intracellular, not surface PD-L1 stabilized Chk2 protein with minimal Chek2 mRNA effect. Mechanistically, PD-L1 could directly complex with Chk2, protecting it from PIRH2-mediated polyubiquitination. PD-L1 N-terminal domains Ig-V and Ig-C but not the PD-L1 C-terminal tail co-IP’d with Chk2 and restored Chk1 inhibitor (Chk1i) treatment resistance. Tumor PD-L1 expression correlated with Chk1i sensitivity in 44 primary human small cell lung cancer cell lines, implicating tumor-intrinsic PD-L1 as a DDRi response biomarker. In WT mice, genetic PD-L1 depletion but not surface PD-L1 blockade with αPD-L1, sensitized immunotherapy-resistant, BRCA1-WT 4T1 tumors to PARP inhibitor (PARPi). PARPi effects were reduced on PD-L1 KO tumors in RAG2KO mice indicating immune-dependent DDRi efficacy. Tumor PD-L1 depletion, likely due to impaired DDR, enhanced PARPi induced tumor-intrinsic STING activation (e.g., p-TBK1, CCL5) suggesting potential to augment immunotherapies.ConclusionsWe challenge the prevailing surface PD-L1 paradigm and establish a novel mechanism for cell-intrinsic PD-L1 control of the DDR and gene product expression. We identify therapeutic vulnerabilities from tumor PD-L1 depletion utilizing small molecule DDRi currently being tested in clinical trials. Data could explain αPD-L1/DDRi treatment resistance. Intracellular PD-L1 could be a pharmacologically targetable treatment target and/or response biomarker for selective DDRi alone plus other immunotherapies.ReferencesTopalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287, doi:10.1038/nrc.2016.36 (2016).Clark CA, et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis and autophagy in ovarian cancer and melanoma. Canres 0258.2016 (2016).Gupta HB et al. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. 1, 16030 (2016).Zhu H, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16:2829–2837, doi:10.1016/j.celrep.2016.08.032 (2016)Wu B, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology 7:e1500107, doi:10.1080/2162402X.2018.1500107 (2018)Liang J, et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res 8:952–965, doi:10.1158/2326-6066.CIR-19-0159 (2020)


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rui Gao ◽  
Anirban Chakraborty ◽  
Charlene Geater ◽  
Subrata Pradhan ◽  
Kara L Gordon ◽  
...  

How huntingtin (HTT) triggers neurotoxicity in Huntington’s disease (HD) remains unclear. We report that HTT forms a transcription-coupled DNA repair (TCR) complex with RNA polymerase II subunit A (POLR2A), ataxin-3, the DNA repair enzyme polynucleotide-kinase-3'-phosphatase (PNKP), and cyclic AMP-response element-binding (CREB) protein (CBP). This complex senses and facilitates DNA damage repair during transcriptional elongation, but its functional integrity is impaired by mutant HTT. Abrogated PNKP activity results in persistent DNA break accumulation, preferentially in actively transcribed genes, and aberrant activation of DNA damage-response ataxia telangiectasia-mutated (ATM) signaling in HD transgenic mouse and cell models. A concomitant decrease in Ataxin-3 activity facilitates CBP ubiquitination and degradation, adversely impacting transcription and DNA repair. Increasing PNKP activity in mutant cells improves genome integrity and cell survival. These findings suggest a potential molecular mechanism of how mutant HTT activates DNA damage-response pro-degenerative pathways and impairs transcription, triggering neurotoxicity and functional decline in HD.


2020 ◽  
Author(s):  
Kashmira Bane ◽  
Junita Desouza ◽  
Diksha Shetty ◽  
Prakash Choudhary ◽  
Shalaka Kadam ◽  
...  

Abstract STUDY QUESTION Is the DNA damage response (DDR) dysregulated in the eutopic endometrium of women with endometriosis? SUMMARY ANSWER Endometrial expression of genes involved in DDR is modulated in women with endometriosis, compared to those without the disease. WHAT IS KNOWN ALREADY Ectopic endometriotic lesions are reported to harbour somatic mutations, thereby hinting at dysregulation of DDR and DNA repair pathways. However, it remains inconclusive whether the eutopic endometrium also manifests dysregulated DDR in endometriosis. STUDY DESIGN, SIZE, DURATION For this case–control study conducted between 2015 and 2019, eutopic endometrial (E) samples (EE- from women with endometriosis, CE- from women without endometriosis) were collected in either mid-proliferative (EE-MP, n = 23; CE-MP, n = 17) or mid-secretory (EE-MS, n = 17; CE-MS, n = 9) phases of the menstrual cycle. This study compares: (i) DNA damage marker localization, (ii) expression of DDR genes and (iii) expression of DNA repair genes in eutopic endometrial samples from women with and without endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS The study included (i) 40 women (aged 31.9 ± 0.81 years) with endometriosis and (ii) 26 control women (aged 31.4 ± 1.02 years) without endometriosis. Eutopic endometrial samples from the two groups were divided into different parts for histological analysis, immunohistochemistry, RNA extraction, protein extraction and comet assays. Eighty-four genes of relevance in the DNA damage signalling pathway were evaluated for their expression in eutopic endometrial samples, using RT2 Profiler PCR arrays. Validations of the expression of two GADD (Growth Arrest DNA Damage Inducible) proteins - GADD45A and GADD45G were carried out by immunoblotting. DNA damage was assessed by immunohistochemical localization of γ-H2AFX (a phosphorylated variant of histone H2AX) and 8-OHdG (8-hydroxy-2′-deoxyguanosine). RNA sequencing data from mid-proliferative (EE-MP, n = 4; CE-MP, n = 3) and mid-secretory phase (EE-MS and CE-MS, n = 4 each) endometrial samples were scanned to compare the expression status of all the genes implicated in human DNA repair. PCNA (Proliferating Cell Nuclear Antigen) expression was determined to assess endometrial proliferation. Residual DNA damage in primary endometrial cells was checked by comet assays. Public datasets were also scanned for the expression of DDR and DNA repair genes as our RNASeq data were limited by small sample size. All the comparisons were made between phase-matched endometrial samples from women with and without endometriosis. MAIN RESULTS AND THE ROLE OF CHANCE Endometrial expression of DDR genes and intensity of immunolocalized γ-H2AFX were significantly (P &lt; 0.05) higher in EE, compared to CE samples. DDR proteins, especially those belonging to the GADD family, were found to be differentially abundant in EE, as compared to CE. These patterns were evident in both mid-proliferative and mid-secretory phases. Intriguingly, higher DDR was associated with increased cell proliferation in EE-MP, compared to CE-MP. Furthermore, among the differentially expressed transcripts (DETs) encoded by DNA repair genes, the majority showed up-regulation in EE-MP, compared to CE-MP. Interestingly, CE-MP and EE-MP had a comparable percentage (P &gt; 0.05) of cells with residual DNA damage. However, unlike the mid-proliferative phase data, many DETs encoded by DNA repair genes were down-regulated in EE-MS, compared to CE-MS. An analysis of the phase-matched control and endometriosis samples included in the GSE51981 dataset available in the Gene Expression Omnibus database also revealed significant (P &lt; 0.05) alterations in the expression of DDR and DNA repair genes in EE, compared to CE. LARGE-SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION The study was conducted on a limited number of endometrial samples. Also, the study does not reveal the causes underlying dysregulated DDR in the eutopic endometrium of women with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS Alterations in the expression of DDR and DNA repair genes indirectly suggest that eutopic endometrium, as compared to its healthy counterpart, encounters DNA damage-inducing stimuli, either of higher strength or for longer duration in endometriosis. It will be worthwhile to identify the nature of such stimuli and also explore the role of higher genomic insults and dysregulated DDR/DNA repair in the origin and/or progression of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by the Department of Biotechnology and Indian Council of Medical Research, Government of India. No conflict of interest is declared.


2016 ◽  
Vol 94 (5) ◽  
pp. 381-395 ◽  
Author(s):  
Poonam Agarwal ◽  
Kyle M. Miller

DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.


Sign in / Sign up

Export Citation Format

Share Document