response biomarker
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Juan Sebastian Cruz-Méndez ◽  
María Paula Herrera-Sánchez ◽  
Ángel Enrique Céspedes-Rubio ◽  
Iang Schroniltgen Rondón-Barragán

Author(s):  
Swati Patel ◽  
Nishta Ramnoruth ◽  
Pascale Wehr ◽  
Jamie Rossjohn ◽  
Hugh H Reid ◽  
...  

Abstract Antigen-specific T cells can serve as a response biomarker in non-clinical or clinical immunotherapy studies in autoimmune disease. There are protocols with optimized multimer staining methods to detect peptide (p)MHCII+ CD4+ T cells, and some qualified and validated protocols for pMHCI+ CD8+ T cells. However, no protocol is fully or partially qualified to enumerate and characterise antigen-specific pMHCII+ CD4+ T cells from patient samples. Implementing such an assay requires a desired level of specificity and precision, in terms of assay repeatability and reproducibility. In transgenic type II collagen (CII)-immunised HLA-DR1/DR4 humanised mouse models of collagen-induced arthritis (CIA), CII259-273-specific T cells dominantly expand. Therefore antigen-specific T cells recognising this epitope presented by rheumatoid arthritis (RA)-associated risk HLA-DR allomorphs are of interest to understand disease progression and responses to immunotherapy in RA patients. Using HLA-DRB1*04:01 or *01:01-collagen type II (CII)259–273 tetramers, we evaluated parameters influencing precision and reproducibility of an optimized flow cytometry-based method for antigen-specific CD4+ T cells and eight specific subpopulations with and without tetramer positivity. We evaluated specificity, precision, and reproducibility for research environments and non-regulated laboratories. The assay has excellent overall precision with %CV<25% for intra-assay repeatability, inter-analyst precision, and inter-assay reproducibility. The precision of the assay correlated negatively with the cell viability after thawing, indicating that post-thaw viability is a critical parameter for reproducibility. This assay is suitable for longitudinal analysis of treatment response and disease activity outcome in RA patients, and adaptable for translational or immunotherapy clinical trial settings.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Julie Dudášová ◽  
Regina Laube ◽  
Chandni Valiathan ◽  
Matthew C. Wiener ◽  
Ferdous Gheyas ◽  
...  

AbstractVaccine efficacy is often assessed by counting disease cases in a clinical trial. A new quantitative framework proposed here (“PoDBAY,” Probability of Disease Bayesian Analysis), estimates vaccine efficacy (and confidence interval) using immune response biomarker data collected shortly after vaccination. Given a biomarker associated with protection, PoDBAY describes the relationship between biomarker and probability of disease as a sigmoid probability of disease (“PoD”) curve. The PoDBAY framework is illustrated using clinical trial simulations and with data for influenza, zoster, and dengue virus vaccines. The simulations demonstrate that PoDBAY efficacy estimation (which integrates the PoD and biomarker data), can be accurate and more precise than the standard (case-count) estimation, contributing to more sensitive and specific decisions than threshold-based correlate of protection or case-count-based methods. For all three vaccine examples, the PoD fit indicates a substantial association between the biomarkers and protection, and efficacy estimated by PoDBAY from relatively little immunogenicity data is predictive of the standard estimate of efficacy, demonstrating how PoDBAY can provide early assessments of vaccine efficacy. Methods like PoDBAY can help accelerate and economize vaccine development using an immunological predictor of protection. For example, in the current effort against the COVID-19 pandemic it might provide information to help prioritize (rank) candidates both earlier in a trial and earlier in development.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A944-A944
Author(s):  
Anand Kornepati ◽  
Clare Murray ◽  
Barbara Avalos ◽  
Cody Rogers ◽  
Kavya Ramkumar ◽  
...  

BackgroundTumor surface-expressed programmed death-ligand 1 (PD-L1) suppresses immunity when it engages programmed death-1 (PD-1) on anti-tumor immune cells in canonical PD-L1/PD-1.1 Non-canonical, tumour-intrinsic PD-L1 signals can mediate treatment resistance2–6 but mechanisms remain incompletely understood. Targeting non-canonical, cell-intrinsic PD-L1 signals, especially modulation of the DNA damage response (DDR), remains largely untapped.MethodsWe made PD-L1 knockout (PD-L1 KO) murine transplantable and human cell lines representing melanoma, bladder, and breast histologies. We used biochemical, genetic, and cell-biology techniques for mechanistic insights into tumor-intrinsic PD-L1 control of specific DDR and DNA repair pathways. We generated a novel inducible melanoma GEMM lacking PD-L1 only in melanocytes to corroborate DDR alterations observed in PD-L1 KO of established tumors.ResultsGenetic tumor PD-L1 depletion destabilized Chk2 and impaired ATM/Chk2, but not ATR/Chk1 DDR. PD-L1KO increased DNA damage (γH2AX) and impaired homologous recombination DNA repair (p-RPA32, BRCA1, RAD51 nuclear foci) and function (DR-GFP reporter). PD-L1 KO cells were significantly more sensitive versus controls to DDR inhibitors (DDRi) against ATR, Chk1, and PARP but not ATM in multiple human and mouse tumor models in vitro and in vivo in NSG mice. PD-1 independent, intracellular, not surface PD-L1 stabilized Chk2 protein with minimal Chek2 mRNA effect. Mechanistically, PD-L1 could directly complex with Chk2, protecting it from PIRH2-mediated polyubiquitination. PD-L1 N-terminal domains Ig-V and Ig-C but not the PD-L1 C-terminal tail co-IP’d with Chk2 and restored Chk1 inhibitor (Chk1i) treatment resistance. Tumor PD-L1 expression correlated with Chk1i sensitivity in 44 primary human small cell lung cancer cell lines, implicating tumor-intrinsic PD-L1 as a DDRi response biomarker. In WT mice, genetic PD-L1 depletion but not surface PD-L1 blockade with αPD-L1, sensitized immunotherapy-resistant, BRCA1-WT 4T1 tumors to PARP inhibitor (PARPi). PARPi effects were reduced on PD-L1 KO tumors in RAG2KO mice indicating immune-dependent DDRi efficacy. Tumor PD-L1 depletion, likely due to impaired DDR, enhanced PARPi induced tumor-intrinsic STING activation (e.g., p-TBK1, CCL5) suggesting potential to augment immunotherapies.ConclusionsWe challenge the prevailing surface PD-L1 paradigm and establish a novel mechanism for cell-intrinsic PD-L1 control of the DDR and gene product expression. We identify therapeutic vulnerabilities from tumor PD-L1 depletion utilizing small molecule DDRi currently being tested in clinical trials. Data could explain αPD-L1/DDRi treatment resistance. Intracellular PD-L1 could be a pharmacologically targetable treatment target and/or response biomarker for selective DDRi alone plus other immunotherapies.ReferencesTopalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287, doi:10.1038/nrc.2016.36 (2016).Clark CA, et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis and autophagy in ovarian cancer and melanoma. Canres 0258.2016 (2016).Gupta HB et al. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. 1, 16030 (2016).Zhu H, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16:2829–2837, doi:10.1016/j.celrep.2016.08.032 (2016)Wu B, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology 7:e1500107, doi:10.1080/2162402X.2018.1500107 (2018)Liang J, et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res 8:952–965, doi:10.1158/2326-6066.CIR-19-0159 (2020)


2021 ◽  
Author(s):  
Luuk Wieske ◽  
Duncan Smyth ◽  
Michael P. Lunn ◽  
Filip Eftimov ◽  
Charlotte E. Teunissen

AbstractReliable and responsive tools for monitoring disease activity and treatment outcomes in patients with neuropathies are lacking. With the emergence of ultrasensitive blood bioassays, proteins released with nerve damage are potentially useful response biomarkers for many neurological disorders, including polyneuropathies. In this review, we provide an overview of the existing literature focusing on potential applications in polyneuropathy clinical care and trials. Whilst several promising candidates have been identified, no studies have investigated if any of these proteins can serve as response biomarkers of longitudinal disease activity, except for neurofilament light (NfL). For NfL, limited evidence exists supporting a role as a response biomarker in Guillain-Barré syndrome, vasculitic neuropathy, and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Most evidence exists for NfL as a response biomarker in hereditary transthyretin-related amyloidosis (hATTR). At the present time, the role of NfL is therefore limited to a supporting clinical tool or exploratory endpoint in trials. Future developments will need to focus on the discovery of additional biomarkers for anatomically specific and other forms of nerve damage using high-throughput technologies and highly sensitive analytical platforms in adequality powered studies of appropriate design. For NfL, a better understanding of cut-off values, the relation to clinical symptoms and long-term disability as well as dynamics in serum on and off treatment is needed to further expand and proceed towards implementation.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yanina Dockx ◽  
Christel Vangestel ◽  
Tim Van den Wyngaert ◽  
Manon Huizing ◽  
Sven De Bruycker ◽  
...  

We investigated the potential use of [18F]FDG PET as a response biomarker for PI3K pathway targeting therapies in two HER-2-overexpressing cancer models. Methods. CD-1 nude mice were inoculated with HER-2-overexpressing JIMT1 (trastuzumab-resistant) or SKOV3 (trastuzumab-sensitive) human cancer cells. Animals were treated with trastuzumab, everolimus (mTOR inhibitor), PIK90 (PI3K inhibitor), saline, or combination therapy. [18F]FDG scans were performed at baseline, two, and seven days after the start of the therapy. Tumors were delineated on CT images and relative tumor volumes (RTV) and maximum standardized uptake value (SUVmax) were calculated. Levels of pS6 and pAkt on protein tumor lysates were determined with ELISA. Results. In the SKOV3 xenografts, all treatment schedules resulted in a gradual decrease in RTV and delta SUVmax (ΔSUVmax). For all treatments combined, ΔSUVmax after 2 days was predictive for RTV after 7 days ( r = 0.69 , p = 0.030 ). In JIMT1 tumors, monotherapy with everolimus or PIK90 resulted in a decrease in RTV ( − 30 % ± 10 % and − 20 % ± 20 % , respectively) and ΔSUVmax ( − 39 % ± 36 % and − 42 % ± 8 % , respectively) after 7 days of treatment, but not earlier, while trastuzumab resulted in nonsignificant increases compared to control. Combination therapies resulted in RTV and ΔSUVmax decrease already at day 2, except for trastuzumab+everolimus, where an early flare was observed. For all treatments combined, ΔSUVmax after 2 days was predictive for RTV after 7 days ( r = 0.48 , p = 0.028 ), but the correlation could be improved when combination with everolimus ( r = 0.59 , p = 0.023 ) or trastuzumab ( r = 0.69 , p = 0.015 ) was excluded. Conclusion. Reduction in [18F]FDG after 2 days correlated with tumor volume changes after 7 days of treatment and confirms the use of [18F]FDG PET as an early response biomarker. Treatment response can however be underestimated in schedules containing trastuzumab or everolimus due to temporary increased [18F]FDG uptake secondary to negative feedback loop and crosstalk between different pathways.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Bonvini ◽  
Elisabetta Rossi ◽  
Angelica Zin ◽  
Mariangela Manicone ◽  
Riccardo Vidotto ◽  
...  

Inflammatory myofibroblastic tumors (IMTs) are locally aggressive malignancies occurring at various sites. Surgery is the mainstay of treatment and prognosis is generally good. For children with unresectable or metastatic tumors, however, outcome is particularly severe, limited also by the lack of predictive biomarkers of therapy efficacy and disease progression. Blood represents a minimally invasive source of cancer biomarkers for real-time assessment of tumor growth, particularly when it involves the analysis of circulating tumor cells (CTC). As CTCs potentially represent disseminated disease, their detection in the blood correlates with the presence of metastatic lesions and may reflect tumor response to treatment. Herein, we present a case report of a 19-year-old boy with an ALK-positive IMT of the bladder, proximal osteolytic and multiple bilateral lung lesions, who received ALK inhibitor entrectinib postoperatively and underwent longitudinal CTC analysis during treatment. Antitumor activity of entrectinib was demonstrated and was accompanied by regression of lung lesions, elimination of CTCs from the blood and no development of relapses afterwards. Therapy continued without any clinical sign of progression and 24 months since the initiation of treatment the patient remains symptom-free and disease-free.


2021 ◽  
pp. 1-10
Author(s):  
Lichao Xu ◽  
Shiqin Wang ◽  
Shengping Wang ◽  
Ying Wang ◽  
Wentao Li ◽  
...  

OBJECTIVES: To investigate whether the baseline apparent diffusion coefficient (ADC) can predict survival in the hepatocellular carcinoma (HCC) patients receiving chemoembolization. MATERIALS AND METHODS: Diffusion-weighted MR imaging of HCC patients is performed within 2 weeks before chemoembolization. The ADC of the largest index lesion is recorded. Responses are assessed by mRECIST after the start of the second course of chemoembolization. Receiver operating characteristic (ROC) curve analysis is performed to evaluate the diagnostic performance and determine optimal cut-off values. Cox regression and Kaplan–Meier survival analyses are used to explore the differences in overall survival (OS) between the responders and non-responders. RESULTS: The difference is statistically significant in the baseline ADC between the responders and non-responders (P <  0.001). ROC analyses indicate that the baseline ADC value is a good predictor of response to treatment with an area under the ROC curve (AUC) of 0.744 and the optimal cut-off value of 1.22×10–3 mm2/s. The Cox regression model shows that the baseline ADC is an independent predictor of OS, with a 57.2% reduction in risk. CONCLUSION: An optimal baseline ADC value is a functional imaging response biomarker that has higher discriminatory power to predict tumor response and prolonged survival following chemoembolization in HCC patients.


Author(s):  
Praveen Venkatesh ◽  
Daniel Sneider ◽  
Mohammed Danish ◽  
Nathaniel D Sisterson ◽  
Naoir Zaher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document