The Genomic and Epigenomic Landscapes of Blast Crisis Transformation in Chronic Myeloid Leukemia

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3737-3737 ◽  
Author(s):  
S. Tiong Ong ◽  
Thushangi Pathiraja ◽  
Asif Javed ◽  
Xin Xuan Sheila Soh ◽  
Simeen Malik ◽  
...  

Abstract The transition from chronic phase (CP) to blast crisis (BC) chronic myeloid leukemia (CML) is characterized by reprogramming of the CML transcriptome (Radich et al. PNAS 2006), and shortened survival. Current models propose genomic instability as causal in BC transformation with enhanced DNA damage and impaired DNA repair inducing genetic mutations (ranging from large chromosomal aberrations to point mutations), altered gene function, and eventually BC transformation (Perrotti et al. JCI 2010). Consistent with this model are the phenomena of BC clonal evolution, and the increased frequency of ABL kinase domain mutations found in BC. Because different mutational processes are associated with distinct cancer-specific mutation signatures (Alexandrov et al. Nature 2013), this model also predicts the existence of a CML-specific mutation signature. In addition, recent work has highlighted the importance of epigenetic alterations in hematologic malignancies (Shih et al., Nat. Rev. Cancer, 2012). However, we lack a complete understanding of the type or frequency of genetic alterations in BC, and the relative contribution of genetic vs. epigenetic events in reprogramming the BC transcriptome. To address these knowledge gaps, we analyzed the CML progression genome, epigenome, and transcriptome in 12 CP/BC sample pairs. Whole-genome sequencing revealed the CML genome to be relatively stable with respect to structural variations, indels, and somatic single nucleotide variants. The average number of nonsynonymous coding mutations per BC genome was 5, placing the BC coding genome in the same mutation frequency range as AML and ALL genomes (Alexandrov et al. Nature 2013). In addition, we identified a novel mutation signature in all CML samples suggesting a CML-specific mutational process. 1175 genes were 'hit' by genomic, mostly copy number, alterations in >1 sample, and included TCR genes and Ikaros (IKZF1) among lymphoid BC pairs. Only 21 recurrently altered genes were affected by somatic SNVs or indels, with resistance-associated ABL1 mutations being commonest. We next used DNA methylation arrays to assess the BC epigenome, and found 20,651 CpG sites (out of 455,187) to be hyper-methylated, and 3225 to be hypo-methylated in BC compared to CP. Combined methylome and transcriptome analysis demonstrated an inverse relationship between methylation and expression changes at a subset of CpG sites enriched at promoters. Genes with increased methylation/decreased expression or decreased methylation/increased expression included those involved in cell cycle control/heme biosynthesis, and molecular mechanisms of cancer/G-protein coupled receptor signaling/MAPK signaling respectively. Unsupervised methylation-based clustering segregated samples into CP, lymphoid BC and myeloid BC groups, recapitulating expression-based clustering, and further supporting a functional role for DNA methylation in BC transcriptional reprogramming. We next performed an integrative analysis by combining the genome, methylome, and transcriptome datasets, and included data from 34 additional CML samples. Top ranking candidate genes included epigenetic modifiers, and hematopoetic differentiation- and stem cell-related genes. Functional analysis of candidate genes and epigenetic processes using genetic and epigenetic drug-based approaches are ongoing. In summary, we conclude that: 1. The genomic and epigenomic landscapes in BC are characterized by a modest number of recurring events in the former, but consistent and striking differences in the latter, 2. The BC methylome is functionally associated with the robust gene expression changes found in BC, and 3. Epigenetic modifier drugs may be of use in reversing the gene expression changes characteristic of BC. Disclosures Chuah: Children International: Honoraria; Novartis: Honoraria; Bristol Meyers Squibb: Honoraria. Takahashi:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Sysmex: Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Speakers Bureau; Masis: Consultancy; Otsuka: Membership on an entity's Board of Directors or advisory committees; Astellas: Speakers Bureau; BMS: Honoraria, Research Funding, Speakers Bureau.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4551-4551 ◽  
Author(s):  
Jeffrey H. Lipton ◽  
Dhvani Shah ◽  
Vanita Tongbram ◽  
Manpreet K Sidhu ◽  
Hui Huang ◽  
...  

Abstract INTRODUCTION Patients with chronic myeloid leukemia (CP-CML) failing 1st line imatinib are most commonly treated with the second-generation (2G) tyrosine kinase inhibitors (TKIs) dasatinib and nilotinib. However, for patients who experience resistance or intolerance (R/I) to 2G-TKIs in 2nd line, there currently is no consensus on the optimal therapy sequence for 3rd line treatment. The comparative efficacy of using ponatinib in the 3rd line after 2G TKI failure was examined in a previous study (Lipton et al., ASH 2013). This study assesses the comparative efficacy of ponatinib versus sequential treatment of alternate 2G TKIs in 3rdline setting in two separate patient populations, post-imatinib and dasatinib patients and post-imatinib and nilotinib patients. METHODS A systematic review was conducted in MEDLINE, EMBASE and the Cochrane Libraries (2002-2014), as well as 3 conferences (ASH (2008-2014), ASCO (2008-2014), and EHA (2008-2013)). Studies evaluating any TKI were included if they enrolled 10 or more post-imatinib adult patients with CP-CML who were also R/I to dasatinib or nilotinib. All study designs were considered and no restriction was applied with respect to therapy dose, due to incomplete reporting of doses in the available studies. Analyses was run on two groups of patients, those failing imatinib and dasatinib (Group Ima/Das) and those failing imatinib and nilotinib (Group Ima/Nil). Bayesian methods were used to synthesize major cytogenetic response (MCyR) and complete cytogenetic response (CCyR) from individual studies and estimate the overall response probability with 95% credible interval (CrI) for each treatment. Bayesian analysis also was used to estimate the likelihood that each treatment offers the highest probability of CCyR/MCyR based on available evidence. RESULTS Six studies evaluating bosutinib, nilotinib and ponatinib for Group Ima/Das (n= 419) and five studies evaluating bosutinib, dasatinib and ponatinib for Group Ima/Nil (n=83) were included in the analysis. All studies reported CCyR in both groups. Five studies evaluating bosutinib, nilotinib and ponatinib reported MCyR in Group Ima/Das and three studies evaluating bosutinib and ponatinib reported MCyR in Group Ima/Nil. Synthesized treatment-specific probabilities and 95% CrI for CCyR are presented in Figure 1. Synthesized treatment-specific probabilities of CCyR for Group Ima/Das were 27% for nilotinib, 20% for bosutinib and 54% (95% CrI 43%% to 66%) for ponatinib. Treatment-specific probabilities of MCyR for Group Ima/Das were 41% for nilotinib, 28% for bosutinib and 66% (95% CrI 55%% to 77%) for ponatinib. The probability of ponatinib providing superior response to all other included treatments for group Ima/Das was estimated to be >99% for both CCyR and MCyR. Synthesized treatment-specific probabilities of CCyR for Group Ima/Nil were 25% for dasatinib, 26% for bosutinib and 67% (95% CrI 51%% to 81%) for ponatinib. Treatment-specific probabilities of MCyR for Group Ima/Nil were 33% for bosutinib and 75% (95% CrI 60%% to 87%) for ponatinib. The probability of ponatinib providing superior response to all other included treatments for group Ima/Nil was estimated to be >99% for both CCyR and MCyR. CONCLUSIONS The post imatinib and dasatinib group included more studies with larger sample sizes compared with the post imatinib and nilotinib group. Overall, response rates appear higher for TKIs in the post imatinib and nilotinib group compared with the post imatinib and dasatinib group. For both groups, patients on ponatinib had higher CCyR and MCyR rates compared with the sequential 2G TKIs included in this analysis. Based on available data, ponatinib appears to provide a higher probability of treatment response for patients failing imatinib and dasatinib/ nilotinib compared with sequential 2G TKI therapy commonly used in this indication. Figure 1 Figure 1. Disclosures Lipton: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Ariad: Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Shah:Ariad Pharmaceuticals: Research Funding. Tongbram:Ariad Pharmaceuticals: Research Funding. Sidhu:Ariad Pharmaceuticals Inc.: Research Funding. Huang:ARIAD Pharmaceuticals, Inc.: Employment, Equity Ownership. McGarry:ARIAD Pharmaceutical, Inc.: Employment, Equity Ownership. Lustgarten:ARIAD Pharmaceuticals Inc: Employment, Equity Ownership. Hawkins:Ariad Pharmaceuticals Inc.: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2912-2912
Author(s):  
Jonathan M. Gerber ◽  
Lawrence J. Druhan ◽  
David Foureau ◽  
Elizabeth Jandrisevits ◽  
Amanda Lance ◽  
...  

Abstract Introduction: Recent evidence supports the clinical significance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML). However, the identification of LSCs in acute lymphocytic leukemia (ALL) has proved challenging, as transplantation studies in immunocompromised mice have yielded conflicting results. The distinction between Philadelphia chromosome-positive (Ph+) ALL and lymphoid blast crisis (LBC) chronic myeloid leukemia (CML) is also controversial. We previously identified a clinically relevant CD34+CD38- population of LSCs with intermediate (int) levels of aldehyde dehydrogenase (ALDH) activity (CD34+CD38-ALDHint) in AML [Gerber, et al. Blood, 2012]. This population was not present in healthy controls and could be distinguished from normal hematopoietic stem cells (HSCs), which had higher levels of ALDH activity (CD34+CD38-ALDHhigh). We hypothesized that the same approach could be used to identify a putative LSC population in ALL. Furthermore, in contrast to most cases of AML, the chronic phase CML stem cell was found to reside in the same CD34+CD38-ALDHhigh population as normal HSCs [Gerber, et al. Am J Hematol, 2011]. We therefore also hypothesized that the presence of BCR/ABL mutations in the CD34+CD38-ALDHhigh population might help distinguish LBC CML from Ph+ ALL. Methods: Bone marrow and/or peripheral blood specimens were collected at diagnosis from patients with B cell ALL or LBC CML on an IRB-approved protocol. A total of 7 patients were evaluated: 2 Ph- ALL, 2 Ph+ ALL, and 3 LBC CML patients. CD34+ cells were isolated by magnetic bead and column selection, then analyzed by flow cytometry with respect to CD38 expression and ALDH activity. Sorted cell populations were analyzed by fluorescence in situ hybridization (FISH) for leukemia-specific abnormalities. Polymerase chain reaction was performed on clinical samples to determine the presence of a p190 vs. p210 transcript. Results: All patients harbored an aberrant CD34+CD38-ALDHint population, similar to that previously seen in AML. This population was ≥95% positive for BCR/ABL by FISH in all Ph+ ALL and LBC CML cases. It was similarly positive (≥75%) for other leukemia-specific FISH abnormalities (including trisomy 4, 8, 10, 12, and/or 21) in all four ALL cases, as well as one LBC CML case. Conversely, the CD34+CD38-ALDHhigh population (which typically contains the normal HSCs) lacked any of the other cytogenetic abnormalities in all of the cases, irrespective of Ph status or a diagnosis of ALL vs. CML. Notably, the CD34+CD38-ALDHhigh population was negative for BCR/ABL in the Ph+ ALL cases but was >95% positive for BCR/ABL by FISH in the LBC CML cases. The B cell differentiation marker, CD19, was expressed on the CD34+CD38-ALDHint but not the CD34+CD38-ALDHhigh population in all ALL cases, both Ph- and Ph+. In contrast, CD19 expression was variable in the LBC CML cases. Both Ph+ ALL cases possessed a p190 BCR/ABL transcript, whereas all of the LBC CML cases contained a p210 transcript. Also of note, the CD34+CD38-ALDHint population was persistently detectable in one of the LBC CML patients while in complete remission after induction therapy; that patient subsequently relapsed. Conclusions: An abnormal CD34+CD38-ALDHint population was identified in all cases of B cell ALL and LBC CML. This population is analogous to a previously identified, clinically relevant LSC population in AML and may represent a putative LSC population in ALL. The CD34+CD38-ALDHhigh population was normal by FISH in the ALL cases but contained the BCR/ABL mutation in the LBC CML cases, thus permitting distinction between Ph+ ALL and LBC CML (which also differed based on the presence of p190 vs. p210 transcripts, respectively). Additionally, clonal evolution from chronic phase to lymphoid blast crisis CML was apparent, based on the acquisition of additional cytogenetic abnormalities unique to the CD34+CD38-ALDHint population as compared to the CD34+CD38-ALDHhigh population. The presence of CD19 on the putative LSCs in the four cases of ALL suggest that CD19-directed therapies may target the LSCs and thus may have curative potential in those cases. This assay may serve as a means to evaluate other possible therapeutic targets. Lastly, the detection of the abnormal CD34+CD38-ALDHint population may have utility as a minimal residual disease assay for monitoring response to treatment. These findings warrant validation in a larger patient cohort. Disclosures Gerber: Janssen: Research Funding; Alexion: Membership on an entity's Board of Directors or advisory committees; Spectrum: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Grunwald:Alexion: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Medtronic: Equity Ownership; Janssen: Research Funding; Ariad: Membership on an entity's Board of Directors or advisory committees; Forma Therapeutics: Research Funding. Avalos:Seattle Genetics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 803-803
Author(s):  
Brian Giacopelli ◽  
Salma Abdelbaky ◽  
Kyoko Yamaguchi ◽  
Jessica Kohlschmidt ◽  
Krzysztof Mrózek ◽  
...  

Abstract Genetic profiling of leukemic cells forms the basis for risk stratification in acute myeloid leukemia (AML). Genetic markers in AML are used to make recommendations for distinct treatment approaches, such as remission consolidation with chemotherapy rather than stem cell transplant for patients with favorable risk genetics as defined by the current guidelines from the European LeukemiaNet (ELN). Yet, several limitations remain, such as overall rarity of many mutations, hierarchical complexity in cases with multiple mutations, conflicting reports of associations with outcomes for some genetic markers, and the absence of markers with prognostic significance in some patients. We have recently described genome-wide DNA methylation signatures that underlie biological features of AML cells and their utility to classify patients [Giacopelli et al. Genome Res. 2021;31:747]. The additional value of epigenetic information for risk assessment in AML in the context of current genetic and other clinical prognostic markers remains largely unexplored. In this study, we have first developed a targeted approach for assessment of DNA methylation-based signatures and employed it to classify 1,262 patients with de novo AML enrolled onto the Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology studies. We successfully classified 87.5% of patients into one of 13 DNA methylation subgroups, termed 'epitypes' (Figure 1A,B). We found that epitypes are composed of a majority of patients with a specific genetic alteration (or a unique combination of alterations) in 9 of 13 epitypes. However, we also identified subgroups of patients that lack these highly recurrent alterations, and, instead, represent an epigenetic phenocopy of the dominant genetic feature (epiphenocopy). Epiphenocopies within epitypes were often enriched in specific lower frequency mutations, suggesting convergence of biological function(s) for these rare mutations. Epiphenocopying was also exhibited by patients displaying a DNA methylation signature involving hypomethylation of STAT DNA sequence motifs (termed the STAT hypomethylation signature, SHS) that mimicked FLT3-ITD mutations. Epitype and SHS DNA methylation signatures affected clinical outcomes separately to ELN risk groups (P<0.0001; Figures 1C,D), and FLT3-ITD status (P<0.0001; Figure 1E), respectively. To broadly examine the prognostic power of DNA methylation signatures, we combined methylation-based classifications into a knowledge bank containing a compendium of other prognostic markers. Using a recently developed machine-learning approach [Gerstung et al. Nat Genet. 2017;49(3):332], we found that DNA methylation retained a high degree of importance for clinical outcomes, including overall survival (Figure 1F). Specifically, SHS and 6 epitypes were the most significant features negatively associated with overall survival along with age (P<0.0001; Figure 1G). SHS and epitype were among the most significantly associated features for all other endpoints, such as early death, remission and relapse (P<0.0001) and improved concordance between all predicted to actual outcomes. Finally, we used DNA methylation to reconstruct all 4 genetic features that define the ELN Favorable risk group. We found that patients with epiphenocopies of t(8;21)/inv(16) (CBF-AML), and CEBPA-dm had favorable outcome indistinguishable from that of patients with the respective genetic markers. NPM1-mutated, FLT3-ITD-negative patients displaying SHS-positivity had adverse risk despite lacking FLT3-ITD. Re-classifying patients with CBF-AML and CEBPA-dm epiphenocopies from more unfavorable risk groups into favorable group and excluding KMT2A/MLL-like and SHS-positive patients substantially improves the definition of favorable risk AML (P<0.0001; Figure 1H). Our study demonstrates that DNA methylation signatures advance our understanding of the biology of AML and improve risk stratification through the identification of patients with epiphenocopies that mimic genetic mutations and other biological features. Use of DNA methylation signatures may lead to more effective assignment of patients to existing and novel therapeutic approaches. Support: U10CA180821, U10CA180882, U24CA196171; https://acknowledgments.alliancefound.org; ClinicalTrials.gov Identifiers: NCT00048958 (8461), NCT00899223 (9665), and NCT00900224 (20202) Figure 1 Figure 1. Disclosures Blachly: KITE: Consultancy, Honoraria; INNATE: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria. Blum: Abbvie: Honoraria; AmerisourceBergen: Honoraria; Celyad Oncology: Research Funding; Xencor: Research Funding; Nkarta: Research Funding; Forma Therapeutics: Research Funding; Leukemia and Lymphoma Society: Research Funding; Syndax: Honoraria. Stone: Agios Pharmaceuticals Inc, Novartis;: Research Funding; ACI Clinical, Syntrix Pharmaceuticals, Takeda Oncology: Other: Data Safety & Monitoring; AbbVie Inc, Actinium Pharmaceuticals Inc, Aprea Therapeutics, BerGenBio ASA, ElevateBio, Foghorn Therapeutics, GEMoaB, GlaxoSmithKline, Innate Pharma, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc, Takeda Oncology: Other: Advisory Committee. Eisfeld: Karyopharm (spouse): Current Employment. Byrd: Novartis, Trillium, Astellas, AstraZeneca, Pharmacyclics, Syndax: Consultancy, Honoraria; Vincerx Pharmaceuticals: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Newave: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1695-1695
Author(s):  
Ricardo Pasquini ◽  
Jorge E. Cortes ◽  
Hagop M. Kantarjian ◽  
David Joske ◽  
Luis A Meillon ◽  
...  

Abstract Abstract 1695 Background: A global, prospective registry was established to document the frequency of diagnostic testing, management (mgmt) strategies, and outcomes of patients (pts) with CML. Here, we summarize the reported deviations from published disease mgmt recommendations and the overall efficacy achieved by pts. Methods: 1853 pts (≥ 16 years of age) within 6 months (mo) + 2 weeks of CML diagnosis were enrolled from Latin America (LA; n = 497), United States (US; n = 379), Asia Pacific (AP; n = 465), Middle East and Africa (MEA; n = 209), and Russia and Turkey (RT; n = 303). Baseline demographics and medical history were collected at enrollment; current disease status and mgmt information were collected at approximately 6-mo intervals or with a change in disease status or mgmt. Results: From February 2008 to June 2011, data were available for 1831 (99%) pts. Across all regions, nearly all (93.8%) screened pts were in chronic phase CML. Regardless of the time of evaluation (eval), disease burden was mostly assessed through the use of hematologic counts (Table 1). Cytogenetic testing and molecular monitoring were used in a minority of pts at any timepoint. Hydroxyurea (HU) and imatinib were the first agents used in 61.9% and 29.5% of pts, respectively (Table 2). Overall, 81.1% of pts received imatinib therapy at some time and it was the most common second agent (48.1%) pts received. Among the 49% of pts who had response assessments, subsequent treatment changes occurred most frequently (23.9% of pts) at the 3-mo timepoint (Table 1). The median time from disease eval to dose/regimen modification was 3 days. Of those who received imatinib, 32% had dose modifications primarily for: lack of efficacy (20%), physician request (20%), and adverse events (19%). Of the pts with a corresponding eval at 12 mo after diagnosis, 88% had a CHR, 65.4% had a CCyR, and 42.5% had a MMR (BCR-ABLIS ≤.1%). These data are preliminary; response assessments by treatment, as well as further efficacy analyses, are ongoing. Conclusions: Overall, the majority of pts did not have cytogenetic or BCR-ABL transcript level testing performed per the European LeukemiaNet recommendations. Furthermore, despite availability of more effective therapies for the treatment of CML, HU is still used as a primary therapy in a substantial proportion of pts. Based on this analysis, pts outside the US primarily receive HU as initial therapy rather than tyrosine kinase inhibitors (TKIs). Overall, second-generation TKIs, such as nilotinib and dasatinib, are infrequently used. These results illustrate the need for continuing education on the mgmt of CML in order to improve outcomes for all pts. Disclosures: Pasquini: Bristol Myers Squibb: Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Cortes:Bristol Myers Squibb: Consultancy, Research Funding; Novartis Pharmaceuitcals: Consultancy, Research Funding. Kantarjian:Pfizer: Research Funding; Novartis: Research Funding; Novartis: Consultancy; BMS: Research Funding. Zernovak:Novartis: Employment, Equity Ownership. Sivarathinasami:Novartis: Employment. Collins:Novartis: Employment. Hughes:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kim:BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3745-3745
Author(s):  
Eva Nievergall ◽  
Deborah L. White ◽  
Hayley Ramshaw ◽  
Angel F. Lopez ◽  
Timothy P. Hughes ◽  
...  

Abstract Abstract 3745 Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML), Ph+ CD34+ progenitor cells remain detectable even in patients with stable complete cytogenetic response. Over 40% of patients in stable complete molecular remission will develop molecular relapse within 6 months of stopping imatinib. While the exact causes are largely unknown, one of the proposed mechanisms is the protection of leukemic stem and early progenitor cells by the paracrine or autocrine production of cytokines, such as IL-3, GM-CSF and G-CSF, which activate survival pathways that bypass TKI-induced cytocidal effects. In acute myeloid leukemia (AML), the IL-3 receptor α chain (CD123) is recognized as a specific marker for CD34+/CD38− stem cells and therefore is attracting increasing interest as a therapeutic target. However, the function of CD123 in CML remains to date mostly unexplored. The aim of this study is to investigate potential synergy between TKIs and CSL362 (a humanized antibody version of 7G3 against CD123) in targeting CML progenitor and stem cells. CD34+ and CD34+/CD38− cells were isolated from mononuclear cells of newly diagnosed CML chronic phase and blast crisis patients. Flow cytometry studies indicated significantly increased CD123 expression on CD34+/CD38− cells of CML patients in both chronic phase and blast crisis when compared to normal hematopoietic stem cells (p<0.01 and p<0.001 for chronic phase and blast crisis, respectively; Figure A). A functional relevance of increased CD123 expression was demonstrated by IL-3-dependent increase in STAT5 phosphorylation (260.5% of baseline with 20 ng/ml IL-3; n=12; p<0.001) in CML CD34+ cells. Dasatinib inhibits STAT5 phosphorylation by blocking BCR-ABL signaling but only in the absence of IL-3 (62.5% of baseline for dasatinib alone vs. 130.8% for dasatinib + IL-3; n=3; p<0.01). In agreement, IL-3 effectively rescues dasatinib-induced cell death, as evaluated by AnnexinV/7-AAD staining (103.3% vs. 72.45%, n=5; p<0.01) and CFU-GM colony forming assays (69.39% vs. 46.13% relative to no treatment control; n=4; p<0.05). CSL362, in turn, revokes IL-3-mediated STAT5 phosphorylation (37.12% vs. 130.8%; n=3; p<0.001) and cytoprotection (45.05% vs. 69.39% CFC; n=4; p<0.01). In order to further elucidate the role of CSL362, CML CD34+ cells were cultured with increasing concentrations of dasatinib in the presence of IL-3 and CSL362 or BM4 isotype-matched control antibody. Even at very low dasatinib concentrations, CSL362 significantly reduces CML CD34+ colony forming cells (p<0.05; Figure B). Together these results substantiate a relevant role for IL-3-mediated resistance in CML progenitor cells and additionally confirming the ability of CSL362 to effectively bind to CD123 and impede IL-3 function. CSL362 furthermore has been optimized to mediate antibody dependent cell cytotoxicity (ADCC). CSL362 causes specific cell lysis of CML CD34+ progenitor cells in co-culture with allogeneic Natural killer cells as determined by increased lactate dehydrogenase release (ADCC activity of 42.4% ± 8.1%; n=3) and a decrease in the number of CFU-GM colonies by 74.1 % ± 12.2% (n=3). Collectively, our results indicate that a combination of dasatinib and CSL362 inhibits CML progenitor cell survival more effectively in vitro. Therefore, targeting IL-3 receptor α with CSL362 in chronic phase and blast crisis CML patients might provide a novel specific treatment approach aiding the elimination of refractory chronic myeloid leukemic stem and progenitor cells. A: Flow cytometry analysis reveals that CD123 expression is significantly higher in CD34+/CD38− cells of CML patients in chronic phase (CML-CP) and blast crisis (BC-CML) as compared to normal patients (NP), as previously documented for AML patients. ** p<0.01, *** p<0.001 by unpaired, two-tailed Student's t-test. B: In the presence of IL-3, CSL362 significantly reduces the number of colony forming cells. CD34+ cells of de novo CML-CP patients were cultured with dasatinib (0 to 10 nM) +IL-3 (1 ng/ml) ± CSL362 or BM4 (isotype control for CSL362). After 72 hours of culture live cells were plated for CFU-GM assay and colonies were counted after 2 weeks. Mean ± SE of three independent experiments is shown, n=4, p<0.05 by two-way ANOVA. Disclosures: Nievergall: CSL: Research Funding. White:CSL: Research Funding. Lopez:CSL: Research Funding. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Hiwase:CSL: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4160-4160
Author(s):  
Fermin Sanchez-Guijo ◽  
Sergio Matarraz ◽  
Eleni Plata ◽  
Miguel Sagüés ◽  
Montserrat Cortes ◽  
...  

Background Treatment-free remission (TFR) in patients with chronic myeloid leukemia (CML), who achieve a sustained and deep molecular response (DMR, MR4 or MR4.5) after treatment with BCR-ABL1 tyrosine kinase inhibitors (TKIs), is possible after TKI discontinuation (Rea and Cayuela. 2018). Nilotinib has been shown to elicit deeper and faster molecular responses compared to imatinib. More than 50% of patients who responded to imatinib, but did not achieve a DMR, achieved a DMR 1 year after they switched to nilotinib (Hughes et al. 2017). On attempting TFR, about 50% of patients lose response early and relapse (Mahon et al. 2019). The reason for this loss of response after achieving sustained DMR in patients has been attributed to residual and quiescent LSCs (Houshmand, et al. 2019). LSC for CML arises from the transformation of a hematopoietic stem cell through a t(9;22) translocation, leading to the Philadelphia chromosome [Ph1], and is characterized by the presence of the unregulated tyrosine kinase activity of the chimeric BCR-ABL1 protein together with specific surface antigens including CD26 and/or other aberrant markers (Bocchia, et al. 2018). The ENESTPath study is designed to evaluate the impact of duration of 24 or 36 months (mos) of consolidation treatment with nilotinib after switching from imatinib, on the rate of TFR. The LSC sub-study was designed to evaluate the correlation between duration of nilotinib therapy and LSCs. This interim analysis of the LSC sub-study presents preliminary data on characteristics of LSC-positive patients and their response after 24 mos of nilotinib therapy. Objectives To assess factors impacting LSCs and the effect of nilotinib therapy in patients with CML who switched from imatinib to nilotinib. Methods Patients from the ENESTPath study who switched from imatinib received 24 mos of nilotinib therapy (12 mos of induction and consolidation therapy, each). Patients who achieved stable MR4 (4/5 preceding quarterly real-time quantitative polymerase chain reaction [RT-PCR] assessments were ≥MR4 and last assessment was ≥MR4) at the end of the consolidation phase were randomized 1:1 to receive either an additional 1 year of nilotinib treatment or to start TFR, while those without stable MR4 were not randomized (NR), and followed-up until end of the study (5 years after baseline visit). For the current analysis, bone marrow samples collected at screening and at 24 mos were evaluated for the presence of Ph+ on fluorescence-activated cell sorting-purified CD34+CD38-/+ cells by fluorescence in situ hybridization and/or RT-PCR techniques. Results Of the 60 patients enrolled in the sub-study, 34 were randomized, 25 were NR, and 1 had protocol deviation (not included in the analysis). Overall, the mean age of the patients was 49.4 years. All patients had been previously treated with imatinib for a median duration of 59.7 mos. When analyzed for LSCs by RT-PCR or histone (HIS) at baseline, 10 patients were found to be positive, 23 were negative, 25 patients had data missing, and 1 was not evaluable. Sokal score categories and duration of prior imatinib therapy for LSC-positive and negative patients at baseline are presented in Table 1. More patients with low Sokal risk and longer duration of prior imatinib therapy (≥ 5 years) were negative for LSCs at baseline (Table 1). After treatment with nilotinib, the number of patients with Ph+ among CD34+CD38-, CD34+CD38+, and CD34+CD38-/+ LSCs was lower at 24 mos compared to baseline, except for aberrant CD34+ cells in the NR group (Figure 1). A decrease in the percentage of CD34+/CD38+ and immunophenotypically aberrant CD34+/- cells was observed for most of the patients analyzed at baseline and at 24 mos by HIS or RT-PCR. Overall, 11 and 10 patients in the randomized and NR groups, respectively, had ≥1 dose reduction/interruptions; adverse events led to dose reduction/interruptions in 9 patients each, in both arms. Conclusion This analysis indicates that treatment of CML patients with nilotinib after switching from imatinib may play a role in the reduction of LSCs over time. As the number of patients with available Sokal score at baseline and prior imatinib exposure was low, meaningful conclusions cannot be drawn, and further investigations are needed. Results of patients attempting TFR are awaited, and it would be interesting to analyze the correlation between the LSC count and rate of TFR in the final analysis of the sub-study. Disclosures Sanchez-Guijo: BMS: Consultancy, Honoraria; Incyte: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Amgen: Honoraria; Roche: Honoraria. Plata:Novartis: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Sanofi: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau. Crugnola:Novartis: Honoraria; Incyte: Honoraria. Caocci:Novartis: Honoraria; Celgene: Honoraria. Oakervee:Novartis: Honoraria; Bristol Myers-Squibb: Honoraria; Pfizer: Honoraria. Jedrzejczak:Amgen: Consultancy; Takeda: Consultancy; Novartis: Research Funding; Amgen: Other: Travel support for hematology meetings (ASH, EBMT, EHA) ; Celgene: Other: Travel support for hematology meetings (ASH, EBMT, EHA); Roche: Other: Travel support for hematology meetings (ASH, EBMT, EHA). Kiani:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Supekar:Novartis: Employment. Ferreira:Novartis: Employment. Shah:Novartis: Other: Service Provider. Steegmann:BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Baccarani:Novartis: Consultancy, Speakers Bureau; Incyte: Consultancy, Speakers Bureau; Takeda: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5843-5843
Author(s):  
Gemlyn George ◽  
Ehab L. Atallah ◽  
Michael J. Mauro ◽  
Stuart L. Goldberg ◽  
Arielle Baim ◽  
...  

Abstract Introduction: The development of tyrosine kinase inhibitors (TKIs) has markedly improved the prognosis of patients (pts) with chronic myeloid leukemia (CML), with the perception by healthcare professionals that this is now a chronic disease to be managed. However, the need for continuous TKI therapy may result in ongoing toxicities, limits on fertility, and financial hardship. The H. Jean Khoury Cure CML consortium (HJKC3) is a collaborative effort of physicians and researchers at 17 academic centers. The HJKC3-001 2017 Patient Survey sought to define pts' expectations for treatment in CML to serve as a guidepost for future research in this area. Methods: Pts with CML were recruited by HJKC3 physicians, CML advocacy groups, and social media. An online survey platform (Qualtrics®) was used to obtain informed consent and administer the questionnaire. The anonymous survey was designed to gauge priorities for research in CML, understand patient definitions of cure, and elicit patient interest in future directions for CML therapy. Patient demographic and health characteristics were also collected. The data were analyzed using descriptive statistics. Results: Of the 458 pts who completed the survey, the median age of respondents was 54 years (range 18-81); 88% of pts identified as non-Hispanic white, 2% as non-Hispanic black, 2% as non-Hispanic Asian, 4% as Hispanic, and 4% other. Patients rated their overall health as poor (4%), fair (18%), good (40%), very good (28%) and excellent (9%). All but one respondent said that more research was needed for CML, with pts indicating their preferences for where they considered the need was greatest (Table 1). Overwhelmingly, 94% of respondents considered cure in CML as not taking any more pills. All but three respondents had received treatment with a TKI, with 26% (n=119) of pts having previously stopped their TKI medication for at least one month. When presented with the possibility of stopping all future treatment for CML with additional treatment, 97% of pts were willing to add another oral medication to their TKI while 89% of pts would accept intravenous treatment in addition to a TKIs. Half of the pts had discussed treatment discontinuation with their physician, with 45% considering this option in an attempt at treatment-free-remission. Of the pts that stopped taking their TKIs for at least one month, 65% did so because of side effects and another 10% because of cost. Conclusion: This survey demonstrates that pts do not consider disease control with life-long oral medication as cure; rather, cure requires the absence of treatment. Overwhelmingly, pts indicated the importance of continuing CML research with an ultimate goal of treatment-free cure. The advent of oral TKIs has been a tremendous success for pts with this disease. Nevertheless, it remains a source of disruption in pts' lives, particularly through side effects and costs. The HJKC3 was initiated with the goal of curing CML. Disclosures Atallah: Novartis: Consultancy; Jazz: Consultancy; Pfizer: Consultancy; BMS: Consultancy; Abbvie: Consultancy. Mauro:Bristol-Myers Squibb: Consultancy; Pfizer: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding. Goldberg:COTA Inc.: Employment, Equity Ownership. Cortes:Daiichi Sankyo: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Astellas Pharma: Consultancy, Research Funding; Arog: Research Funding. Deininger:Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Blueprint: Consultancy. Druker:ARIAD: Research Funding; Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; Patient True Talk: Consultancy; Amgen: Membership on an entity's Board of Directors or advisory committees; MolecularMD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceuticals: Research Funding; Henry Stewart Talks: Patents & Royalties; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; McGraw Hill: Patents & Royalties; Aptose Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; GRAIL: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Research Funding; Oregon Health & Science University: Patents & Royalties; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Monojul: Consultancy; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Millipore: Patents & Royalties; Fred Hutchinson Cancer Research Center: Research Funding; Beta Cat: Membership on an entity's Board of Directors or advisory committees; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aileron Therapeutics: Consultancy; Celgene: Consultancy. Larson:Novartis: Consultancy, Research Funding; Ariad/Takeda: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; BristolMyers Squibb: Consultancy, Research Funding. Lipton:Bristol-Myers Squibb: Consultancy, Research Funding; ARIAD: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding. Ritchie:Incyte: Consultancy, Speakers Bureau; NS Pharma: Research Funding; Bristol-Myers Squibb: Research Funding; Astellas Pharma: Research Funding; ARIAD Pharmaceuticals: Speakers Bureau; Novartis: Consultancy, Other: Travel, Accommodations, Expenses, Research Funding, Speakers Bureau; Pfizer: Consultancy, Research Funding; Celgene: Consultancy, Other: Travel, Accommodations, Expenses, Speakers Bureau. Shah:Bristol-Myers Squibb: Research Funding; ARIAD: Research Funding. Sweet:Celgene: Honoraria, Speakers Bureau; Jazz: Speakers Bureau; Celgene: Honoraria, Speakers Bureau; Agios: Consultancy; Phizer: Consultancy; Astellas: Consultancy; Astellas: Consultancy; Jazz: Speakers Bureau; Phizer: Consultancy; BMS: Honoraria; Novartis: Consultancy, Honoraria, Speakers Bureau; Agios: Consultancy; Novartis: Consultancy, Honoraria, Speakers Bureau; BMS: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2923-2923
Author(s):  
Idaly Maria Olivas ◽  
Joshua Lara ◽  
Rebecca Ellwood ◽  
Carme Ripoll Fiol ◽  
Andres J Rubio ◽  
...  

Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 are remarkably effective therapies in chronic myeloid leukemia (CML). Despite clinical success, TKIs do not target the CML leukemic stem cell (LSC), and the majority of patients must be treated for life to maintain remission. Our previous work has shown that BCR-ABL1-independent resistance is driven by STAT3 in CML stem/progenitor cells (Eiring et al. Leukemia 2015). Unexpectedly, RNA-sequencing on TKI-resistant K562 cells (K562-R) versus parental controls (K562-S) revealed that resistance is not associated with STAT3-mediated transcription, but is rather reminiscent of TNFa signaling via NF-κB (p=0.024). Nucleocytoplasmic fractionation confirmed these findings, demonstrating higher levels of phospho-NF-κB in the nucleus of CD34+ cells from TKI-resistant patients (n=3) compared to newly diagnosed CML patients (n=2) or normal individuals (n=2). Surprisingly, ELISA results revealed that K562-R cells do not produce autonomous TNFa, but they do produce IL-6 (p<0.01). These data suggest that NF-κB may be driving the gene expression signature of BCR-ABL1-independent resistance, and implicate non-canonical functions for STAT3. To better understand the mechanism by which NF-κB drives resistance, we correlated our RNA sequencing data with gene expression profiles of CML patients not responding to imatinib (McWeeney et al. Blood 2010), identifying 36 genes commonly dysregulated in both TKI-resistant cell lines and patient samples. Of the 30 upregulated genes, 21 had p65-NF-κB bound to their promoter regions via ChIP in hematopoietic cells (UCSC Genome Brower). Two of these genes are members of the ubiquitin proteasome system, including PSMD1 and PSMD3, both of which were implicated as hits in a previously published shRNA library screen for BCR-ABL1-independent resistance (Khorashad et al. Blood 2015). PSMD1 and PSMD3 are non-ATPase subunits of the 19S regulatory complex in the 26S proteasome, likely involved in proteasome substrate recognition and binding. In breast cancer, PSMD1 was shown to regulate cell growth by inducing p53 degradation (Okumura et al. 2018), whereas PSMD3 was shown to protect HER2 from degradation (Fararjeh et al. 2019). qRT-PCR confirmed upregulation of PSMD1 and PSMD3 by 3-fold and 6-fold, respectively, in K562-R cells versus parental controls in the presence of imatinib. Interestingly, according to data from The Cancer Genome Atlas (TGCA), higher levels of PSMD1 and PSMD3 mRNA correlates with a worse prognosis in acute myeloid leukemia (PSMD1, p=0.0138; PSMD3, p=0.0229). We hypothesized that PSMD1 and PSMD3 upregulation contributes to NF-κB activation and TKI resistance. We used doxycycline-inducible shRNAs to assess the function of PSMD1 and PSMD3 in CML cell survival and TKI response. Induction of knockdown (100 ng/mL doxycycline, 72h) resulted in a reduction of PSMD1 and PSMD3 mRNA and protein by ~73% and ~77%, respectively, in K562-R cells. Importantly, immunoblot analysis revealed that knockdown of either PSMD1 or PSMD3 in TKI-resistant K562-R cells resulted in a significant reduction of phospho-NF-κB (p65), suggesting that upregulation of these proteins promotes NF-κB activation. Reduced phospho-NF-κB (p65) correlated with phenotypic effects, including reduced colony formation, increased response to TKIs as assessed in MTS assays, and increased apoptosis in both the presence and absence of imatinib. Our results suggest that NF-κB activation in TKI resistance depends on the proteasome components, PSMD1 and PSMD3, forming a positive feedback loop potentiating NF-κB signaling. Our data also suggest that specific targeting of the ubiquitin proteasome system through either PSMD1 or PSMD3 may be a novel strategy to restore TKI sensitivity in patients with BCR-ABL1-independent TKI resistance. Future studies will address the non-canonical functions of STAT3 in TKI resistance. Disclosures Milojkovic: Novartis: Honoraria, Speakers Bureau; Incyte: Honoraria, Speakers Bureau; Pfizer: Honoraria, Speakers Bureau; BMS: Honoraria, Speakers Bureau. Apperley:Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3768-3768 ◽  
Author(s):  
Richard A. Larson ◽  
Udomsak Bunworasate ◽  
Anna G. Turkina ◽  
Stuart L. Goldberg ◽  
Pedro Dorlhiac-Llacer ◽  
...  

Abstract Abstract 3768 Background: Data from the phase 3, randomized multicenter ENESTnd trial have demonstrated the superiority of nilotinib over imatinib after 24 months (mo) of follow-up, with significantly higher rates of complete cytogenetic response (CCyR) and major molecular response (MMR), and significantly lower rates of progression to accelerated phase/blast crisis (AP/BC). The current subanalysis evaluated the efficacy and safety of nilotinib 300 mg twice daily (Nil300) and nilotinib 400 mg twice daily (Nil400) in older (≥ 65 years [yrs] at study entry) patients (pts) with newly diagnosed chronic myeloid leukemia (CML) in chronic phase (CP) with a minimum follow-up of 24 mo. Methods: In ENESTnd, 846 pts stratified by Sokal risk score were randomized 1:1:1 to Nil300 (n = 282), Nil400 (n = 281), or imatinib 400 mg once daily (n = 283). Pts with impaired cardiac function or ECOG performance status > 2 were excluded. Rates of CCyR and MMR by 24 mo, progression to AP/BC on treatment, and safety were evaluated according to age group (< 65 vs ≥ 65 yrs) in the 2 nilotinib arms. Safety data are reported for any pt who received ≥ 1 dose of nilotinib (n = 279, Nil300; n = 277, Nil400). Results: 36 pts (13%) and 28 pts (10%) were ≥ 65 yrs old in the Nil300 and Nil400 arms, respectively. Of the pts aged ≥ 65 yrs, 51/64 (80%) had an ECOG performance status of 0 at baseline and 60/64 (94%) had intermediate or high Sokal risk scores. Of the older pts, 8 (22%) on Nil300 and 6 (21%) on Nil400 had type 2 diabetes at baseline. CCyR rates by 24 mo were 83% and 68% among older pts treated with Nil300 and Nil400, respectively, and 87% for pts aged < 65 yrs in each nilotinib arm. By 24 mo, MMR was achieved by 72% and 61% of older pts on Nil300 and Nil400, respectively; in pts aged < 65 yrs, the respective rates were 71% and 67%. All 5 pts who progressed to AP/BC on treatment (2 on Nil300 and 3 on Nil400) were aged < 65 yrs. The frequency of grade 3/4 hematologic adverse events (AEs) was low in older pts; no pts had grade 3/4 neutropenia and only 1 older pt reported grade 3/4 thrombocytopenia in each nilotinib arm (Table). Transient, asymptomatic lipase elevations were reported in 11% and 16% of older pts treated with Nil300 and Nil400, and 7% of younger pts in each arm. Hyperglycemia occurred in 23% and 16% of older pts on Nil300 and Nil400, respectively, and 4% of younger pts in each arm; regardless of age, no pt discontinued study due to hyperglycemia. Among the 12 older pts with grade 3/4 hyperglycemia (8 on Nil300; 4 on Nil400), 9 pts had type 2 diabetes at baseline. There were no QTcF increases of > 60 msec from baseline in older pts and 3 in nilotinib-treated pts < 65 yrs old (1 on Nil300; 2 on Nil400). QTcF prolongation of > 500 msec did not occur in any pt treated with nilotinib on study. Periodic echocardiograms were done, and there were no decreases of > 15% in left ventricular ejection fraction from baseline in any pt treated with nilotinib on study. There were 4 cases of ischemic heart disease reported in older pts (1/35 [3%] on Nil300; 3/25 [12%] on Nil400) and 7 cases in pts < 65 yrs of age (4/244 [2%] on Nil300; 3/252 [1%] on Nil400). No sudden deaths occurred on study. Discontinuation occurred in approximately 25% of older and younger pts with Nil300, of which, 6% and 9%, respectively, were due to AEs/lab abnormalities. Discontinuation from study with Nil400 was 46% in older pts and 19% in younger pts; of which, 36% and 10% were due to AEs/lab abnormalities. Conclusions: Older pts treated with nilotinib demonstrated high rates of cytogenetic and molecular responses and low rates of progression. Nilotinib was generally well tolerated by older pts. In older pts, Nil300 had numerically higher rates of CCyR and MMR and was generally better tolerated (as evidenced by fewer AEs and discontinuations) vs Nil400. These data support the use of Nil300 in older pts with newly diagnosed CML-CP. Disclosures: Larson: Novartis Pharmaceuticals: Consultancy, Honoraria, Research Funding. Bunworasate:Novartis Pharmaceutical: Research Funding. Turkina:Novartis: Consultancy, Honoraria; BMS: Honoraria. Goldberg:Bristol Myers Squibb: Honoraria, Research Funding, Speakers Bureau; Novartis Pharmaceutical: Honoraria, Research Funding, Speakers Bureau; Ariad: Research Funding. Dorlhiac-Llacer:Bristol Myers Squibb: Research Funding; Novartis: Research Funding. Kantarjian:Novartis: Consultancy; Novartis: Research Funding; Pfizer: Research Funding; BMS: Research Funding. Saglio:Bristol-Myers Squibb: Consultancy, Speakers Bureau; Novartis Pharmaceutical: Consultancy, Speakers Bureau; Pfizer: Consultancy. Hochhaus:Ariad: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Novartis Pharmaceutical: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding. Hoenekopp:Novartis Pharmaceutical: Employment, Equity Ownership. Blakesley:Novartis Pharmaceutical: Employment. Yu:Novartis: Employment, Equity Ownership. Gallagher:Novartis: Employment, Equity Ownership. Clark:Bristol Myers Squibb: Honoraria, Research Funding; Novartis Pharmaceutical: Honoraria, Research Funding, Speakers Bureau. Hughes:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 49-49 ◽  
Author(s):  
Ross Kinstrie ◽  
Gillian A. Horne ◽  
Heather Morrison ◽  
Hothri A. Moka ◽  
Jennifer Cassels ◽  
...  

Abstract The introduction of BCR-ABL tyrosine kinase inhibitors (TKIs) has revolutionized the treatment of chronic myeloid leukemia (CML). However, although the majority of patients with chronic phase (CP)-CML obtain durable complete cytogenetic and major molecular responses, there is low level disease persistence postulated to be due to a population of TKI-insensitive leukemia stem cells (LSC). The aims of this study were (1) to fully characterize differences in gene expression between normal hematopoietic stem cells (HSC) and CP-CML LSC and (2) identify potential novel therapeutic targets specific to CML LSC. Lin-CD34+CD38- CD45RA-CD90+ normal HSC (n=3) and CP-CML LSC (n=6 patients at diagnosis), populations were isolated using a FACSAria and applied to Affymetrix HuGene 1.0ST arrays. The raw data (.CEL files) was imported into Partek Genomics Suite and Ingenuity Pathway Analysis software and principal component analysis and gene ontology ANOVA performed. A total of 1217 genes were significantly deregulated between normal HSC and CP-CML LSC. The most significantly deregulated genes and pathways were involved with the molecular and cellular functions of cell cycle, cell assembly and organisation, cellular movement, cell death and DNA replication, recombination and repair. These results suggested that CML LSC were less quiescent than normal HSC. Importantly, complimentary functional studies indicated that CML LSC have significantly increased proliferation (14 fold expansion; P<0.001) compared to normal HSC (no expansion) after 5 days in vitro culture. In addition, equivalent numbers of CML LSC produce ~4-fold more colonies in colony forming cell (CFC) assays than normal HSC (329±56 versus 86±17 per 2,000 cells, respectively; P<0.05). Fluorescence in situ hybridisation (FISH) demonstrated that >90% of lin- CD34+ CD38- CD45RA- CD90+ CML LSC from all patient samples were BCR-ABL positive (+). In addition to these deregulated intracellular pathways, we sought to assess if there were differences in expression of cell surface molecules that may be amenable to therapeutic manipulation. Of particular interest, our microarray studies demonstrated that CD93 was highly upregulated in CP-CML LSC (6 fold, p = 2.5x10-6). Increased CD93 expression was validated by Fluidigm digital PCR (6 fold increase, p = 0.02; n=6). Furthermore, using flow cytometry, we demonstrated significant upregulation of CD93 protein expression on lin-CD34+ CD38- CD45RA- CD90+ CML LSC from peripheral blood and bone marrow of CP-CML patients (n= 17; mean = 63.8% CD93+) compared to normal HSC from healthy peripheral blood stem cell donors (n=7; mean = 0.8% CD93+) and bone marrow donors (n=4; mean = 0.2% CD93+; p < 0.0001). FISH confirmed that 100% of lin-CD34+ CD38- CD90+ CD93+ CML cells were BCR-ABL+ in all samples assessed. CD93 (also known as C1qRp) is a C-type lectin-like domain (CTLD)-containing glycoprotein which regulates phagocytosis, with roles in cell adhesion and leukocyte migration. It is normally expressed on endothelial cells, hematopoietic precursors and mature cells including neutrophils, monocytes and platelets. Previous studies have shown CD93 to be upregulated in a proportion of AML patients (Saito et al, Sci Transl Med, 2010. 2(17): p. 17ra9). Short term (24h) in vitro exposure of lin-CD34+CD38- CD45RA- CD90+ CML LSC to TKIs (Imatinib or Dasatinib; n=3) reduced, but did not fully eliminate CD93 expression (Imatinib, 48.5% to 22.9%; Dasatinib, 47.7% to 9.2%). Importantly, following long-term TKI treatment of patients, lin-CD34+CD38-CD45RA-CD90+ cells from CP-CML patient bone marrow samples (n=2) taken in major molecular response demonstrated a small, but persistent population of CD93+ LSC which were BCR-ABL+ by FISH. Furthermore, in xenograft transplantation experiments (n = 5), after 16 weeks, CD34+CD93+ CML LSC engrafted lethally irradiated NOD/SCID/IL-2Rg-/- (NSG) mice with BCR-ABL+ cells, whereas CD34+CD93- cells from the same patient samples failed to engraft to significant levels (3.5-30 fold increase in engraftment with CD34+CD93- cells; p < 0.03). FISH confirmed that engrafted human cells were BCR-ABL+. Taken together, our results identify CD93 as a potential novel biomarker of CML LSC, which may also be helpful in assessing minimal residual disease at the LSC level. Further studies are ongoing to assess the therapeutic potential of inhibiting CD93 in CML LSC. Disclosures Copland: Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document