scholarly journals Targeted Treatment of FLT3 -Overexpressing Acute Myeloid Leukemia with MiR-150 Nanoparticles Guided By Conjugated FLT3 Ligand Peptides

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3784-3784
Author(s):  
Xi Jiang ◽  
Jason Bugno ◽  
Chao Hu ◽  
Yang Yang ◽  
Tobias Herold ◽  
...  

Abstract Acute myeloid leukemia (AML) is one of the most common and fatal forms of hematopoietic malignancies. With standard chemotherapies, only 30-50% of younger (aged <60) and 5-10% of older patients with AML survive longer than 5 years. Aberrancy of FMS-like tyrosine kinase 3 (FLT3) occurs in the majority cases of AML. Two major classes of constitutively activating mutations of FLT3, i.e. internal-tandem duplications (ITDs) and tyrosine kinase domain (TKD) point mutations are found in more than 30% of AML cases and usually predict poor prognosis. Overexpression of FLT3 has also been reported in more than 70% of AML cases with a variety of AML subtypes, e.g. MLL (Mixed Lineage Leukemia)-rearranged or FLT3 -ITD AML, and may be associated with poor survival in AML patients. Given the disappointing results with FLT3 tyrosine kinase inhibitors (TKIs) in clinical trials in the past decade, decreasing the overall abundance of FLT3 at the RNA and protein levels would be an alternative strategy to treat AMLs with FLT3 overexpression and/or FLT3 -ITD/TKD mutations. MicroRNAs (miRNA) are a class of small, non-coding RNAs that play important roles in post-transcriptional gene regulation. We recently reported that miR-150 functions as a pivotal tumor-suppressor gatekeeper in MLL-rearranged and other subtypes of AML, through targeting FLT3 and MYB directly, and the MYC/LIN28/HOXA9/MEIS1 pathway indirectly. Our data showed that MLL-fusion proteins up-regulate FLT3 level through inhibiting the maturation of miR-150. Therefore, our findings strongly suggest a significant clinical potential of restoration of miR-150 expression/function in treating FLT3 -overexpressing AML. In the present study, we first analyzed FLT3 expression patterns and prognostic impact in a large cohort of AML patients (n=562). We found that FLT3 is aberrantly highly expressed in FAB M1/M2/M5 AML or AML with t(11q23)/MLL -rearrangements, FLT3 -ITD or NPM1 mutations, and that increased expression of FLT3 is an independent predictor of poor prognosis in patients with FLT3 -overexpressing AML. To treat FLT3 -overexpressing AML, we developed a novel targeted nanoparticle system consisting of FLT3 ligand (FLT3L)-conjugated G7 poly(amidoamine) (PAMAM) dendriplexes encapsulating miR-150 oligos (see Figure 1A). In FLT3 -overexpressing cell lines, the uptake ratios of the G7-FLT3L dendrimers were much higher (50.3~97.1%) than the G7-histone 2B (H2B) control nanoparticles (4.3~33.2%). And the uptake only took minutes. By integrating the miR-150 oligo with G7-FLT3L dendrimers, we constructed the G7-FLT3L-miR-150 dendriplexes, which significantly reduced the viability and increased the apoptosis of MONOMAC-6 cells carrying t(9;11) in a dose-dependent manner. To increase the stability of miR-150 oligos, we incorporated a 2'-o -methyl (2'-O Me) modification into the miRNA oligos. Indeed, the G7-FLT3L nanoparticles carrying 2'-O Me modified miR-150 exhibited a more sustained inhibition on cell growth. In order to further investigate the in vivo therapeutic effects of the miR-150 nanoparticles, we used a MLL -rearranged leukemia model. We transplanted wild-type recipient mice with primary mouse leukemic cells bearing the MLL-AF9 fusion. After the onset of leukemia, the mice were treated with G7-Flt3L or G7-NH2 control nanoparticles complexed with 2'-O Me-modified miR-150 oligos. In these treated animals, G7-Flt3L-miR-150 nanoparticles tended to be enriched in the bone marrow. The G7-Flt3L-miR-150 nanoparticles showed the best therapeutic effect (with median survival of 86 days), as compared with the control group (Ctrl; PBS treated; with median survival of 54 days) or the G7-NH2-miR-150 treated group (with median survival of 63 days). Nanoparticles carrying miR-150 mutant oligos showed no anti-leukemia effect at all. Notably, the G7-Flt3L-miR-150 treatment almost completely blocked MLL-AF9 -induced leukemia in 20% of the mice (Fig. 1B). Furthermore, the G7-Flt3L-miR-150 nanoparticles showed a synergistic effect with JQ1, a small-molecule inhibitor of the MYC pathway, in treating AML in vivo (Fig. 1C). Collectively, we have developed a novel targeted therapeutic strategy to treat FLT3-overexpressing AML, such as MLL-rearranged leukemias, which are resistant to currently available therapies, with both high specificity and efficacy. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Dengyang Zhang ◽  
Yao Guo ◽  
Yuming Zhao ◽  
Liuting Yu ◽  
Zhiguang Chang ◽  
...  

Acute myeloid leukemia (AML) is a malignant hematopoietic neoplasm featured by impaired differentiation and uncontrolled proliferation of myeloid progenitors. Gain-of-function mutations of FMS-like tyrosine kinase 3 (FLT3) present in 30-40% of patients with AML. In addition, more than 90% of AML blasts aberrantly express FLT3, making FLT3 an attractive therapeutic target for AML. Currently, several small molecule tyrosine kinase inhibitors (TKIs) targeting FLT3 have been approved in the treatment of AML, but they need to be used in combination with chemotherapy because of their limited potency to eliminate leukemic cells as single agents, largely due to the development of secondary inhibitor-resistant FLT3 mutations. Therefore, novel therapeutic strategies targeting FLT3 are needed. In the present study, we developed a FLT3 ligand-emtansine drug conjugate (FL-DM1) that targeted FLT3-positive AML cells with high potency and selectivity. We expressed recombinant human FLT3 ligand (rhFL) in the periplasm of recombinant E. Coli. The protein was purified by a two-step purification system containing Ni-NTA and Phenyl Sepharose. Our purified rhFL was bioactive to stimulate phosphorylation of FLT3 and proliferation of THP-1 cells. Next, we conjugated purified rhFL and emtansine (DM1) with SPDP linker. Reducing and non-reducing SDS-PAGE revealed that rhFL and DM1 were successfully conjugated, evidenced by a band with higher molecular weight of the conjugation product. Previous studies show that DM1 is a drug preferentially targeting proliferating cells by depolymerizing microtubules through binding at the vinca binding site of tubulin. We found that FL-DM1 reserved the physiological function of FLT3 ligand to stimulate proliferation of AML cells by inducing phosphorylation of FLT3 and the downstream signaling protein AKT in immunoblot, potentially enhancing the potency of FL-DM1 to inhibit FLT3-positive AML cells. Furthermore, flow cytometry showed that the surface expression of FLT3 significantly decreased on cells treated by FL-DM1 within two hours, which indicated the internalization of FL-DM1/FLT3 complex on these FLT3-positive AML cells, providing a mechanism of FL-DM1 entering target cells. In cell viability assay, we found that FL-DM1 effectively inhibited FLT3-positive AML cells THP-1 and MV-4-11 with IC50 around 10-30 nM. Also, FL-DM1 induced apoptosis and cell cycle arrest at G2/M phase in these cells detected by flow cytometry. In our previous studies, we generated FLT3-ITD transformed HCD-57 cells. HCD-57 cells are FLT3-negative erythroleukemia cells that depend on erythropoietin for survival. When infected with recombinant retroviruses carrying FLT3-ITD, they acquired ability to proliferate in the absence of EPO. We found that FL-DM1 inhibited HCD-57 cells transformed by FLT3-ITD, but not parental HCD-57 cells without FLT3 expression, indicating the selectivity of FL-DM1 to target FLT3-positive AML cells. In conclusion, our data demonstrated that FL-based drug conjugate can serve as an effective drug to target FLT3-expressing AML cells. Further studies will focus on in-vivo evaluation of FL-DM1 in animal models, the production of uncleavable SMCC linked FL-DM1 with improved in-vivo pharmacokinetic properties, and screening of FL muteins-DM1 conjugates with desired pharmacological properties. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2404-2412 ◽  
Author(s):  
DC Roy ◽  
JD Griffin ◽  
M Belvin ◽  
WA Blattler ◽  
JM Lambert ◽  
...  

Abstract The use of immunotoxins (IT) to selectively destroy acute myeloid leukemia (AML) cells in vivo or in vitro is complicated by both the antigenic similarity of AML cells to normal progenitor cells and the difficulty of producing a sufficiently toxic conjugate. The monoclonal antibody (MoAb) anti-MY9 is potentially ideal for selective recognition of AML cells because it reacts with an antigen (CD33) found on clonogenic AML cells from greater than 80% of cases and does not react with normal pluripotent stem cells. In this study, we describe an immunotoxin that is selectively active against CD33+ AML cells: Anti- MY9-blocked-Ricin (Anti-MY9-bR), comprised of anti-MY9 conjugated to a modified whole ricin that has its nonspecific binding eliminated by chemical blockage of the galactose binding domains of the B-chain. A limiting dilution assay was used to measure elimination of HL-60 leukemic cells from a 20-fold excess of normal bone marrow cells. Depletion of CD33+ HL-60 cells was found to be dependent on the concentration of Anti-MY9-bR and on the duration of incubation with IT at 37 degrees C. More than 4 logs of these leukemic cells were specifically depleted following short exposure to high concentrations (10(-8) mol/L) of Anti-MY9-bR. Incubation with much lower concentrations of Anti-MY9-bR (10(-10) mol/L), as compatible with in vivo administration, resulted in 2 logs of depletion of HL-60 cells, but 48 to 72 hours of continuous exposure were required. Anti-MY9-bR was also shown to be toxic to primary AML cells, with depletion of greater than 2 logs of clonogenic cells following incubation with Anti- MY9-bR 10(-8) mol/L at 37 degrees C for 5 hours. Activity of Anti-MY9- bR could be blocked by unconjugated Anti-MY9 but not by galactose. As expected, Anti-MY9-bR was toxic to normal colony-forming unit granulocyte-monocyte (CFU-GM), which expresses CD33, in a concentration- and time-dependent manner, and also to burst-forming unit-erythroid and CFU-granulocyte, erythroid, monocyte, megakaryocyte, although to a lesser extent. When compared with anti-MY9 and complement (C′), Anti- MY9-bR could be used in conditions that provided more effective depletion of AML cells with substantially less depletion of normal CFU- GM. Therefore, Anti-MY9-bR may have clinical utility for in vitro purging of AML cells from autologous marrow when used at high IT concentrations for short incubation periods. Much lower concentrations of Anti-MY9-bR that can be maintained for longer periods may be useful for elimination of AML cells in vivo.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
María Luz Morales ◽  
Alicia Arenas ◽  
Alejandra Ortiz-Ruiz ◽  
Alejandra Leivas ◽  
Inmaculada Rapado ◽  
...  

AbstractFMS-like tyrosine kinase 3 (FLT3) is a key driver of acute myeloid leukemia (AML). Several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been evaluated clinically, but their effects are limited when used in monotherapy due to the emergence of drug-resistance. Thus, a better understanding of drug-resistance pathways could be a good strategy to explore and evaluate new combinational therapies for AML. Here, we used phosphoproteomics to identify differentially-phosphorylated proteins in patients with AML and TKI resistance. We then studied resistance mechanisms in vitro and evaluated the efficacy and safety of rational combinational therapy in vitro, ex vivo and in vivo in mice. Proteomic and immunohistochemical studies showed the sustained activation of ERK1/2 in bone marrow samples of patients with AML after developing resistance to FLT3 inhibitors, which was identified as a common resistance pathway. We examined the concomitant inhibition of MEK-ERK1/2 and FLT3 as a strategy to overcome drug-resistance, finding that the MEK inhibitor trametinib remained potent in TKI-resistant cells and exerted strong synergy when combined with the TKI midostaurin in cells with mutated and wild-type FLT3. Importantly, this combination was not toxic to CD34+ cells from healthy donors, but produced survival improvements in vivo when compared with single therapy groups. Thus, our data point to trametinib plus midostaurin as a potentially beneficial therapy in patients with AML.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4089-4089
Author(s):  
Yanyan Zhang ◽  
Hadjer Abdelouahab ◽  
Aline Betems ◽  
Monika Wittner ◽  
William Vainchenker ◽  
...  

Abstract Abstract 4089 The receptor CXCR4 and its ligand SDF-1 play major physiological roles especially on hematopoietic stem cells homing and retention. Many studies have implicated CXCR4 in the invasion by tumor cells of organs that produce SDF-1. In acute myeloid leukemia, the physiological role of CXCR4 is not fully understood. We used retrovirus to express MLL-ENL oncogene in CXCR4+/+ and CXCR4−/− hematopoietic primitive cells (Lin- isolated from fetal liver) and showed that CXCR4 is dispensable for generation of immortalized colonies in vitro. To determine CXCR4 function in vivo, CXCR4+/+ and CXCR4−/− transformed cells were transplanted into lethally irradiated mice. Whatever their phenotype, the recipient developed a myelo-monocytique leukemia characterized by their expression of Gr-1 and Mac-1. As expected, all recipients of MLL-ENL transduced CXCR4+/+ cells were moribund within 35 to 80 days post transplant (median survival time: 50 days). Strikingly, recipients of MLL-ENL transduced CXCR4−/− cells showed significantly increased lifespan, with a median survival time of 90 days. The cellularity of the peripheral blood of recipients of MLL-ENL transduced cells displayed considerable increases over time although this increase was much lower in CXCR4−/− than in CXCR4+/+ chimera. Bone marrow of MLL-ENL transduced CXCR4−/− chimera had moderately decreased numbers of mononuclear cells. There were important numbers of leukemic CD45.2+/Gr1+/Mac1+/c-kit+ cells in spleen from MLL-ENL CXCR4+/+ chimera which suggested that CXCR4 is important for leukemic progenitors cells retention in the bone marrow and especially in the spleen. The homing capacity of transduced CXCR4+/+ cells is comparable to the CXCR4−/− cells. Finally, more DNA damages were found in the BM cells of MLL-ENL CXCR4−/− chimera. All these results were confirmed by treating of MLL-ENL CXCR4+/+ chimera with CXCR4 inhibitor (TN140). These results demonstrated that in absence of CXCR4, the cells transduced by oncogene MLL-ENL are capable of generating leukemia in the recipients. However, mice transplanted with MLL-ENL transduced CXCR4−/− FL cells developed acute myeloid leukemia with reduced aggressiveness and organ infiltration, which is associated with induced differentiation and DNA instability. These results indicated that the MLL-ENL progenitors are dependent on CXCR4 for their maintenance in the BM and spleen suggesting that CXCR4 inhibitors might have potential therapeutic applications. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3286-3293 ◽  
Author(s):  
Takashi Sato ◽  
Xiaochuan Yang ◽  
Steven Knapper ◽  
Paul White ◽  
B. Douglas Smith ◽  
...  

AbstractWe examined in vivo FLT3 inhibition in acute myeloid leukemia patients treated with chemotherapy followed by the FLT3 inhibitor lestaurtinib, comparing newly diagnosed acute myeloid leukemia patients with relapsed patients. Because we noted that in vivo FLT3 inhibition by lestaurtinib was less effective in the relapsed patients compared with the newly diagnosed patients, we investigated whether plasma FLT3 ligand (FL) levels could influence the efficacy of FLT3 inhibition in these patients. After intensive chemotherapy, FL levels rose to a mean of 488 pg/mL on day 15 of induction therapy for newly diagnosed patients, whereas they rose to a mean of 1148 pg/mL in the relapsed patients. FL levels rose even higher with successive courses of chemotherapy, to a mean of 3251 pg/mL after the fourth course. In vitro, exogenous FL at concentrations similar to those observed in patients mitigated FLT3 inhibition and cytotoxicity for each of 5 different FLT3 inhibitors (lestaurtinib, midostaurin, sorafenib, KW-2449, and AC220). The dramatic increase in FL level after chemotherapy represents a possible obstacle to inhibiting FLT3 in this clinical setting. These findings could have important implications regarding the design and outcome of trials of FLT3 inhibitors and furthermore suggest a rationale for targeting FL as a therapeutic strategy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5052-5052
Author(s):  
Isabella Iasenza ◽  
Meaghan Boileau ◽  
Andrea Neumann ◽  
Héloïse Frison ◽  
Mark D. Minden ◽  
...  

Acute myeloid leukemia (AML) is an aggressive form of blood cancer defined by the uncontrolled proliferation of immature myeloblast cells in the blood and bone marrow, leading to hematopoietic failure. The 5-year survival rate is 28% in patients aged 20 years and older and 64% in patients aged 19 years and younger (SEER 2019). A large portion of these patients succumb to the disease partially due to the chemo-resistant nature of leukemic stem cells (LSCs). Hence, novel therapies targeting unique LSC biology that spare hematopoietic stem cells (HSCs) are needed to eliminate and avoid reoccurrence of this disease. We had previously identified FDA-approved anti-inflammatory glucocorticoids mometasone, halcinonide, and budesonide as compounds that induce terminal differentiation of the LSC (CD34+CD38-) and progenitor cell (CD34+CD38+) populations to leukemic blast cells (CD15+CD34-) in refractory human AML (Laverdière & Boileau et al., Blood Can. J. 2018). Following the paradigm of successful differentiation treatment in AML (acute promyelocytic leukemia with all-trans retinoic acid), the effects and mechanism of action of the glucocorticoids on LSCs need to be further investigated for other AML subtypes. Furthermore, dexamethasone, a glucocorticoid currently used to successfully treat acute lymphoblastic leukemia (ALL), is being studied in a Phase II clinical trial for induction and post-remission chemotherapy in older patients with de novo or therapy-related AML (clinicalTrials.gov, NCT03609060). To identify the subtypes of AML that are sensitive to steroid-induced LSC differentiation, we began by screening a panel of cell lines (F36P, MOLM-13, Kasumi-6, Kasumi-1 and K562) and observed that only Kasumi-1, a pediatric leukemia carrying the t(8;21) mutation leading to the fused RUNX1-RUNX1T1 gene, was responsive to glucocorticoid treatment, although without differentiation. This is consistent with the finding of Simon et al. who observed a loss of bulk AML cells in RUNX1 AML samples following dexamethasone treatment (Simon et al., Clin Cancer Res. 2017). However, we observed expansion of bulk cells following differentiation of LSCs in primary AML, indicating different mechanisms of steroid response in different samples: differentiation of LSCs or overall loss of AML cells. We will further investigate these compounds in a panel of 10 genetically defined primary AML samples to classify which oncogenetic drivers or subtypes of AML are linked to sensitivity to the three glucocorticoids, including which drive cell death vs LSC differentiation. We will perform ex vivo and in vivo studies of the glucocorticoids to assess the extent of engraftment in treated versus DMSO treated samples. This additional data will be presented at the annual meeting. In addition, to explore the mechanism of action of these steroids in AML, we investigated the roles of the cytokines interleukin-3 (IL-3), interleukin-6 (IL-6), stem cell factor (SCF), granulocyte colony stimulating factor (GCSF), thrombopoietin (TPO) and FMS-like tyrosine kinase 3 ligand (FLT3L), used to culture AML, on the differentiation effects induced by the glucocorticoids. We observed that only FLT3L was required for the complete differentiation of LSCs. In summary, we have observed that the three glucocorticoid steroids (mometasone, halcinonide, and budesonide), as well as dexamethasone to a lesser extent, can induce two different responses in a sample-dependent manner: terminal differentiation of LSCs or overall cell loss. We have also observed that the differentiation response requires FLT3L for maturation of the AML cells. Our current studies involve in vivo and genomic assays to determine the effect on functional LSCs and the genetic markers of sensitivity and we will present these results. Disclosures Minden: Trillium Therapetuics: Other: licensing agreement.


Blood ◽  
2020 ◽  
Author(s):  
Seiko Yoshino ◽  
Takashi Yokoyama ◽  
Yoshitaka Sunami ◽  
Tomoko Takahara ◽  
Aya Nakamura ◽  
...  

The pseudokinase Trib1 functions as a myeloid oncogene that recruits the E3 ubiquitin ligase COP1 to C/EBPa and interacts with MEK1 to enhance ERK phosphorylation. Close genetic effect of Trib1 on Hoxa9 has been observed in myeloid leukemogenesis where Trib1 overexpression significantly accelerates Hoxa9-induced leukemia onset. However, the mechanism underlying how Trib1 functionally modulates Hoxa9 transcription activity is unclear. Herein, we provide evidence that Trib1 modulates Hoxa9-associated super-enhancers. ChIP-seq analysis identified increased histone H3K27Ac signals at super-enhancers of the Erg, Spns2, Rgl1, and Pik3cd loci, as well as increased mRNA expression of these genes. Modification of super-enhancer activity was mostly achieved via the degradation of C/EBPa p42 by Trib1, with a slight contribution from the MEK/ERK pathway. Silencing of Erg abrogated the growth advantage acquired by Trib1 overexpression, indicating that Erg is a critical downstream target of the Trib1/Hoxa9 axis. Moreover, treatment of acute myeloid leukemia (AML) cells with the BRD4 inhibitor JQ1 showed growth inhibition in a Trib1/Erg-dependent manner both in vitro and in vivo. Upregulation of ERG by TRIB1 was also observed in human AML cell lines, suggesting that Trib1 is a potential therapeutic target of Hoxa9-associated AML. Taken together, our study demonstrates a novel mechanism by which Trib1 modulates chromatin and Hoxa9-driven transcription in myeloid leukemogenesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 912-912
Author(s):  
Alan K. Ikeda ◽  
Dejah Judelson ◽  
Junling Li ◽  
Ru Qi Wei ◽  
Paul Tapang ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have 50% overall survival despite aggressive chemotherapy and bone marrow transplantation. Similarly, only one third of adults diagnosed with AML will be cured. AML blast cells from approximately 30% of patients express a constitutively active receptor tyrosine kinase, FLT3-ITD, which contains internal tandem duplications in the juxtamembrane domain. Patients with FLT3-ITD have a worse prognosis. ABT-869 is a multi-targeted small molecule inhibitor of receptor tyrosine kinases and is a potent inhibitor of FLT3, c-Kit, and members of the VEGF and PDGF receptor families. We previously demonstrated that ABT-869 in vitro induces apoptosis of AML cell lines harboring the FLT3-ITD and primary AML cells, and in vivo in tumors from MV-411 xenograft models. Phosphorylation of FLT3 and activation of downstream signaling molecules, STAT5 and ERK, were inhibited by ABT-869 in a concentration-dependent manner. Cells were also stained with Annexin V-FITC and propidium iodide, and analyzed using FACS. ABT-869 induced apoptosis, caspase-3 activation, and PARP cleavage after 48 hours. Toxic effects were not observed on normal hematopoietic progenitor cells in methylcellulose-based colony assays at concentrations that were effective in AML cells. To examine the effects of ABT-869 in vivo, we treated SCID mice injected with MV-411 with oral preparations of ABT-869. Complete regression of MV4-11 tumors was observed in mice treated with ABT-869 at 20 and 40 mg/kg/day. No adverse effects were detected in the peripheral blood counts, bone marrow, spleen or liver. Tumors from mice treated with ABT-869 showed decreased proliferation by Ki67 and increased apoptosis by TUNEL staining. We also observed that the mice treated with ABT-869 the day after injection of AML cells remained tumor-free for over 3 months in contrast to the mice receiving the vehicle alone. Inhibition of FLT3 phosphorylation was demonstrated in the tumors from mice treated with ABT-869. ABT-869 also suppresses the growth of Molm-13 (human AML cell line that expresses both FLT3-ITD and wt FLT3) at an IC50 between 1 and 10nM. To examine the effects of ABT-869 in vivo, we employed a murine bone marrow transplantation model. After chemical ablation of the bone marrow, SCID mice were injected with Molm-13 cells through the tail vein to allow engraftment. We observed that mice treated with an oral preparation of ABT-869 at 40 mg/kg/day prevented the engraftment of Molm-13 cells. The SCID mice that were not administered ABT-869 demonstrated clinical engraftment with hind leg paralysis and chloroma formation. Chloroma formation was confirmed by immunohistochemical staining with CD33 and CD45. NOD-SCID mouse models are currently being used to analyze the effects of ABT-869 on primary AML cells in vivo. We will also determine if there is any difference in efficacy in relation to the FLT3 status of each primary AML sample. Our preclinical studies demonstrate that ABT-869 is effective and nontoxic at the doses studied, and provide rationale for the treatment and prevention of relapse in AML patients.


Blood ◽  
2019 ◽  
Vol 134 (6) ◽  
pp. 548-560 ◽  
Author(s):  
Xin He ◽  
Yinghui Zhu ◽  
Yi-Chun Lin ◽  
Min Li ◽  
Juan Du ◽  
...  

Abstract The presence of FMS-like receptor tyrosine kinase-3 internal tandem duplication (FLT3-ITD) mutations in patients with acute myeloid leukemia (AML) is associated with poor clinical outcome. FLT3 tyrosine kinase inhibitors (TKIs), although effective in kinase ablation, do not eliminate primitive FLT3-ITD+ leukemia cells, which are potential sources of relapse. Thus, understanding the mechanisms underlying FLT3-ITD+ AML cell persistence is essential to devise future AML therapies. Here, we show that expression of protein arginine methyltransferase 1 (PRMT1), the primary type I arginine methyltransferase, is increased significantly in AML cells relative to normal hematopoietic cells. Genome-wide analysis, coimmunoprecipitation assay, and PRMT1-knockout mouse studies indicate that PRMT1 preferentially cooperates with FLT3-ITD, contributing to AML maintenance. Genetic or pharmacological inhibition of PRMT1 markedly blocked FLT3-ITD+ AML cell maintenance. Mechanistically, PRMT1 catalyzed FLT3-ITD protein methylation at arginine 972/973, and PRMT1 promoted leukemia cell growth in an FLT3 methylation–dependent manner. Moreover, the effects of FLT3-ITD methylation in AML cells were partially due to cross talk with FLT3-ITD phosphorylation at tyrosine 969. Importantly, FLT3 methylation persisted in FLT3-ITD+ AML cells following kinase inhibition, indicating that methylation occurs independently of kinase activity. Finally, in patient-derived xenograft and murine AML models, combined administration of AC220 with a type I PRMT inhibitor (MS023) enhanced elimination of FLT3-ITD+ AML cells relative to AC220 treatment alone. Our study demonstrates that PRMT1-mediated FLT3 methylation promotes AML maintenance and suggests that combining PRMT1 inhibition with FLT3 TKI treatment could be a promising approach to eliminate FLT3-ITD+ AML cells.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Matteo Allegretti ◽  
Maria Rosaria Ricciardi ◽  
Roberto Licchetta ◽  
Simone Mirabilii ◽  
Stefania Orecchioni ◽  
...  

Abstract Aberrant activation of the PI3K/Akt/mTOR pathway is a common feature of acute myeloid leukemia (AML) patients contributing to chemoresistance, disease progression and unfavourable outcome. Therefore, inhibition of this pathway may represent a potential therapeutic approach in AML. The aim of this study was to evaluate the pre-clinical activity of NVP-BKM120 (BKM120), a selective pan-class I PI3K inhibitor, on AML cell lines and primary samples. Our results demonstrate that BKM120 abrogates the activity of the PI3K/Akt/mTOR signaling, promoting cell growth arrest and significant apoptosis in a dose- and time-dependent manner in AML cells but not in the normal counterpart. BKM120-induced cytotoxicity is associated with a profound modulation of metabolic behaviour in both cell lines and primary samples. In addition, BKM120 synergizes with the glycolitic inhibitor dichloroacetate enhancing apoptosis induction at lower doses. Finally, in vivo administration of BKM120 to a xenotransplant mouse model of AML significantly inhibited leukemia progression and improved the overall survival of treated mice. Taken together, our findings indicate that BKM120, alone or in combination with other drugs, has a significant anti-leukemic activity supporting its clinical development as a novel therapeutic agent in AML.


Sign in / Sign up

Export Citation Format

Share Document