Purified DNA, but Not Neutrophil Extracellular Traps (NETs), Promotes Contact Activation of Coagulation

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 767-767
Author(s):  
Denis Noubouossie ◽  
Matthew F Whelihan ◽  
Dougald M. Monroe ◽  
Nigel S. Key

Abstract Introduction Netosis refers to the extracellular release of nuclear material from neutrophils (PMNs) in the form of a meshwork called neutrophil extracellular traps (NETs). NETs are composed of a scaffold of DNA decorated with histones and specific cytoplasmic granules of neutrophils. Beside their ability to trap bacteria, NETs have been shown to promote thrombosis in animal models. Purified NET components have been suggested to enhance coagulation. However, the exact mechanisms by which intact NETs affect coagulation remain unclear. Objective To assess the effect of intact NETs on the activation of the contact system of coagulation. Methods Human PMNs were isolated from whole blood collected in 3.2% citrate (1 vol citrate / 9 vol blood) from normal volunteers using a negative selection by magnetic beads coated with antibodies directed against specific antigens of other blood cell types. Purity of PMN isolates was ≥ 96% while viability (assessed using trypan blue staining) was ≥ 98%. Isolated PMNs were re-suspended in RPMI + 0.5% bovine serum albumin or in normal pooled platelet-poor plasma (PPP) at 10-15,000 cells/µl final concentration. Re-suspended PMNs were stimulated to form NETs using phorbol myristate acetate (PMA: 600 nM) or ionophore (A23187: 5µM) and incubated at 37ᵒC in 5% CO2 for 3 hours. The effect of NETs was assessed on a synthetic construct of the contact system in-vitro using purified proteins (FXII, FXI, Prekallikrein and High Molecular Weight Kininogen) at physiologic concentrations in Hepes buffered saline containing 2mM Ca2+ and 0.1% polyethylene glycol (8000MW). The reaction was quenched with an equal volume of antithrombin (7uM), corn trypsin inhibitor (CTI, 0.2mg/mL) and heparin (1U/mL) at time points up to 1 hour after mixing with NETs. FXIa-antithrombin complexes were then detected using an in-house sandwich ELISA method. Thrombin generation (TG) was also monitored during 1 hour in re-calcified PPP containing stimulated PMNs with added 4µM synthetic phospholipid vesicles (PC:PE:PS). Finally, DNA was purified from neutrophils and its effect on contact activation was assessed in both the synthetic contact and plasma systems. Kaolin was used as positive control in both test systems; buffer without surface was used as the negative control in the synthetic contact system, and re-calcified PPP without added neutrophils was used as negative control in the TG assay. Results Massive amounts of NETs were released from stimulated PMNs as seen on fluorescence microscopy after staining for DNA using sytox green (Fig. I A&C). Extracellular release of NETs was confirmed by digestion following treatment with DNAse 1 (Fig. I B&D). Extracted DNA triggered contact activation (measured as XIa-antithrombin complexes) in buffer and enhanced TF-independent TG in PPP in a concentration dependent manner (Fig. I E&G). The latter was attenuated by corn trypsin inhibitor (0.1mg/mL) and abolished in FXII- or FXI-deficient plasma (Figure IE) indicating the dependency on the contact pathway activation. In contrast, intact NETs did not trigger contact activation in buffer and failed to enhance TG in re-calcified PPP in the absence of TF (Fig. I E&H). Conclusions Unlike purified DNA, intact NETs failed to activate coagulation via contact activation. These findings need to be confirmed using other readouts of contact system activation. These results do not exclude an effect of intact Nets on contact system amplification. Disclosures Monroe: Novo Nordisk: Honoraria, Research Funding.

2012 ◽  
Vol 80 (11) ◽  
pp. 3921-3929 ◽  
Author(s):  
Donporn Riyapa ◽  
Surachat Buddhisa ◽  
Sunee Korbsrisate ◽  
Jon Cuccui ◽  
Brendan W. Wren ◽  
...  

ABSTRACTBurkholderia pseudomalleiis the causative pathogen of melioidosis, of which a major predisposing factor is diabetes mellitus. Polymorphonuclear neutrophils (PMNs) kill microbes extracellularly by the release of neutrophil extracellular traps (NETs). PMNs play a key role in the control of melioidosis, but the involvement of NETs in killing ofB. pseudomalleiremains obscure. Here, we showed that bactericidal NETs were released from human PMNs in response toB. pseudomalleiin a dose- and time-dependent manner.B. pseudomallei-induced NET formation required NADPH oxidase activation but not phosphatidylinositol-3 kinase, mitogen-activated protein kinases, or Src family kinase signaling pathways.B. pseudomalleimutants defective in the virulence-associated Bsa type III protein secretion system (T3SS) or capsular polysaccharide I (CPS-I) induced elevated levels of NETs. NET induction by such mutants was associated with increased bacterial killing, phagocytosis, and oxidative burst by PMNs. Taken together the data imply that T3SS and the capsule may play a role in evading the induction of NETs. Importantly, PMNs from diabetic subjects released NETs at a lower level than PMNs from healthy subjects. Modulation of NET formation may therefore be associated with the pathogenesis and control of melioidosis.


2018 ◽  
Vol 40 (9) ◽  
pp. e12572 ◽  
Author(s):  
Javier J. Garza ◽  
Scott P. Greiner ◽  
Scott A. Bowdridge

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1345-1345 ◽  
Author(s):  
Tobias Fuchs ◽  
Alexander Brill ◽  
Daniel Dürschmied ◽  
Daphne Schatzberg ◽  
John H. Hartwig ◽  
...  

Abstract Abstract 1345 Introduction Thrombus stability is provided by very large polymers adhering to platelets and anchoring the thrombus to the vessel wall. The best described polymers are fibrin and von Willebrand Factor (VWF). Activated neutrophils and other leukocytes can form an extracellular fibrous network which is composed of DNA, histones, and granular proteins. These neutrophil extracellular traps (NETs) are present in various inflammatory diseases. In deep vein thrombosis (DVT) inflammation closely cooperates with thrombosis. Here we examine whether NETs provide a new means to support the adhesion and recruitment of platelets and whether NETs are present in DVT. Methods and Results: To study the interaction of platelets with NETs, we isolated human neutrophils, induced NET formation and perfused over the NETs human platelets in plasma or whole blood anticoagulated with the thrombin inhibitor PPACK. Microscopic analysis revealed that under flow platelets adhere avidly to NETs. Perfusion of whole blood at physiological shear resulted in formation of thrombi on NETs in a time dependent manner. Addition of DNase1 degraded NETs and removed all platelets and thrombi demonstrating their adhesion to NETs. Thrombus formation on NETs was absent if blood was supplemented with EDTA indicating the requirement for divalent cations. Perfusion of NETs with heparinized blood dismantled NETs and prevented thrombus formation. Incubation of NETs with heparin alone released histones from NETs, indicating that heparin destroys the chromatin backbone of NETs. Furthermore, immunocytochemistry revealed that NETs were able to bind platelet adhesion molecules VWF and fibronectin from human plasma. Immunohistochemical analysis of a baboon deep vein thrombus showed abundant extracellular chromatin which co-localized with fibronectin and VWF. Conclusions: We show that extracellular traps are able to promote thrombosis in vitro and are abundant in vivo in DVT. We propose that extracellular chromatin provides a new type of scaffold that promotes platelet adhesion, activation, and aggregation and may be important for thrombus initiation or stability. Disclosures No relevant conflicts of interest to declare.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1127
Author(s):  
Cheng-Hsun Lu ◽  
Ko-Jen Li ◽  
Cheng-Han Wu ◽  
Chieh-Yu Shen ◽  
Yu-Min Kuo ◽  
...  

Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cell in the circulation capable of neutrophil extracellular traps (NETs) formation after stimulation. Both NADPH oxidase-dependent and -independent pathways are involved in NET formation. The IgG is the most abundant immunoglobulin in human serum. However, the impact of the circulating IgG on NET formation is totally unexplored. In this study, the all-trans retinoic acid (ATRA)-induced mature granulocytes (dHL-60) were pre-treated with monomeric human IgG, papain-digested Fab fragment, crystallizable IgG Fc portion, rituximab (a human IgG1), or IgG2. The NET formation of the dHL-60 in the presence/absence of phorbol 12-myristate 13-acetate (PMA) stimulation was then measured by the fluorescent area after SYTOX green nucleic acid stain. The intracellular reactive oxygen species (ROS) generation was measured by flow cytometry. Total and phosphorylated Syk, SHP-1, and ERK were detected by immunoblot. We found that human monomeric IgG and its subclasses IgG1 and IgG2 per se induced negligible NET formation of dHL-60, but the FcγRIII engagement by these IgG subclasses and Fc portion augment PMA-stimulated dHL-60 NET formation in a dose-dependent manner. Furthermore, we found that increased Syk and ERK phosphorylation, intracellular ROS generation, and pro-inflammatory cytokines, IL-8 and TNF-α, production could be induced after FcγRIII engagement. Blocking FcγRIII engagement by a specific antibody diminished the augmented NET formation. In conclusion, we discovered that cross-talk between FcγRIII engagement-induced Syk-ERK and PMA-induced PKC signaling pathways augment NET formation of dHL-60 via increased ROS generation and pro-inflammatory cytokines, IL-8 and TNF-α, production.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 93 ◽  
Author(s):  
Sueli de Oliveira Silva Lautenschlager ◽  
Tehyung Kim ◽  
Danielle Lazarim Bidóia ◽  
Celso Vataru Nakamura ◽  
Hans-Joachim Anders ◽  
...  

Hemozoin is an insoluble crystalline pigment produced by the malaria parasite Plasmodia upon digesting host hemoglobin inside red blood cells. Red blood cell rupture releases hemozoin crystals into the circulation from where they are cleared by phagocytes such as neutrophils. We speculated that plasma proteins would affect the ability of neutrophils to clear hemozoin crystals. To test this, we cultured human blood neutrophils with hemozoin ex vivo and found that neutrophils ingested hemozoin (0.1–1 µm crystal size) in a dose-dependent manner into phagosomes and vesicles/vacuoles, resulting in morphological changes including nuclear enlargement, and vesicle formation, but not cell membrane rupture or release of neutrophil extracellular traps. The presence of human plasma significantly inhibited the ability of neutrophils to ingest hemozoin crystals. Platelet-poor plasma further inhibited the uptake of hemozoin by neutrophils. Selective exposure to fibrinogen completely replicated the plasma effect. Taken together, neutrophils cleared hemozoin crystals from the extracellular space via endocytosis into phagosomes and vesicles without inducing the release of neutrophil extracellular traps. However, human plasma components such as fibrinogen limited hemozoin clearance, whereas the presence of platelets augmented this process. These factors may influence the pro-inflammatory potential of hemozoin crystals in malaria.


2016 ◽  
Vol 84 (10) ◽  
pp. 2982-2994 ◽  
Author(s):  
Sophonie Jean ◽  
Richard A. Juneau ◽  
Alison K. Criss ◽  
Cynthia N. Cornelissen

Neisseria gonorrhoeaesuccessfully overcomes host strategies to limit essential nutrients, termed nutritional immunity, by production of TonB-dependent transporters (TdTs)—outer membrane proteins that facilitate nutrient transport in an energy-dependent manner. Four gonococcal TdTs facilitate utilization of iron or iron chelates from host-derived proteins, including transferrin (TbpA), lactoferrin (LbpA), and hemoglobin (HpuB), in addition to xenosiderophores from other bacteria (FetA). The roles of the remaining four uncharacterized TdTs (TdfF, TdfG, TdfH, and TdfJ) remain elusive. Regulatory data demonstrating that production of gonococcal TdfH and TdfJ are unresponsive to or upregulated under iron-replete conditions led us to evaluate the role of these TdTs in the acquisition of nutrients other than iron. In this study, we found that production of gonococcal TdfH is both Zn and Zur repressed. We also found that TdfH confers resistance to calprotectin, an immune effector protein highly produced in neutrophils that has antimicrobial activity due to its ability to sequester Zn and Mn. We found that TdfH directly binds calprotectin, which enables gonococcal Zn accumulation in a TdfH-dependent manner and enhances bacterial survival after exposure to neutrophil extracellular traps (NETs). These studies highlight Zn sequestration by calprotectin as a key functional arm of NET-mediated killing of gonococci. We demonstrate for the first time thatN. gonorrhoeaeexploits this host strategy in a novel defense mechanism, in which TdfH production hijacks and directly utilizes the host protein calprotectin as a zinc source and thereby evades nutritional immunity.


2009 ◽  
Vol 1 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Sonja Oehmcke ◽  
Matthias Mörgelin ◽  
Heiko Herwald

2014 ◽  
Vol 82 (4) ◽  
pp. 1732-1740 ◽  
Author(s):  
Anderson B. Guimarães-Costa ◽  
Thiago S. DeSouza-Vieira ◽  
Rafael Paletta-Silva ◽  
Anita Leocádio Freitas-Mesquita ◽  
José Roberto Meyer-Fernandes ◽  
...  

ABSTRACTLeishmaniasis is a widespread neglected tropical disease caused by parasites of theLeishmaniagenus. These parasites express the enzyme 3′-nucleotidase/nuclease (3′NT/NU), which has been described to be involved in parasite nutrition and infection. Bacteria that express nucleases escape the toxic effects of neutrophil extracellular traps (NETs). Hence, we investigated the role of 3′NT/NU inLeishmaniasurvival of NET-mediated killing. Promastigotes ofLeishmania infantumwere cultured in high-phosphate (HP) or low-phosphate (LP) medium to modulate nuclease activity. We compared the survival of the two different groups ofLeishmaniaduring interaction with human neutrophils, assessing the role of neutrophil extracellular traps. As previously reported, we detected higher nuclease activity in parasites cultured in LP medium. Both LP and HP promastigotes were capable of inducing the release of neutrophil extracellular traps from human neutrophils in a dose- and time-dependent manner. LP parasites had 2.4 times more survival than HP promastigotes. NET disruption was prevented by the treatment of the parasites with ammonium tetrathiomolybdate (TTM), a 3′NT/NU inhibitor. Inhibition of 3′NT/NU by 3′-AMP, 5′-GMP, or TTM decreased promastigote survival upon interaction with neutrophils. Our results show thatLeishmania infantuminduces NET release and that promastigotes can escape NET-mediated killing by 3′-nucleotidase/nuclease activity, thus ascribing a new function to this enzyme.


2021 ◽  
Author(s):  
Yang-Wuyue Liu ◽  
Jingyu Zhang ◽  
Wanda Bi ◽  
Mi Zhou ◽  
Jiabo Li ◽  
...  

Abstract BackgroundBlood-brain barrier (BBB) disruption and leukocyte infiltration are two pathological features post traumatic brain injury (TBI). However, the role of circulating leukocytes in BBB disruption and the crosstalk between them are not fully elucidated. Neutrophil is the most abundant circulating cell type that migrates into brain tissue when TBI occurs instantly, while brain pericyte occupies a strategic position between circulating cell and interstitial space in BBB. Understanding their interactions is essential to provide insight into the intrinsic relationship and identify biological targets for TBI treatments. MethodsBy analyzing brain tissues from TBI patients and mouse TBI model through immunohistochemical method and flow cytometry, we build the relationship between neutrophils, neutrophil extracellular traps (NETs) and brain pericyte. The components of NETs-related medium were investigated by proteomics and metabolomics to decipher the factors directly regulating pericytes. The molecular mechanisms were deeply explored by WB/CHIP/RT-PCR in primary brain pericyte/pericyte cell line MBVP treated with NETs-formed medium or specific NETs components. In mice TBI model, we also explored the possible therapeutic approaches for TBI treatment that targeting at the axis of neutrophil-NETs-pericyte. ResultsNETs formation is highly enhanced post TBI, inducing the appearance of CD11b expressing brain pericyte simultaneously. This novel CD11b+ pericyte subset is characterized with increased permeability and pro-inflammatory profiles. Mechanistically, recognition of histones from NETs by Dectin-1 on pericyte contributes to CD11b induction in protein kinase C (PKC)-c-Jun-dependent manner. Transcription factor c-Jun directly binds to the promoter sequence of CD11b to enhance its expression in pericyte, conferring pericyte activation, BBB disruption and aggravated neutrophil infiltration post TBI. Either inhibiting NETs formation by Cl-Amidine or blocking Dectin-1 by Laminarin are both beneficial for decreasing neutrophil infiltration and brain pericyte activation post TBI. ConclusionsThese results unfold that “neutrophil-NETs-pericyte” and “histones-Dectin-1-CD11b” are possible cellular and molecular mechanisms for building connection between BBB damage and neutrophil infiltration. Targeting at NETs formation and Dectin-1 are promising treatments for improving neurological outcomes of TBI patients.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1146-1146
Author(s):  
Tom Van De Berg ◽  
Dennis P.L. Suylen ◽  
M.G.L. Christella D. Thomassen ◽  
Rene van Oerle ◽  
Henri M.H. Spronk ◽  
...  

Background: Thrombin generation and other clotting assays suffer from a wide variation of pre-analytical variables. One of those pre-analytical variables is contact activation through blood withdrawal methods, different syringes, differences in blood coagulation tubes, blood transport and sample handling. It has been shown that the addition of contact activation inhibitors in low tissue factor activated thrombin generation leads to a correction of the, in these circumstances significant, increase in thrombin generation due to contact activation. We compare the novel 'thermostable inhibitor of contact activation' (TICA) to the current standard 'corn trypsin inhibitor' (CTI). Aim: Comparing the effectiveness of novel contact activation inhibitor TICA to the current standard CTI in low tissue factor-induced thrombin generation and recalcification in sodium citrate anticoagulated platelet poor plasma (PPP) and platelet rich plasma (PRP). Methods: We compared TICA, Corn trypsin inhibitor and plasma without contact activation inhibitors in low tissue factor PPP thrombin generation and in PRP recalcification thrombin generation, the latter the most sensitive condition for contact activation. In addition, we compared low tissue factor activated thrombin generation in plasma from severe hemophilia A patients with and without TICA during and after blood drawing. Thermostability - as a measure of shelf life - was measured and compared to CTI. Results: TICA is able to fully block contact activation in PRP recalcification experiments and is comparable to CTI in doing so. TICA significantly lowers low tissue factor induced thrombin generation by blocking contact activation. Pre-loading vacuum blood collection tubes with contact activation inhibitors is superior in inhibiting contact activation compared to addition of the inhibitor during the thrombin generation assay itself. TICA did not alter coagulation activity when added to FXIIa deficient plasma in thrombin generation. In contrast to CTI TICA is heat stable which will be of benefit to shelf life of pre-loaded blood drawing tubes. Conclusion: TICA is able to fully block contact activation and has several advantages over CTI. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document