Enhancer-Promoter Looping Deciphers Dosage of the Haploinsufficient Transcription Factor, CUX1

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2700-2700
Author(s):  
Robert K Arthur ◽  
Ningfei An ◽  
Saira Kahn ◽  
Megan E. McNerney

Abstract One third of tumor suppressor genes encode haploinsufficient transcriptional regulators, including transcription factors and chromatin remodelers. This presents a major barrier in oncology, as tumor suppressor genes and transcription factors are inherently difficult to target therapeutically. It remains unknown how a 50% reduction of a transcriptional regulator translates at the cis-regulatory level into a malignant transcriptional program. It is imperative to address this question, in order to predict and target aberrant downstream pathways. CUX1 encodes a quintessential haploinsufficient transcription factor that is recurrently mutated or deleted, monoallelically, in high-risk myeloid neoplasms and across solid tumor types. We hypothesized that the transcriptional response to changes in CUX1 level is encoded within the cis-regulatory architecture of dosage-sensitive CUX1 target genes. In this study, we determined that CUX1 primarily binds distal enhancers, in a tissue-specific manner. CUX1 binding sites are significantly enriched for co-binding with transcriptional activators and cohesin components. Haploinsufficiency of CUX1 in K562 myeloid leukemia cells led to altered expression of mitotic and apoptotic genes with concomitant increased cellular proliferation. Surprisingly, ChIP-seq of CUX1 in the haploinsufficient state revealed a unimodal decrease in CUX1 occupancy genome-wide, with no relevance to differential gene expression. Thus we used a machine-learning algorithm to identify characteristics of CUX1 binding sites at dosage-sensitive target genes and revealed a relationship with distance to the transcription start site, chromatin accessibility, and enhancer activity. Finally, we demonstrate that CUX1 binding sites at dosage-sensitive genes loop to the promoter, and those genes with an intermediate number of Hi-C loops are most responsive to changes in CUX1 abundance. Overall, these data point to a novel mechanism of transcription factor dose-responsiveness mediated by enhancer-promoter looping. Disclosures No relevant conflicts of interest to declare.

2007 ◽  
Vol 2 (8) ◽  
pp. S506-S507
Author(s):  
Joachim Gullbo ◽  
Michael Bergqvist ◽  
Linda Sooman ◽  
Peter Ericsson ◽  
Johan Lennartsson ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 995
Author(s):  
Xuhua Xia

Trees and their seeds regulate their germination, growth, and reproduction in response to environmental stimuli. These stimuli, through signal transduction, trigger transcription factors that alter the expression of various genes leading to the unfolding of the genetic program. A regulon is conceptually defined as a set of target genes regulated by a transcription factor by physically binding to regulatory motifs to accomplish a specific biological function, such as the CO-FT regulon for flowering timing and fall growth cessation in trees. Only with a clear characterization of regulatory motifs, can candidate target genes be experimentally validated, but motif characterization represents the weakest feature of regulon research, especially in tree genetics. I review here relevant experimental and bioinformatics approaches in characterizing transcription factors and their binding sites, outline problems in tree regulon research, and demonstrate how transcription factor databases can be effectively used to aid the characterization of tree regulons.


2015 ◽  
Vol 24 (2) ◽  
pp. 578-585 ◽  
Author(s):  
Hong-Chang Chen ◽  
Hsuan-Yuan Huang ◽  
Yao-Li Chen ◽  
Kuan-Der Lee ◽  
Yi-Ru Chu ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Shijie Qin ◽  
Jieyun Xu ◽  
Yunmeng Yi ◽  
Sizhu Jiang ◽  
Ping Jin ◽  
...  

Many dysregulated microRNAs (miRNAs) have been suggested to serve as oncogenes or tumor suppressors to act as diagnostic and prognostic factors for HCC patients. However, the dysregulated mechanisms of miRNAs in HCC remain largely unknown. Herein, we firstly identify 114 disordered mature miRNAs in HCC, 93 of them are caused by dysregulated transcription factors, and 10 of them are driven by the DNA methylation of their promoter regions. Secondly, we find that seven up-regulated miRNAs (miR-9-5p, miR-452-5p, miR-452-3p, miR-1180-3p, miR-4746-5p, miR-3677-3 and miR-4661-5p) can promote tumorigenesis via inhibiting multiple tumor suppressor genes participated in metabolism, which may act as oncogenes, and seven down-regulated miRNAs (miR-99-5p, miR-5589-5p, miR-5589-3p, miR-139-5p, miR-139-3p, miR-101-3p and miR-125b-5p) can suppress abnormal cell proliferation via suppressing a number of oncogenes involved in cancer-related pathways, which may serve as tumor suppressors. Thirdly, our findings reveal a mechanism that transcription factor and miRNA interplay can form various regulatory loops to synergistically control the occurrence and development of HCC. Finally, our results demonstrate that this key transcription factor FOXO1 can activate a certain number of tumor suppressor miRNAs to improve the survival of HCC patients, suggesting FOXO1 as an effective therapeutic target for HCC patients. Overall, our study not only reveals the dysregulated mechanisms of miRNAs in HCC, but provides several novel prognostic biomarkers and potential therapeutic targets for HCC patients.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 204-204 ◽  
Author(s):  
Saskia Gueller ◽  
Martina Komor ◽  
Julian C. Desmond ◽  
Oliver G. Ottmann ◽  
Dieter Hoelzer ◽  
...  

Abstract Activation of transcription of DNA by demethylation and hyperacetylation is known to cause hematologic improvement in patients with myelodysplastic syndromes (MDS). In this study we discriminated genes not expressed in CD34+ cells from untreated patients with MDS but activated by in vitro demethylation (2-aza-5-deoxycytidine, Decitabine) and hyperacetylation (suberoylanilide hydroxamic acid, SAHA). Highly purified CD34+ cells from normal individuals (n=3) and patients with low (n=3) and high (n=3) risk MDS were cultured with SCF (50 ng/ml), IL-3 (10 ng/ml) and GM-CSF (10 ng/ml). The cells were treated with 5 μmol Decitabine on day 1 and supplemented with 2.5 μmol SAHA on day 4 of culture. On day 5, global gene expression in these cells was compared to untreated cells (HG-U133A, Affymetrix, Santa Clara, CA). We identified 50 genes which are not expressed in untreated MDS CD34+ cells but 3-fold induced in all MDS samples by Decitabine and SAHA. Thirty-one of these genes were found to be expressed in normal CD34+ cells underlining the importance of such genes for normal hematopoiesis. This set of genes includes two genes for growth arrest and DNA damage control, the inducible protein beta (GADD45B), a regulator of growth and apoptosis and neural cell adhesion molecule 1 (NCAM1) that plays an important role in cell migration. Furthermore, hematological and neurological expressed 1 (HN1) which was not expressed in MDS CD34+ cells is known to have an anti-proliferative effect on tumor cell lines. N-myc downstream regulated 3 (NDRG3) is up-regulated during normal cell differentiation and suppressed in several tumor cells. In normal CD34+ cells, after in vitro treatment with Decitabine and SAHA we have discriminated 52 genes to be 3-fold up-regulated compared to untreated cells. Thirty-eight of these genes (73 %) were not inducible by demethylation and hyperacetylation in MDS CD34+ cells. These genes include chemokine receptor 3 (CCR3), a receptor for a C-C type chemokine involved in signal transduction, integrin beta-7 (ITGB7) that plays a role in adhesive interactions of leukocytes, preferentially expressed antigen in melanoma (PRAME) which is frequently expressed in human solid cancers and acute leukemia and tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) that recruits apoptotic suppressors and mediates most of the metabolic effects of TNF-alpha. The silencing of these genes is independent of methylation and acetylation state and might be due to other mechanisms. This study shows that in CD34+ cells from MDS patients several genes are suppressed by methylation and hypoacetylation but can be activated by treatment with Decitabine and SAHA. Some of these genes are present in normal untreated CD34+ cells which leads to the assumption that they might function as tumor suppressor genes. Low or absent expression of these genes may contribute to the clonal expansion of MDS CD34+ which can be overcome by treatment with Decitabine or SAHA. Furthermore, the knowledge about these target genes may enable a more specific evaluation of the mechanisms of action of demethylating/hyperacetylating agents.


Human Cell ◽  
2020 ◽  
Author(s):  
Łukasz Witek ◽  
Tomasz Janikowski ◽  
Iwona Gabriel ◽  
Piotr Bodzek ◽  
Anita Olejek

Abstract Endometrial cancer remains the most common malignancy of the female genital system in developed countries. Tumor suppressor genes are responsible for controlling the cells fate in the cell cycle and preventing cancerogenesis. Gene expression affects cancer progression and is modulated by microRNAs defined as both tumor suppressors and oncogenes. These molecules indirectly regulate multiple processes like cell proliferation, differentiation and apoptosis. The aim of this study was to analyze miRNAs expression that can regulate the activity of tumor suppressor genes related to the cell cycle in patients with endometrioid endometrial cancer. The study group consisted of 12 samples that met the inclusion criteria from a total of 48 obtained. The 12 samples were used to analyze microRNA expression. Complementary miRNAs were identified using TargetScan Database and statistical analysis. MicroRNAs were determined for the tumor suppressor genes: CYR61, WT1, TSPYL5, HNRNPA0, BCL2L1 and BAK1. All the miRNAs were complementary to the described target genes based on TargetScan Database. There were five miRNAs differentially expressed that can regulate tumor suppressor genes related to the cell cycle. The distinguished miRNAs: mir-340-3p, mir-1236-5p, mir-874-3p, mir-873-5p.2 and mir-548-5p were differentially expressed in endometrial cancer in comparison to the control. Among the distinguished miRNAs, the most promising is mir-874-3p, which may have an important role in endometrial adenocarcinoma proliferation.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 207
Author(s):  
Amreen Salwa ◽  
Alessandra Ferraresi ◽  
Menaka Chinthakindi ◽  
Letizia Vallino ◽  
Chiara Vidoni ◽  
...  

Background: BRCA1, BECN1 and TP53 are three tumor suppressor genes located on chromosome 17 and frequently found deleted, silenced, or mutated in many cancers. These genes are involved in autophagy, apoptosis, and drug resistance in ovarian cancer. Haploinsufficiency or loss-of-function of either TP53, BRCA1 or BECN1 correlates with enhanced predisposition to cancer development and progression, and chemoresistance. Expectedly, the combined altered expression of these three tumor suppressor genes worsens the prognosis of ovarian cancer patients. However, whether such a genotypic pattern indeed affects the chemo-responsiveness to standard chemotherapy thus worsening patients’ survival has not been validated in a large cohort of ovarian cancer patients. Aim: We interrogated datasets from the TCGA database to analyze how the expression of these three tumor suppressor genes impacts on the clinical response to platinum-based chemotherapy thus affecting the survival of ovarian cancer patients. Results and conclusion: Compared to EOC with homozygous expression of BECN1 and BRCA1, tumors expressing low mRNA expression of these two tumor suppressor genes (either because of shallow (monoallelic) co-deletion or of promoter hypermethylation), showed higher sensitivity to platinum-based therapies and were associated with a better prognosis of ovarian cancer-bearing patients. This outcome was independent of TP53 status, though it was statistically more significant in the cohort of patients with mutated TP53. Thus, sensitivity to platinum therapy (and probably to other chemotherapeutics) correlates with low expression of a combination of critical tumor suppressor genes. Our study highlights the importance of thoroughly assessing the genetic lesions of the most frequently mutated genes to stratify the patients in view of a personalized therapy. More importantly, the present findings suggest that targeting the function of both BECN1 and BRCA1 could be a strategy to restore chemosensitivity in refractory tumors.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1404
Author(s):  
Thuan Duc Lao ◽  
Toan Ngoc Nguyen ◽  
Thuy Ai Huyen Le

DNA methylation, the most common epigenetic alteration, has been proven to play important roles in nasopharyngeal carcinoma (NPC). Numerous tumor suppressor genes located on the chromosome 3p, particularly in the region of 3p21, are frequently methylated in NPC, thus suggesting great potential for diagnosis of NPC. In this review, we summarize recent findings of tumor suppressor genes on chromosome 3 that likely drive nasopharyngeal tumor development and progression, based on previous studies related to the hypermethylation of these target genes. Better understanding will allow us to design further experiments to establish a potential test for diagnosis of NPC, as well as bring about methylated therapies to improve the treatment of NPC.


Sign in / Sign up

Export Citation Format

Share Document