scholarly journals Transcriptome Analysis Revealed the Entire Genetic Understanding of Pediatric Acute Myeloid Leukemia with a Normal Karyotype

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2850-2850
Author(s):  
Norio Shiba ◽  
Kenichi Yoshida ◽  
Yuichi Shiraishi ◽  
Shiraishi Yuichi ◽  
Yusuke Hara ◽  
...  

Abstract Background: Pediatric acute myeloid leukemia (AML) comprises approximately 20% of pediatric leukemia, representing one of the major therapeutic challenges in pediatric oncology with a current overall survival rate of less than 70%. The pathogenesis of AML is heterogeneous and can be caused by various chromosomal aberrations, gene mutations/epigenetic modifications, and deregulated/overregulated gene expressions, leading to increased proliferation and decreased hematopoietic progenitor cell differentiation. Recurrent chromosomal structural aberrations [e.g., t(8;21), inv(16), and MLL-rearrangements] have been well established as diagnostic and prognostic markers of AML. Furthermore, recurrent mutations in FLT3, KIT, NPM1, and CEBPA have been reported in both adult and pediatric AML. Recently, massively parallel sequencing enabled the discovery of recurrent mutations in DNMT3A, TET2, and IDH, which are clinically useful for the prediction of the prognosis. However, these mutations are rare in pediatric AML, suggesting that other genetic alterations exist in pediatric AML. In contrast, recent reports have described NUP98-NSD1 fusion as an adverse AML prognostic marker and PRDM16 (also known as MEL1) as the representative overexpressed gene in patients harboring NUP98-NSD1 fusion. Intriguingly, PRDM16 overexpression occurs in nearly one-quarter of all children, with AML involving NUP98-NSD1-negative patients. Moreover, this overexpression is enriched in specimens with other high-risk lesions (e.g., FLT3-ITD, NUP98-NSD1, and MLL-PTD). Patients and Methods: To reveal a complete registry of gene rearrangements and other genetic lesions in pediatric AML with a normal karyotype, we performed transcriptome analysis (RNA sequencing) of 61 of 70 de novo pediatric AML patients with a normal karyotype using Illumina HiSeq 2000. We could not perform RNA sequencing in nine patients because of a lack of RNA quantity or quality. Among the 70 AML patients with a normal karyotype, 33 patients overexpressed PRDM16, which was found to be strongly associated with a poor prognosis in our previous studies. All patients were enrolled and treated with AML-05 in the study conducted by the Japan Pediatric Leukemia/Lymphoma Study Group (JPLSG). We also analyzed the known genetic mutations associated with these patients using the data derived from RNA sequencing. Results: A total of 144 candidate gene rearrangements, which were not observed in normal samples, were identified in 51 of 61 samples. Many of the recurrent gene rearrangements identified in this study involved previously reported targets in AML, including NUP98-NSD1, NUP98-JARID1A, CBFA2T3-GLIS2, MLL-MLLT10, and MLL-MLLT3. However, several gene rearrangements were newly identified in the current study, including MLL-SEPT6, HOXA10-HOXA-AS3, PRDM16-SKI, and CUL1-EZH2. We have also performed the validation of these novel gene rearrangements using Sanger sequencing. Most of these gene rearrangements were found in patients with a high expressionof PRDM16. In contrast, CEBPA mutations were frequently observed in patients with a low expression of PRDM16. Known gene alterations, such as FLT3-ITD and MLL-PTD, and mutations of the RAS, KIT, CEBPA, WT1, and NPM1genes were also detected using RNA sequencing. Conclusion: RNA sequencing unmasked a complexity of gene rearrangements and mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from adult counterparts, regarding the spectrum of gene rearrangements and mutations. In the present study, we identified at least one potential gene rearrangement or driver mutation in nearly all AML samples, including some novel fusion genes. These findings suggest that gene rearrangements in conjunction with mutations also play essential roles in pediatric AML. Disclosures Ogawa: Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2575-2575
Author(s):  
Norio Shiba ◽  
Kenichi Yoshida ◽  
Yuichi Shiraishi ◽  
Yusuke Hara ◽  
Genki Yamato ◽  
...  

Abstract Background Pediatric acute myeloid leukemia (AML) comprises approximately 20% of pediatric leukemia cases. AML is a major therapeutic challenge in pediatric oncology, and the current overall survival rate is <70%. The pathogenesis of AML is heterogeneous, and causes include various chromosomal aberrations, gene mutations/epigenetic modifications, and deregulated/overregulated gene expression, resulting in increased proliferation and decreased hematopoietic progenitor cell differentiation. Recurrent chromosomal structural aberrations such as t(8;21), inv(16), and MLL -rearrangements are well established as diagnostic and prognostic markers in AML. Furthermore, recurrent mutations in FLT3, KIT, and RAS have been reported in both adult and pediatric AML. Recently, massively parallel sequencing has facilitated the discovery of recurrent mutations in DNMT3A, TET2, and IDH, which are clinically useful for predicting the prognosis. However, these mutations are rare in pediatric AML, thereby suggesting that other genetic alterations may exist in pediatric AML. In addition, recent studies have reported that the NUP98-NSD1 fusion is an adverse AML prognostic marker and that PRDM16 (also termed MEL1) is a representative gene that is overexpressed in patients who have the NUP98-NSD1 fusion. PRDM16 overexpression occurs in nearly a quarter of pediatric AML patients who are NUP98-NSD1 negative, and this overexpression is increased in specimens with other high-risk lesions (e.g., FLT3-ITD, NUP98-NSD1,and MLL-PTD). Patients and Methods To obtain a complete overview of gene rearrangements and other genetic lesions, we performed RNA sequencing of samples from 47 de novo pediatric AML patients using Illumina HiSeq 2000, including 39 patients with normal karyotypes and 6 patients with Trisomy 8. Among these 47 patients, 35 patients overexpressed PRDM16, which was strongly associated with a poor prognosis in our previous studies. As a control, we selected 12 patients with low PRDM16 expression levels. All patients were enrolled and treated as part of the AML-05 study conducted by the Japan Pediatric Leukemia/Lymphoma Study Group. We determined the known gene mutations present in these patients using the RNA sequencing data. Results Approximately 300 candidate gene rearrangements were identified in 46/47 samples, including 26 in-frame and 78 out-of-frame gene rearrangements. Several recurrent gene rearrangements identified in this study involved previously reported targets in AML, such as FUS-ERG, NUP98-NSD1,and MLL-MLLT3. However, several novel gene rearrangements were identified in the current study, including HOXA10-HOXA-AS3, PRDM16-XXX, CUL1-YYY, and DAZAP1-ZZZ. At present, we are validating these novel gene rearrangements using Sanger sequencing. Known gene alterations, such as FLT3-ITD, MLL-PTD, and mutations of RAS, KIT, CEBPA, WT1, and NPM1 genes, were detected by RNA sequencing. Conclusion In the present study, RNA sequencing was employed to elucidate the complexity of gene rearrangements/mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that can be discriminated from adult AML in terms of the spectrum of gene rearrangements/mutations. We identified at least one potential gene rearrangement or driver mutation in nearly all AML samples, including various novel fusion genes. Thus, our results suggest that gene rearrangements and mutations play essential roles in pediatric AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1170-1170
Author(s):  
Anilkumar Gopalakrishnapillai ◽  
Anne Kisielewski ◽  
Yang Zhang ◽  
Bruce Ruggeri ◽  
Peggy Scherle ◽  
...  

Abstract Pediatric acute myeloid leukemia (AML) is the deadliest malignancy in children. Despite maximally intensive therapy, inclusive of chemotherapy and hematopoietic stem cell transplant, approximately 20% of patients experience recurrent disease. These patients are also burdened with treatment-related toxicities. Significant improvements in survival in pediatric AML patients necessitate the incorporation of rational targeted therapies with reduced toxicity. Recent studies demonstrate that PRMT5 knockout or inhibition in syngeneic mouse models of KMT2A (MLL) rearranged leukemic cells increased disease latency (Serio et al., Oncogene, 37:450, 2018; Kaushik et al., Leukemia, 32:499, 2018), indicating that PRMT5 is a potential therapeutic target in pediatric AML. However, there are no reports testing the efficacy of PRMT5 in PDX models of pediatric AML. We evaluated the preclinical efficacy of C220, a potent and selective PRMT5 inhibitor (PRMT5i) (Pastore et al., Cancer Discovery, 10:1742, 2020) in three distinct patient-derived xenograft (PDX) models of KMT2A rearranged AML. Based on the model used for the study, 3-5 million AML cells were injected intravenously in NSG-B2m mice. Disease progression was monitored by evaluating the percentage of human cells in mouse peripheral blood at periodic intervals by flow cytometry. At 2-3 weeks post transplantation, when human cells were detectable in peripheral blood, mice were randomly assigned to control (n=4-5) or treatment (n=2) groups. C220 was administered daily p.o. at a dose of 15 mg/kg for seven days with a break of two days. Mice were dosed with 2-3 additional cycles (indicated in the figure by shaded areas) based on their health status. Mice were monitored daily for experimental endpoints that included body condition score and human cell percentages in peripheral blood. Kaplan-Meier survival plots were generated based on the time when mice were euthanized because they met experimental endpoints. Chronic dosing of C220 prolonged survival and delayed the rise in percentage of human AML cells in mouse peripheral blood in all 3 PDX models (Fig. 1B, D, F). In the NTPL-146 model (KMT2A-MLLT1 fusion), a 135-day improvement in median survival was observed with C220-treatment (Fig. 1A). In the DF-2 (KMT2A-MLLT10 fusion) and DF-5 (KMT2A-MLLT4 fusion) models, which showed a faster engraftment compared to NTPL-146, there was a 5.5-day and 18-day improvement in median survival respectively (Fig. 1C, E). The improvement in median survival was statistically significant in all models (*P&lt;0.05). In conclusion, C220 was effective in controlling leukemia progression and improving survival in KMT2A rearranged PDX models of pediatric AML. Figure 1 Figure 1. Disclosures Gopalakrishnapillai: Geron: Research Funding. Zhang: Prelude Therapeutics: Current Employment. Ruggeri: Prelude Therapeutics: Current Employment, Current equity holder in publicly-traded company. Scherle: Prelude Therapeutics: Current Employment, Current equity holder in publicly-traded company. Barwe: Prelude Therapeutics: Research Funding.


2019 ◽  
Vol 3 (20) ◽  
pp. 3157-3169 ◽  
Author(s):  
Norio Shiba ◽  
Kenichi Yoshida ◽  
Yusuke Hara ◽  
Genki Yamato ◽  
Yuichi Shiraishi ◽  
...  

Key Points Using RNA-seq in pediatric AML patients, 5 gene rearrangements were newly identified, including NPM1 and RUNX1 gene rearrangements. RNA-seq unmasked the complexity of gene alterations in pediatric AML by identifying disease-causing alterations in nearly all patients.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4536
Author(s):  
Małgorzata Czogała ◽  
Walentyna Balwierz ◽  
Katarzyna Pawińska-Wąsikowska ◽  
Teofila Książek ◽  
Karolina Bukowska-Strakova ◽  
...  

Background: From 1983, standardized therapeutic protocols for pediatric acute myeloid leukemia (AML) based on the BFM group experience were introduced in Poland. We retrospectively analyzed the results of pediatric AML treatment in Poland from 1983 to 2019 (excluding promyelocytic, therapy-related, biphenotypic, and Down syndrome AML). Methods: The study included 899 children suffering from AML treated with the following: AML-PPPLBC 83 (1983–1993, n = 187), AML-PPGLBC 94 (1994–1997, n = 74), AML-PPGLBC 98 (1998–2004, n = 151), AML-BFM 2004 Interim (2004–2015, n = 356), and AML-BFM 2012 (2015–2019, n = 131). Results: The probability of three-year overall survival was 0.34 ± 0.03, 0.37 ± 0.05, 0.54 ± 0.04, 0.67 ± 0.03, and 0.75 ± 0.05; event-free survival was 0.31 ± 0.03, 0.34 ± 0.05, 0.44 ± 0.04, 0.53 ± 0.03, and 0.67 ± 0.05; and relapse-free survival was 0.52 ± 0.03, 0.65 ± 0.05, 0.58 ± 0.04, 0.66 ± 0.03, and 0.78 ± 0.05, respectively, in the subsequent periods. A systematic reduction of early deaths and deaths in remission was achieved, while the percentage of relapses decreased only in the last therapeutic period. Surprisingly good results were obtained in the group of patients treated with AML-BFM 2012 with unfavorable genetic abnormalities like KMT2A-MLLT10/t(10;11)(p12;q23) and DEK-NUP214/t(6;9)(p23;q24), while unsatisfactory outcomes were found in the patients with FLT3-ITD. Conclusions: The use of standardized, systematically modified therapeutic protocols, with the successive consideration of genetic prognostic factors, and advances in supportive care led to a significant improvement in AML treatment outcomes over the last 40 years.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 895
Author(s):  
Olga Krali ◽  
Josefine Palle ◽  
Christofer L. Bäcklin ◽  
Jonas Abrahamsson ◽  
Ulrika Norén-Nyström ◽  
...  

Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Feng Jiang ◽  
Xin-Yu Wang ◽  
Ming-Yan Wang ◽  
Yan Mao ◽  
Xiao-Lin Miao ◽  
...  

Objective. The aim of this research was to create a new genetic signature of immune checkpoint-associated genes as a prognostic method for pediatric acute myeloid leukemia (AML). Methods. Transcriptome profiles and clinical follow-up details were obtained in Therapeutically Applicable Research to Generate Effective Treatments (TARGET), a database of pediatric tumors. Secondary data was collected from the Gene Expression Omnibus (GEO) to test the observations. In univariate Cox regression and multivariate Cox regression studies, the expression of immune checkpoint-related genes was studied. A three-mRNA signature was developed for predicting pediatric AML patient survival. Furthermore, the GEO cohort was used to confirm the reliability. A bioinformatics method was utilized to identify the diagnostic and prognostic value. Results. A three-gene (STAT1, BATF, EML4) signature was developed to identify patients into two danger categories depending on their OS. A multivariate regression study showed that the immune checkpoint-related signature (STAT1, BATF, EML4) was an independent indicator of pediatric AML. By immune cell subtypes analyses, the signature was correlated with multiple subtypes of immune cells. Conclusion. In summary, our three-gene signature can be a useful tool to predict the OS in AML patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3263-3263
Author(s):  
Luca Lo Nigro ◽  
Laura Sainati ◽  
Anna Leszl ◽  
Elena Mirabile ◽  
Monica Spinelli ◽  
...  

Abstract Background: Myelomonocytic precursors from acute or chronic leukemias can differentiate to dendritic cells in vitro, but leukemias with a dendritic cell immunophenotype are rare, have been reported mainly in adults, and their molecular pathogenesis is unknown. Dendritic cells are classified as Langherans, myeloid and lymphoid/plasmacytoid cells, but leukemias arising from dendritic cells are unclassified in the FAB system. We identified a new entity of pediatric acute myeloid leukemia (AML) presenting with morphologic and immunophenotypic features of mature dendritic cells, which is characterized by MLL gene translocation. Methods and Results: Standard methods were used to characterize the morphology, immunophenotype, karyotype and MLL translocations in 3 cases of pediatric AML. The patients included two boys and one girl diagnosed with AML between 1–6 years old. Their clinical histories and findings included fever, pallor, abdominal and joint pain, adenopathy, hepatosplenomegaly, normal WBC counts but anemia and thrombocytopenia. and no evidence of CNS disease. The bone marrow aspirates were hypocellular and replaced completely by large blasts with irregular nuclei, slightly basophilic cytoplasm, and prominent cytoplasmic projections. There were no cytoplasmatic granules or phagocytosis. Myeloperoxidase and alpha napthyl esterase reactions were negative, excluding FAB M5 AML, and the morphology was not consistent with any standard FAB morphologic diagnosis. The leukemic blasts in all three cases were CD83+, CD86+, CD116+, consistent with differentiated myeloid dendritic cells, and did not express CD34, CD56 or CD117. MLL translocations were identified in all 3 cases. In the first case FISH analysis showed t(10;11)(p12;q23) and RT-PCR identified and a ‘5-MLL-AF10-3’ fusion transcript. In the second case FISH analysis showed t(9;11)(p22;q23) and RT-PCR identified and a ‘5-MLL-AF9-3’ fusion transcript. In the remaining case, the MLL gene rearrangement was identified by Southern blot analysis and RT-PCR showed an MLL-AF9 fusion transcript. The fusion transcripts in all 3 cases were in-frame. Remission induction was achieved with intensive chemotherapy, and all three patients have remained in durable remission for 30–60 months after hematopoietic stem cell transplantation. Conclusions. We have characterized a new pediatric AML entity with features of mature dendritic cells, MLL translocation and an apparently favorable prognosis. The in-frame MLL fusion transcripts suggest that chimeric MLL oncoproteins underlie its pathogenesis. The partner genes in all 3 cases were known partner genes of MLL that encode transcription factors. This study increases the spectrum of leukemias with MLL translocations. Comprehensive morphological, immunophenotypic, cytogenetic and molecular analyses are critical for this diagnosis, and will reveal its frequency and spectrum as additional cases are uncovered.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4889-4889
Author(s):  
Kalliopi N Manola ◽  
Agapi Parcharidou ◽  
Vassilios Papadakis ◽  
Maria Kalntremtziou ◽  
Chryssa Stavropoulou ◽  
...  

Abstract Acute myeloid leukemia (AML) accounting for approximately 17% of all childhood acute leukemias, arises either de novo or from a backround of myelodysplasia or previous chemotherapy. Cytogenetics is considered one of the most valuable prognostic determinants in AML while current risk–group classification in the limited cases of pediatric AML, is mainly based on cytogenetics and early treatment response. We reviewed the clinical and cytogenetic characteristics and the outcomes of 33 cases of childhood AML between 1997 and 2007 in order to investigate the incidence of the main FAB subtypes, the incidence of primary AML compared to secondary AML (s-AML) and the correlation between specific chromosome abnormalities and outcome in greek pediatric AML patients. Chromosome studies were performed on unstimulated bone marrow cells, derived from 33 pediatric AML patients, who were &lt;18 years of age at the time of diagnosis. Eighteen patients were male and 15 were female. According to FAB classification one patient was classified as M0 (3%), 13 patients as M2 (39.4%), 4 as M3 (12.12%), 4 as M5 (12.12%), 2 as M6 (6.1%) and 4 as M7 (12.12%). No patient was classified as M4 while 5 patients with s-AML (15.15%) could not be classified. The median follow-up of all patients was 57.95 months (0.03–132.47). Overal survival and event free survival were 66,7% and 75,8% respectively. Eight patients with s-AML and 25 patients with primary AML were identified. The median age of patients with s-AML at diagnosis was 9.15 years while the median age of patients with primary AML was 7.2 years. Six out of 8 patients with s-AML died at a median follow up of 11.03 months. Nineteen out of 25 patients with primary AML are alive in complete remission (CR). Cytogenetic analysis was performed at diagnosis in 32 patients and results were obtained in 30 of them. The karyotype was abnormal in 21 out of 30 patients (70%). Normal karyotype was found in 9 patients, t(8;21)(q22;q22) in 5, t(15;17)(q22;q21) in 3, t(9;11)(p22;q23) in 3, −7/del(7q) in 5, del(9q) in 3, and complex karyotype in 4 patients. Three out of 4 patients with M3 are alive in CR with a median follow-up of 98.6 months while one with s-AML-M3 died 13 days post diagnosis. Three out of five patients with M2 and t(8;21), including 1 patient with s-AML, died at a median follow-up of 4.35 months. Three out of 5 patients with −7/del(7q) had s-AML and died in less than 4 years, while the two others are alive for more than 5 years, in CR. Although all patients with M7 had complex karyotypes, they are alive after a median follow-up of 96.73 months, 3 of them in CR and 1 in relapse. These results indicate that in greek patients, the main FAB subtypes show a distribution similar to that reported in the literature with the exception of M4 which is absent in our study but with a reported incidence of 20%. Pediatric patients with s-AML are older and their outcome is poor and is related to a higher probability of poor cytogenetic features compared to primary AML patients. Interestingly all patients with M7 had a good clinical course although they exhibited complex karyotypes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1278-1278
Author(s):  
Fabiana Ostronoff ◽  
Matthew Fitzgibbon ◽  
Martin McIntosh ◽  
Rhonda E. Ries ◽  
Alan S. Gamis ◽  
...  

Abstract Abstract 1278 Introduction: Acute myeloid leukemia (AML) represents a heterogeneous group of malignancies with great variability in response to therapy. In recent years, an increasing list of molecular markers with prognostic significance in AML has been identified; nonetheless, new prognostic markers and therapeutic targets are still needed. The aim of this study was to identify and verify fusion transcripts using RNA-Sequencing (RNA-Seq) that would be otherwise undetectable by conventional karyotyping. Methods: Transcriptome Sequence data is generated by high-throughput short-read RNA-Seq performed for each AML sample on the Illumina HiSeq. Poly(A) RNA is captured with poly(T) magnetic beads, fragmented, copied to cDNA libraries with reverse transcriptase and random primers. Each library is subjected to 50-cycle paired-end sequencing on the Illumina HiSeq at Hudson Alpha. Filtered Fastq files are processed with TopHat-Fusion [Kim2011,Trapnell2009] alignment software to discover cryptic fusions in RNA-Seq data without relying on known, annotated models. This process yielded an average of 20 million alignable reads per sample. Cord blood blast cell transcripts are also processed and serve as normal controls. A series of filtering steps eliminate junctions commonly found to be in error. Filtered junctions found in at least 3 AML samples and no normal controls are retained as AML-associated candidate junctions. Visual curation of candidates is performed using Integrative Genomics Viewer. Candidate fusions were verified by RT-PCR amplification of the AML-associated fusions in the index cases. Fusion transcript product, as well as the break point junction was verified by Sanger sequencing Results: Diagnostic specimens from 70 patients with de novo AML that included patients with normal karyotype (NK, N=31), core-binding factor (CBF) AML (N=33) and other (N=6) were sequenced. Age at diagnosis varied from 10 months to 69 years (Median 12 years). White blood cell count (WBC) and blast percentage were 49×109/L (range, 2.4 to 496×109/L) and 78% (40% to 100%), respectively. Bioinformatic evaluation of the RNA-Seq data revealed 67 high-value novel fusions that were not detected by conventional karyotyping: 54 (80.6%) were intra- and 13 (19.4%) inter-chromosomal junctions. The number of novel translocations varied in different cytogenetic groups, with 22 novel fusions detected in those with NK (16 intra and 6 inter-chromosomal junctions), 37 CBF (32 intra and 5 inter-chromosomal junctions) and 8 in “other” (6 intra and 2 inter-chromosomal junctions). Thirteen novel fusions (19.4%) were found in at least 2 or more screened-patients: two (15.4%) inter- and 11 (84.6%) intra-chromosomal junctions. Median number of fusions identified per patient was 2 (range, 1 to 6). Novel fusions involving PDGFR-β gene were identified in two patients, each with a different translocation partner (G3BP1 and ETV6, which was an intra and inter-chromosomal fusions, respectively). Sequencing of the fusion transcript junctions verified the fusion junctions and demonstrated in frame fusions of G3BP1 and ETV6 to the kinase domain coding region of PDGFR-β, identical junction to that seen in cases of imatinib sensitive idiopathic hypereosinophilic syndrome (IHES). Frequency validation in 100 adult and 100 pediatric cases identified one additional patient with G3BP1-PDGFR-β. Cryptic NUP98/NSD1 was identified and verified in two patients with normal karyotype as well as NUP98/HOXD13 translocation in one patient. Frequency determination of NUP98/NSD1 demonstrated prevalence of 7.8% in patients with NK, and that of 13% in patients with FLT3/ITD. Patients who harbored both NUP98/NSD1 fusion and FLT3/ITD had a dismal remission induction rate (CR rate in FLT3/ITD with and without NUP98/NSD1 was 28% vs. 73%; p=0.002). Conclusion: Our data show the applicability of RNA-Seq as a tool to discover cryptic fusion transcripts in AML. These novel fusions may define new independent prognostic markers and potential therapeutic targets for patients with this highly treatment-resistant disease. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document