Indirubins: A Potential Therapeutic Target in Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3259-3259
Author(s):  
Tina Bagratuni ◽  
Nicolas Gaboriad-Kolar ◽  
Roubini Zakopoulou ◽  
Vassilios Myrianthopoulos ◽  
Efstathios Kastritis ◽  
...  

Abstract Current drugs in the treatment of Multiple Myeloma (MM) result in cell death via a number of mechanisms including a direct effect on plasma cells as well as alteration in the BM microenvironment. Although effective to some extent, none of the drug mechanisms of action are fully targeting a biological process essential and necessary for PC survival. Among the FDA approved kinase inhibitors, few are based on natural scaffolds. 6-bromoindirubin-3'-oxime (6BIO) is a potent kinase inhibitor based on the natural 6-bromoindirubin scaffold. Indirubin and 6-bromoindirubin are two natural products that have found a particular interest in dye chemistry as the main constituent of indigo and Tyrian purple dyes. Recent findings discovered that 6BIO was a promising anti-cancer agent acting on the JAK/STAT signaling pathway mediating cell proliferation. After enhancement of the chemical structure of 6BIO, further reports exposed that MLS-2438 and MLS-2384 were Akt signaling pathway inhibitor (MLS-2438) and potent c-Src kinase direct inhibitors. A library containing 2000 natural molecules was constructed using several data platforms. Each molecule was processed through different filters such as tautomeric studies, protonation and steroisomerism status in order to be used for calculations of virtual evaluation. Two approaches were followed: the structure-based virtual screening and the ligand-based virtual screening. To achieve structural based virtual screening, binding and evaluation of the chemical relation of each molecule in the crystallographic structure of the proteasome β5 subunit was performed. In the ligand-based virtual screening, calculations were made to identify the structural similarities of each molecule with the known proteasome inhibitor, bortezomib. The results of both approaches were combined, the molecules ranked, and 100 out of 2000 were identified as strong potential bioactive hits for the β5 subunit. Out of these 100 molecules, the chemical structures of high interest were the following: indole alkaloids derivatives (indirubins), flavonoids, secoiridoids, simple phenolic acids and acetophenone. A rational selection of indirubins derivatives was conducted in order to study their cytotoxic effects on MM. Fifty indirubins derivatives were selected based on different criteria: structure, known/unknown targets, chemodiversity in substitution patterns. To explore the inhibitory effects of indirubins in MM, we performed the WST1 proliferation assay in three MM cell lines (H929, JJN3, L363). Initially, all the selected indirubins (~50 indirubins) were tested at 7.5μM in L363 cell line and proliferation results from the WST1 assay extracted after 24 hours of treatment. More than half of the indirubins tested displayed more than 50% reduction of the proliferation at 7.5μM. Interestingly, 10 out of the 50 indirubins tested reduced more than 80% proliferation after 24 hours. The most active indirubins were tested in H929 and JJN3 cell lines, where similar effects were seen after 24 hours of treatment. All tested indirubins acted in a dose-dependent manner. Based on our first set of data, we suggest that indirubins have significant anti-proliferative effects on MM cell lines. Among the most active indirubins, two molecules namely 805 and 673 emerged as attractive for further development. Compound 805 is an analog of MLS-2384 while compound 673 is an analog of MLS-2438. The latter derivative represents a promising candidate displaying an IC50below the micromolar range on H929 and JJN3 cells. To determine the kind of cell death caused by one of the most active indirubins, 673, cell cycle analysis was performed before and after treatment in H929 cell line. In particular changes in RNA expression of 84 genes key to cell cycle regulation were analyzed in H929 cell line. Our results show that among other genes, the ones which have a dramatic increase in their expression (>5 fold) are mainly involved in cell cycle arrest such as GADD45A, CDC34, TP53, CHEK1 and CHEK2. A more detailed analysis of the profiler array will be presented at the meeting. In conclusion, this is the first study to show the inhibitory effects of indirubins in MM. Further investigation of these compounds may offer a therapeutic advantage that would affect MM pathogenesis and treatment. Disclosures Kastritis: Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Genesis: Consultancy, Honoraria. Terpos:Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Dimopoulos:Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genesis: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2999-2999 ◽  
Author(s):  
Samantha Pozzi ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
Doris M Nabikejje ◽  
Kishan Patel ◽  
...  

Abstract Abstract 2999 Multiple myeloma (MM) is a treatable but incurable hematological malignancy and novel targeted therapies are under investigation. MM is characterized by dysregulation of the cell cycle, consequent to the overexpression of cyclins and their related kinases, the cyclins dependent kinases (CDK), a group of Ser/Thr proteine kinases. CDKs represent a promising therapeutic target, and inhibitors have been developed for anticancer treatment. We have previously studied seliciclib in the context of MM. CYC065, a second generation CDK inhibitor is the more potent derivative of seliciclib. It is mainly active on CDK 2, 5 and 9, involved in progression of the cell cycle and protein transcription. It has already shown promising results in preclinical studies in breast cancer and acute leukemia. We tested CYC065 in in vitro experiments in MM. Our preliminary data in 7 MM cell lines showed cytotoxicity of CYC065, both in MM cell lines sensitive as well as resistant to conventional chemotherapy, with an IC50 ranging between 0.06 and 2μ M, at 24 and 48h. Tritiated thymidine uptake assay confirmed the antiproliferative effects of CYC065 in MM, and its ability to overcome the growth advantage conferred by co-culture with bone marrow stromal cells derived from MM patients, and cytokines like interleukin 6 (10ng/ml) and insulin like growth factor-1 (50ng/ml). The anti-proliferative effect was evident both at 24 and 48h, starting at concentrations as low as 0.015μ M. The AnnexinV/PI assay in the MM1.s cell line confirmed CYC065's ability to induce apoptosis in a time dependent manner starting at 9 hours of treatment, at a concentration of 0.125 μ M, inducing 82% of apoptosis after 48h of exposure. Cell cycle analysis in the same MM1.s cell line showed an increase of subG1 phase, starting at 9 hours of treatment, at 0.125 μ M of CYC065. Preliminary results of western blot analysis confirmed the apoptotic effect of CYC065 in the MM1s cell line, highlighted by the cleavage of caspase 3, 8, 9 and PARP. The compound was tested in primary CD138+ cells isolated from three refractory MM patients, confirming its efficacy at 0.125 μ M, both at 24 and 48h. Comparative analysis in PBMCs from normal donors, for the evaluation of the drug toxicity is ongoing and will be presented. In conclusion our preliminary data confirm the efficacy of CYC065 in MM cell lines and primary MM cells, at nanomolar concentrations. Ongoing mechanistic and in vivo studies will delineate its role in the now increasing spectrum of CDK inhibitors in MM and better define its potential for clinical development in MM. Disclosures: Green: Cyclacel: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Acetylon: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1741-1741
Author(s):  
Steffen Klippel ◽  
Jana Jakubikova ◽  
Jake Delmore ◽  
Melissa G. Ooi ◽  
Douglas McMillin ◽  
...  

Abstract Abstract 1741 Poster Board I-767 Background In contrast to most normal cells, cancer cells typically produce energy predominantly by glycolysis as demonstrated by O. Warburg more than 50 years ago. Methyljasmonate (MJ), a hormone produced by plants in response to biotic & abiotic stresses such as herbivory and wounding, has been shown to prevent the interaction of hexokinase (Hxk) and voltage dependent anion channels (VDACs), thereby significantly impacting the onset of glycolytic energy production. This may explain promising preclinical results observed with MJ against a variety of cancer cells, including myeloid leukemia and B-cell lymphoma cell lines. Methods and Results We tested the potential of MJ against Multiple Myeloma (MM) cells. We first evaluated the response of 16 different MM cell lines to 24 h of exposure to MJ concentrations of 0.5 – 3.5 mM using MTT assays. 15/16 of the MM cell lines tested displayed an IC50 of < 1.5 mM. In contrast, HS-5 stroma cells and peripheral blood mononuclear cells (PBMCs) did not respond to that MJ concentration, and even at a concentration of 2.5 mM MJ showed a maximal reduction of cell viability of 40%. Similarly to MM cell lines, purified CD138+ primary tumor cells of 3 MM patients displayed an IC50 of < 1.5 mM, suggesting that the differential sensitivity of MM vs. normal cells to MJ is not restricted to cell lines, but is also observed with primary tumor cells. Importantly, neither co-culture with HS-5 stroma nor IL-6 protected MM cells against MJ. Cell death commitment assays revealed that 1h exposure of 1.5 mM MJ induced cell death. Annexin V/PI FACS analysis of MJ-exposed MM cells showed that the cell death is mainly driven by apoptosis, evidenced by cleavage of caspases 3, 8 and 9 as well as of PARP. However, pre-incubation of MM cells with specific caspase inhibitors such as 10 mM of AC-DEVD-CHO, Z-IETD-fmk, Z-LEHD-fmk or 50 mM of Z-VAD only minimally protects the cancer cells from MJ exposure. Therefore, the impact of the MJ is not solely due to caspase triggered proteolytic cascades. Measurements of cellular ATP content by cell titer glow (CTG; Promega, Madison, WI) assay showed rapid depletion of ATP triggered by MJ action in sensitive MM cell lines. Additionally, we observed that 1 h exposure to 2 mM MJ modulated signaling pathways including IRS1/PI3K/AKT, MEK1/2, as well as Stat3 and JNK. FACS-based cell cycle analysis after propidium iodide staining did not show cell cycle arrest, but rather a rapid transition of cells to G0/G1 No correlation of sensitivity of MM cell lines and the number of mitochondria per cancer cell, as determined by Mitotracker Green (Invitrogen, Carlsbad, CA) -based flow analysis, was observed. We next examined if MJ exhibits either significant antagonism or synergy with established or novel anti-MM agents, including Bortezomib, Lenalidomide, Doxorubicin, Rapamycin or Dexamethasone, but discovered neither. However, MJ displayed synergy when combined with 2-Deoxyglucose. Finally, MJ was tested in vivo in scid/nod mice irradiated with 150 rads, injected with 1× 106 MM1S cells, and then, treated at 500 mg/kg by IP administration on a 5 days on / 2 days off schedule starting two weeks after tumor cell injection, There was an overall survival advantage of MJ-treated animals over the respective controls, with all treated mice (n=10) still alive but 6/10 control mice dead after 27 d. Conclusions Based on its rapidity of anti-MM action, favorable safety profile in preclinical models, distinct pattern of molecular sequelae, and compatibility with established anti-MM agents, MJ represents a promising investigational anti-MM agent. Disclosures Laubach: Novartis: Consultancy, Honoraria. Richardson:Millennium: (Speakers Bureau up to 7/1/09), Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: (Speakers Bureau up to 7/1/09), Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Anderson:Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Mitsiades:Novartis Pharmaceuticals: Consultancy, Honoraria; Milllennium: Consultancy, Honoraria; Bristol-Myers Squibb : Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals : Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; PharmaMar: Patents & Royalties; Amgen: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis Pharmaceuticals: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 853-853
Author(s):  
Katarina K Jovanovic ◽  
Léa Fléchon ◽  
Mairead Reidy ◽  
Jihye Park ◽  
Xavier Leleu ◽  
...  

Introduction. MYC alterations trigger transition from monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to multiple myeloma (MM). They also represent secondary genomic events inducing tumor progression. MYC localization to the nucleus and the short life of the protein are key factors that limit its direct targeting. To overcome these issues, we sought to determine the top genomic dependencies in MYC overexpressing MM by analyzing large-scale knockdown screening, followed by functional validations. Methods. We performed in silico analyses from the Dependency Map (Achilles 2.4.3) together with CCLE (Affymetrix U133+2 expression array), CLUE (Connectivity Map) and MM patient datasets (Chng et al. 2007, Gutiérrez et al. 2010, MMRF RG Dataset), to look for gene dependencies and differentially expressed pathways in MYC OE cancer cell lines and MM patient samples. We generated an isogenic model of MYC OE in U266 MM cell line by using EF1A-C-MYC lentiviral vector, and performed RNA sequencing, a quantitative proteomic analysis by Tandem Mass Tag mass spectrometry (TMT-MS) and a drug screening with ~2000 compounds. To further investigate dependency on glutamine metabolism in MYC OE cell lines, we treated them with GLS1 inhibitor CB-839 and siRNA targeting GLS1 in several cell lines with various MYC expressions and in our isogenic model. Results. By analyzing correlations between MYC expression and gene ATARiS scores corresponding to the effect of over 9000 knockdowns in 236 cell lines, we identified specific vulnerabilities of MYC overexpressing cells for the genes involved in glutamine metabolism and cell cycle pathways. Top dependencies were observed with MYC binding protein MAX (r = -0.51, p &lt; .001), representing an internal control as it is a co-activator of MYC, followed by GLS1 (r = -0.48, p &lt; .001) and SLC1A1 (r = -0.42, p &lt; .001), both involved in glutamine metabolism, together with E2F6 (r = -0.41, p &lt; .001), involved in cell cycle. To further validate dependencies obtained from Achilles data, we generated an isogenic model of MYC OE in U266 (a low c-myc expressing MM cell line). GSEA analysis of RNA seq data showed strong enrichments of translation and cell cycle pathways, with similar results observed in CCLE and MM patient data. Quantitative proteomics analysis of U266 isogenic model showed overexpression of genes involved in glutamine transport (SLC1A5; FC = 1.28, p &lt; .05), glucose metabolism (HK2; FC = 3.68, p &lt; .001) and cell cycle progression (CDK6; FC = 2.85, p &lt; .001). To explore the therapeutic potential of these dependencies, we performed a primary screen of 1902 small-molecules and identified 47 compounds with potent activity on U266/MYC model. Validation screen of these hits identified three leading compounds to which U266/MYC cells showed highest sensitivity at 10 µM concentration - Torin-2 (U266/C 40.28 ± 6.74% vs. U266/MYC 16.05 ± 3.21%), LY2835219 (U266/C 52.70 ± 9.63% vs. U266/MYC 5.52 ± 0.89%) and AT7519 (U266/C 43.03 ± 4.02% vs. U266/MYC 30.13 ± 4.90%), targeting proteins involved in translation and cell cycle pathways. For the functional validation of GLS1 dependency in MYC overexpressing cells, MYC OE cell lines were treated with GLS1 inhibitors CB-839 and 968. MYC high MM cell lines showed higher sensitivity to CB-839 inhibitor compared to MYC low cell lines at 1 µM concentration, after 48 (KMS-12-BM 14.19 ± 0.07%, KMS-18 31.56 ± 2.84%, MM.1S 23.21 ± 1.21% vs. NCI-H1650 46.49 ± 3.48%, U266 52.72 ± 4.99%, LOUCY 37.14 ± 1.14%, OVCAR-3 64.14 ± 5.19%) and 72 h (KMS-18 19.69 ± 3.15%, MM.1S 15.09 ± 1.28% vs. NCI-H1650 34.82 ± 0.95%, U266 61.73 ± 1.70%, LOUCY 46.27 ± 6.27%, OVCAR-3 65.34 ± 1.23%). This suggests that GLS1 dependency in MYC OE cells offers a therapeutic window for the use of GLS1 inhibitors in MM. Conclusion. By using a combination of different datasets and models, we characterized the main dependencies in MYC overexpressing MM. Glutamine metabolism and cell cycle emerged as strong dependencies by using therapeutic inhibitors. Altogether, our results demonstrate that MYC OE MM cells are dependent on glutamine metabolism and cell cycle, and these findings can potentially lead to development of new therapeutic approaches in MM patients. Disclosures Leleu: Oncopeptide: Honoraria; Sanofi: Honoraria; Takeda: Honoraria; Carsgen: Honoraria; Incyte: Honoraria; Novartis: Honoraria; Karyopharm: Honoraria; Amgen: Honoraria; Celgene: Honoraria; Janssen: Honoraria; BMS: Honoraria; Merck: Honoraria. Facon:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees. Manier:Amgen: Research Funding; Celgene: Research Funding; Janssen: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1729-1729
Author(s):  
Melissa G Ooi ◽  
Robert O'Connor ◽  
Jana Jakubikova ◽  
Justine Meiller ◽  
Steffen Klippel ◽  
...  

Abstract Abstract 1729 Poster Board I-755 Background Multidrug transporters are energy-dependent transmembrane proteins which can efflux a broad range of anticancer drugs and thereby play a role in resistance to the actions of substrate agents. Classically, three transporters, p-glycoprotein (Pgp; MDR-1; ABCB1), multidrug resistant protein-1 (MRP-1; ABCC1) and breast cancer resistance protein (BCRP; MXR; ABCG2), have been found to have the broadest substrate specificity and a strong correlation with drug resistance in vitro and in vivo in many models and forms of cancer. We have sought to characterize the interaction of bortezomib with these transporters and thereby explore the potential for these agents to play a role in resistance. Bortezomib is a novel proteosome inhibitor with significant activity in multiple myeloma, although subsets of patients remain refractory to the activity of the drug. Hence, better characterization of the interactions of this drug with classical resistance mechanisms may identify improved treatment applications. Methods and Results We investigated the role of these transporters by using isogenic cell line models which are resistant due to overexpression of a particular transporter: DLKP lung cancer cell line that overexpresses MRP-1; DLKP-A which overexpresses Pgp; and DLKP-SQ-Mitox which overexpresses BCRP. DLKP-A cells exhibited a 4.6-fold decrease in responsiveness to bortezomib compared to parental DLKP cells. In DLKP-SQ-Mitox, bortezomib-induced cytotoxicity was comparable to DLKP. When bortezomib was combined with elacridar, a Pgp and BCRP inhibitor, significant synergy was evident in DLKP-A (100% viable cells with single agent treatment versus 11% with the combination), but not DLKP-SQ-Mitox. Sulindac, an MRP-1 inhibitor, combined with bortezomib failed to produce any synergy in MRP-1 positive DLKP cells. Conversely, combination assays of Pgp substrate cytotoxics such as doxorubicin with Bortezomib were largely additive in nature. This indicates that bortezomib has little, if any, direct Pgp inhibitory activity, as combinations of a traditional Pgp inhibitor (such as elacridar) and doxorubicin would show marked synergy rather than just an additive effect in Pgp positive cells. To further characterize the extent of this interaction with Pgp, we conducted cytotoxicity assays in cell lines with varying levels of Pgp overexpression. NCI/Adr-res (ovarian cancer, high Pgp overexpression), RPMI-Dox40 (multiple myeloma, moderate Pgp overexpression) and A549-taxol (lung cancer, low Pgp overexpression). The combination of bortezomib and elacridar that produced the most synergy was in cell lines expressing moderate to high levels of Pgp expression. Cell lines with lower Pgp expression produced an additive cytotoxicity. We next examined whether bortezomib had any direct effect on Pgp expression. In RPMI-Dox40 cells, Pgp expression is reduced in a time-dependent manner with bortezomib treatment. Conclusions Our studies therefore show that bortezomib is a substrate for Pgp but not the other drug efflux pumps. In tumor cells expressing high levels of Pgp, the efficacy of bortezomib is synergistically enhanced by combinations with a Pgp inhibitor, while bortezomib treatment itself can reduce the expression of Pgp. This study suggests that in the subset of patients with advanced multiple myeloma or solid tumors which express high levels of Pgp, inhibition of its function could contribute to enhanced responsiveness to bortezomib. Disclosures Richardson: millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; celgene: Membership on an entity's Board of Directors or advisory committees, speakers bureau up to 7/1/09; MLNM: speakers bureau up to 7/1/09. Mitsiades:Millennium Pharmaceuticals : Consultancy, Honoraria; Novartis Pharmaceuticals : Consultancy, Honoraria; Bristol-Myers Squibb : Consultancy, Honoraria; Merck &Co: Consultancy, Honoraria; Kosan Pharmaceuticals : Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; PharmaMar: licensing royalties ; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono : Research Funding; Sunesis Pharmaceuticals: Research Funding. Anderson:Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; Biotest AG: Consultancy, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1556-1556
Author(s):  
Albert Perez-Ladaga ◽  
Bennett Caughey ◽  
Huafeng Xie ◽  
Stuart H. Orkin ◽  
David B. Sykes ◽  
...  

Abstract Introduction We investigate the role of Ezh2 in neutrophil function using murine progenitor cells differentiated into neutrophils lacking the Ezh2 gene. Ezh2 is the catalytic component of the polycomb repressive complex 2, which methylates lysine 27 of histone H3. It is frequently disrupted in myelodysplastic syndromes (MDS) leading to loss of function (Ernst et al., 2010). Mutations in EZH2 are found in 6% of MDS patients and while not strongly linked to cytopenias or blast proportion, they are independently associated with worse overall survival compared to patients with wildtype EZH2 (Bejar R. et al., 2011 and 2012). We hypothesize that Ezh2 mutations may cause qualitative defects in myeloid cells that impact their function and could contribute to the adverse prognosis observed in EZH2 mutant MDS. Methods Bone marrow from Ezh2 null (Ezh2-/-) and littermate control mice (WT) were transduced with HOXB8 fused to the estrogen receptor ligand-binding domain to produce immortalized myeloid progenitor cells. Removal of estrogen from the media allows these cells differentiate into mature neutrophils (Wang G.G., 2006). Differentiated cells were characterized for surface markers by flow cytometry and for gene expression by PCR of mRNA. Spontaneous cell death was measured by annexin/PI staining. Cell cycle patterns were determined by measuring the red emission of PI. Chemotactic function was assessed by counting cells that migrated across a transwell in presence/absence of the attractant zymosan. For phagocytosis experiments, cells were incubated with Fluoresbrite YG carboxylate beads at 37°C or 4°C. Reactive oxygen species (ROS) generation was measured by the oxidation of dihydrorhodamine 123 into fluorescent rhodamine 123. Results Estrogen withdrawal caused differentiation of both WT and Ezh2-/- lines into cells with mature neutrophil morphology after six days (Figure 1a). Both differentiated lines expressed the neutrophil surface markers CD11b and CD62L and the neutrophil-specific genes lactoferrin and Itgb2l. Ezh2 -/- cells had an increased rate of spontaneous cell death compared to WT in undifferentiated (32.81% vs. 20.33%) and mature cells (32.82% vs. 14.23%). Nevertheless, both progenitor cell lines showed similar cell cycle patterns, demonstrating that Ezh2 absence had no other effect on cell cycle progression. Ezh2 -/- neutrophils failed to migrate towards zymosan (Figure 1b). Expression of Tlr2, which binds zymosan, and other Toll-like receptors (Tlr4/5/9) were similar between the differentiated cell lines. Cells incubated with FITC-zymosan at 37°C showed no fluorescence differences between cell lines, indicating similar adherence. Experiments with neutrophils from an MDS patient with homozygous EZH2 mutations demonstrated a similar migration defect. Additional studies in MDS patient samples are ongoing and will be presented. Phagocytosis was reduced in Ezh2-/-cells. Unstimulated, the number of cells ingesting and adhering YG-beads was significantly greater with WT cells than with Ezh2-/-cells. When activated with fMLP, both lines showed increased adherence of YG-beads but the number of phagocytosing Ezh2-/- cells was reduced. The average number of beads ingested by each cell was lower for Ezh2-/- cells compared to WT (5.95 vs 2.94, p < 0.001) in resting cells, and 9.47 vs. 3.73 in fMLP-activated cells, p < 0.01. The fraction of Ezh2-/- neutrophils generating ROS when stimulated with PMA is 2.4-fold higher than for WT cells. ROS production was greatly reduced in the presence of diphenyleneiodonium (DPI), confirming the role of NADPH oxidase in the generation of ROS. Conclusion Our results indicate impaired function of neutrophils derived from Ezh2-/- mice, demonstrating increased spontaneous cell death, impaired migration, decreased phagocytosis, and overproduction of ROS. Qualitative defects observed in neutrophils deficient for EZH2 may help explain the adverse prognosis associated with these mutations in MDS patients. Disclosures: Bejar: Genoptix: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1937-1937
Author(s):  
Alexander Leeksma ◽  
Ingrid A.M. Derks ◽  
Brett Garrick ◽  
Torsten Trowe ◽  
Aldo Jongejan ◽  
...  

Abstract Background Nonsense-mediated decay (NMD) is a cellular quality control system that degrades mRNAs containing premature termination codons (PTCs) as well as ~10% of normal mRNAs (Kurosaki and Maquat, 2016). NMD thus prevents translation of misfolded proteins, and potential activation of the unfolded protein response (UPR). Mutations in splicing factors such as SF3B1, SRSF2, U2AF1 and ZRSR2 found in hematological as well as solid tumors, can lead to generation of aberrant mRNAs that contain PTCs. Aberrant splicing patterns in cancer cells can possibly result in increased pressure on the NMD machinery. CC-115, a potent inhibitor of mTOR kinase (TORK) and of DNA-dependent protein kinase, (DNA-PK; Mortensen et al., 2015; Tsuji et al., 2017), is in clinical development for the treatment of solid and hematologic malignancies (Thijssen et al., 2016). Preclinical data revealed an additional target of CC-115 and its differential effect on NMD. Our hypothesis was that a subset of tumor cells, especially hematologic tumors with high protein production and/or splicing factor mutations, would be susceptible to NMD inhibition by CC-115. Methods In total, 141 cell lines were screened for sensitivity to CC-115-mediated inhibition of proliferation and induction of cell death, in comparison to specific inhibition of TORK (CC-223). Isogenic DNA-PK knockout cell lines HCT116/HCT116 DNA-PK-/- and M059K/M059J DNA-PK-/- were treated with CC-115 and CC-223. Activity on NMD in vivo was tested using HCT-116 xenograft tumors treated with Vehicle or CC-115. Dependence on CC-115 sensitivity was determined using CRISPR/Cas9 technology of apoptosis or UPR genes in various MM cell lines. RNA sequencing was used for identification of potential targets in sensitive and resistant cell lines. Results A subset of cancer cell lines underwent cell death at sub-micromolar concentrations of CC-115 due to inhibition of NMD, but this was independent of mutations in splicing factors such as SF3B1. We next focused on MM cells as these generally produce high levels of (immunoglobulin) proteins and are prone to ER stress, and therefore potentially susceptible to NMD inhibition. Indeed, treatment with CC-115 resulted in activation of the UPR independent of TORK and DNA-PK inhibition, and cell death in 11/12 MM cell lines. Activity of CC-115 correlated strongly with cell death by the known ER-stress inducer, thapsigargin. Cell death by CC-115 occurred by the mitochondrial pathway of apoptosis, as it depended on caspase activity and the presence of Bax-Bak. Analysis of RNA sequencing data is ongoing and has indicated potential targets dictating sensitivity to CC-115-mediated cell death. Conclusions We describe that hematologic tumors with high protein production are specifically sensitive to CC-115, a novel and clinically exploitable inhibitor of NMD. This might lead to application in malignancies that depend on NMD to avoid excessive protein stress, such as multiple myeloma. Disclosures Garrick: Celgene: Employment. Trowe:Celgene: Employment. Kater:Acerta: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Eldering:Celgene: Research Funding. Filvaroff:Celgene: Employment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2958-2958
Author(s):  
Hai T Ngo ◽  
Aldo M. Roccaro ◽  
Alexey Leontovich ◽  
Yang Liu ◽  
Yong Zhang ◽  
...  

Abstract Abstract 2958 PURPOSE: Recent advances in understanding of the molecular alterations that occur at the genetic and epigenetic levels in Multiple Myeloma (MM) have led to major leaps in identifying molecular pathways that regulate progression and resistance to therapeutic agents. However, despite great scientific advances at the genomic level, studies to identify signaling pathways deregulated at the functional proteomic level in MM are limited. Using an antibody-based protein microarray technique, we identified Citron Rho Interacting Kinase (CRIK) as a protein that was highly expressed in primary multiple myeloma (MM) cells compared to normal plasma cell. We therefore sought to investigate the functional role of CRIK in MM cells. Methods: Primary CD138+ sorted MM cells were obtained from the bone marrow of patients after informed consent. We determined the protein expression level of 512 polypeptides in 12 samples of newly diagnosed patients with MM and 4 healthy control using high-throughput proteomic analysis with antibody-based protein microarray (Clontech, CA). MM.1S, OPM2, RPMI8226, and INA6 were used to perform functional validation. Protein expression has been studied by immunoblotting. Gene expression analysis has been assessed using the Affymetrix U133A platform and qPCR. Lentivirus was used to knockdown CRIK in MM cell lines (MM.1S, RPMI8226, OPM2, and INA6). DNA synthesis, cell survival, cell cycle profiling and apoptosis were assessed by BrdU, MTT, PI and Apo2.7 staining, and flow cytometry analysis, respectively. Results: We first showed that CRIK was overexpressed in 12 patients with MM compared to normal CD138+ cells obtained from healthy controls using high-throughput protein microarray. We further confirmed CRIK expression using immunohistochemistry in the same samples of MM patients. We next correlated CRIK gene expression level (CIT) with prognosis using previously published gene expression datasets and found that CRIK correlated with poor prognosis. Knockdown of CRIK in MM cell lines led to an anti-proliferative and pro-apoptotic effect in all MM cell lines tested. Indeed, CRIK-knockdown MM cells were characterized by a reduction of 60–80% in the proliferation rate, supported by reduction of DNA synthesis and G2/M phase cell cycle arrest. Moreover, induction of cytotoxicity of caspase-3, caspase-8, caspase-9, and parp cleavage was also demonstrated in CRIK knockdown cells compared to scramble probe transfected cells. We also showed that CRIK knockdown led to cytokinesis in MM cell lines, indicating a possible mechanism of inhibition of proliferation of these cells. Conclusion: In this study, we show that MM cells express a high level of a novel protein CRIK, and that inhibition of this protein leads to significant inhibition of proliferation and survival of MM cells. CRIK could be a critical therapeutic target in MM. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4343-4343
Author(s):  
Victória Tomaz ◽  
Karina Griesi-Oliveira ◽  
Renato D Puga ◽  
Fabio Pires de Souza Santos ◽  
Nelson Hamerschlak ◽  
...  

Abstract Introduction Despite recent advances in therapy, acute myeloid leukemia (AML) remain a medical challenge with high morbidity and mortality rates. For most patients, allogeneic hematopoietic stem cell transplantation remain the only curative option, but due to the advanced age at diagnosis, a significant proportion of patients are not elegible to this form of therapy. Nevertheless, novel therapies are warranted. There is preclinical evidence that anti-inflammatory compounds, such as COX-2 inhibitors and steroids, may have anti-neoplastic activity in different tumor types, including AML; nevertheles the mechanisms associated with its anti-neoplastic activity are not clear. Therefore, the aim of this work was to evaluate the anti-leukemic effect of the anti-inflammatory compounds nimesulide and prednisolone in AML cell lines and to identify genes and molecular pathways associated with cytotoxicity through transcriptome analysis. Methods The leukemic cell lines HL-60, THP-1, OCI-AML2 and OCI-AML3 were treated with nimesulide and prednisolone at 100 µM alone and in combination and with cytarabine at 2.5 µM. Twenty four hours after treatment , we measured the amount of cell death using Annexin V Apoptosis Detection Kit FITC (ThermoFisher) and the cell cycle was analized after fixing the cells with 70% alcohol and incubation with propidium iodide (1mg/ml) and RNAse (10mg/ml). In another experiment, we harvested the cells after 4 hours of treatment for transcriptome analysis. RNA was extracted from control (DMSO) and treatment groups (1 - nimesulide, 2 - prednisolone , 3 - nimesulide and prednisolone) with RNeasy Mini Kit (Qiagen). The Illumina® NEBNext® Ultra II Directional RNA Library Prep Kit was used for library preparation, following the manufacturer protocol using Poly(A) mRNA Magnetic Isolation Module. Equimolar amount of libraries was sequenced using an Illumina NextSeq 500, following the manufacturer's instructions, on the Oklahoma Medical Research Foundation Genomics Core (USA). The sequences obtained with the RNA-Seq technique were aligned in the human genome of reference GRCh37.75 by the software Spliced Transcripts Alignment to a Reference (STAR) v2.5 and to obtain normalized counts in FPKM, the software Expectation-Maximization (RSEM) v1.3.0 was used. To identify network of genes correlated with the treatment (modules), we used the Weighted Correlation Network Analysis (WGCNA). Functional enrichment analysis of the WGCNA differentially expressed modules was performed using the Integrated Annotation, Visualization and Discovery Database (DAVID) v6.8 in order to correlate with biological processes. Results In the cell cycle analysis, we observed a significant increase (p &lt; 0.05) in the sub-G0 phase (cell death) after treatment with nimesulide alone, and in combination with prednisolone (figure 1). No effect was observed in the prednisolone only group. The cell cycle effect induced by nimesulide on HL-60 and OCI-AML2 was similar to the induced by cytarabine, a standard chemotherapy agent for AML that in known to induce arrest in the S phase. In addition, the cell line arrest in THP-1 was greater with nimesulide than with cytarabine, while OCI-AML3 was less sensitive to both nimesulide and cytarabine. Regarding cell death mechanism, treatment with nimesulide induced predominantly an increase in late apoptosis that was potentiated after combined treatment with nimesulide and cytarabine (figure 2). After the demonstration of cell cycle arrest and apoptosis induction after treatment with nimesulide, we performed whole transcriptome sequencing followed by WGCNA analysis. We have identified gene modules that were significantly correlated with anti-inflammatory treatments, being 1 module down-regulated (lightyellow with p = 0.00052) and 2 modules up-regulated (lightcyan with p = 0 .00025 and tan with p = 0.000038). Analysis of functional enrichment using DAVID showed up-regulation of gene networks associated with apoptotic processes and autophagy and down- regulation of gene networks associated with cell cycle and RNA splicing pathways Conclusions The COX-2 inhibitor nimesulide caused cell cycle arrest and apoptosis in AML cell lines and potentiated the cytotoxic effects of cytarabine. This treatment was associated with up- regulation of autophagy and apoptosis and down-regulation of cell cycle and RNA splicing gene networks. Figure 1 Figure 1. Disclosures Santos: Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees. Campregher: Astellas: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Sophia Adamia ◽  
Shruti Bhatt ◽  
Yu-Tzu Tai ◽  
Kenneth Wen ◽  
Catherine A Nicholas ◽  
...  

Whole-genome sequencing analysis of newly diagnosed and relapsed multiple myeloma (MM) samples identified recurrent mutations in genes involved in the MAPK pathway, highlighting the potential of RAS/RAF/MEK/ERK signaling as a therapeutic target. Genomic studies identified translocations that involve IGH and set of partner genes MMSET, FGFR3, and CCND1 as primary events in MM. CDK4/CDK6 is overexpressed in MM, and CDK6 overexpression correlates with poor OS, suggesting that CDK4/6 are promising targets for MM therapy. Recent studies demonstrated synergistic activity of combined novel ERK1/2i inhibitor LY3214996 and CDK4/6i LY2835219 in solid tumors, but analogous studies have not been done in MM. Here we used preclinical models of MM to investigate inhibiting Erk1/2, CDK4/6, or both using ERK1/2i, CDK4/6i, or combination therapy. MM cell lines, RAS mutated or wild type (WT), were sensitive to ERK1/2i at IC50&lt;0.5uM, and CDK4/6i at IC50&lt;3uM. Synergistic effects of the Erk1/2i and CDK4/6i were noted in both RAS mutated and WT MM cell lines when ERK1/2i combined with CDK4/6i. Combination of ERK1/2i+CDK4/6i resulted in dose-dependent G0/G1 arrest in RAS mutated and WT MM cells. Similar effects were seen in RAS mutated cells treated with ERK1/2i or CDK4/6i as a single agent. ERK1/2i + CDK4/6i treatment triggered modest early apoptosis in RAS mutated MM cells, while in RAS WT MM cells this effect was more evident. Using dynamic BH3 profiling assay, we found that short-term treatment of MM cell with ERK1/2i and CDK4/6i led to increased overall mitochondrial priming in response to promiscuous BIM peptide in all MM cell lines. Even single agent treatment with ERK1/2i and CDK4/6i was able to enhance priming of RAS mutated or WT cells. Thus, ERK1/2i and CDK4/6i may activate mitochondrial apoptotic signaling in MM cells alone or in combination, consistent with observed synergistic cytotoxicity. HD PBMC and ARH77 cells were tested as controls. These cells were resistant to ERK1/2i and CDK4/6i at a broad range of concentrations, suggesting a favorable therapeutic index. The clinical potential of CDK4/6i+ERK1/2i was supported by an in vivo study demonstrating a significant (P=0.0004) decrease of the MM burden in CDK4/6i+ERK1/2i treated mice, without adverse effects. Proliferation and apoptosis studies of PCs from MM patient BM samples in the presence and absence of autologous BMSC/BMSCI-CM suggest potent and strong synergistic effects of ERK1/2i+CDK4/6i in MM and may allow successful use in clinic. To address the underlying mechanism of the synergism between Erk1/2i and CDK4/6i, we evaluated their cellular and transcriptional activity in MM cells. Gene expression profiling showed significant downregulation of RAS and CDK4/6 signaling pathway genes in MM cells as a result of ERK1/2i and CDK4/6i treatment at specific concentration ratios (3:1/1:3). Further evaluation of functional effects of ERK1/2i and CDK4/6i, alone or in combination, demonstrated that the synergistic effect of these inhibitors in MM cells is achieved through inhibition of p-S6, downregulation of c-myc, and correlate with ERK1/2i+CDK4/6i induced cell arrest in the G1 cell cycle phase. We noted increased ERK1/2 phosphorylation, which generally results in compensatory activation of parallel signaling pathways or in the loss of negative feedback. Regardless, ERK1/2i+CDK4/6i retained the inhibitory activity of the downstream signaling network, as demonstrated by the inhibition of cytoplasmic (p-RSK1) and nuclear (c-myc) targets of ERK at protein and mRNA levels. Treatment with ERK1/2i+CDK4/6i significantly decreased the levels of p-Rb and E2F1, downstream targets of CDK4/6. Recent studies shown that, in addition to cell cycle regulation, CDK4 and CDK6 induce tumorigenesis through regulation of inflammatory cytokines that are induced via NFκB pathway activation. CDK4/6i functional effects on MM cells cannot be limited to cell cycle arrest, CDK4/6i might also inhibit cytokines, which are produced in MM cells by NFκB activation. Overall, we shown that ERK1/2i+CDK4/6i induced cell proliferation and led to the key target molecule (p-c-myc, p-RSK, p-S6, p-RB, and E2F1) downregulations suggesting on-target activity of these inhibitors in MM cells. Importantly, our studies demonstrate strong synergistic anti-MM activity with ERK1/2+CDK4/6 therapy, providing a preclinical framework for clinical trials to improve patient outcome in MM. Disclosures Letai: Novartis: Research Funding; AbbVie: Consultancy; AstraZeneca: Consultancy; Zentalis: Membership on an entity's Board of Directors or advisory committees; Flash Therapeutics: Membership on an entity's Board of Directors or advisory committees; Dialectic: Membership on an entity's Board of Directors or advisory committees; Chugai: Other: Lecture Fees. Anderson:Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Oncopep and C4 Therapeutics.: Other: Scientific Founder of Oncopep and C4 Therapeutics..


Sign in / Sign up

Export Citation Format

Share Document