Methyljasmonate, An Inhibitor of Glycolytic Energy Production, Displays Pre-Clinical Activity against Multiple Myeloma Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1741-1741
Author(s):  
Steffen Klippel ◽  
Jana Jakubikova ◽  
Jake Delmore ◽  
Melissa G. Ooi ◽  
Douglas McMillin ◽  
...  

Abstract Abstract 1741 Poster Board I-767 Background In contrast to most normal cells, cancer cells typically produce energy predominantly by glycolysis as demonstrated by O. Warburg more than 50 years ago. Methyljasmonate (MJ), a hormone produced by plants in response to biotic & abiotic stresses such as herbivory and wounding, has been shown to prevent the interaction of hexokinase (Hxk) and voltage dependent anion channels (VDACs), thereby significantly impacting the onset of glycolytic energy production. This may explain promising preclinical results observed with MJ against a variety of cancer cells, including myeloid leukemia and B-cell lymphoma cell lines. Methods and Results We tested the potential of MJ against Multiple Myeloma (MM) cells. We first evaluated the response of 16 different MM cell lines to 24 h of exposure to MJ concentrations of 0.5 – 3.5 mM using MTT assays. 15/16 of the MM cell lines tested displayed an IC50 of < 1.5 mM. In contrast, HS-5 stroma cells and peripheral blood mononuclear cells (PBMCs) did not respond to that MJ concentration, and even at a concentration of 2.5 mM MJ showed a maximal reduction of cell viability of 40%. Similarly to MM cell lines, purified CD138+ primary tumor cells of 3 MM patients displayed an IC50 of < 1.5 mM, suggesting that the differential sensitivity of MM vs. normal cells to MJ is not restricted to cell lines, but is also observed with primary tumor cells. Importantly, neither co-culture with HS-5 stroma nor IL-6 protected MM cells against MJ. Cell death commitment assays revealed that 1h exposure of 1.5 mM MJ induced cell death. Annexin V/PI FACS analysis of MJ-exposed MM cells showed that the cell death is mainly driven by apoptosis, evidenced by cleavage of caspases 3, 8 and 9 as well as of PARP. However, pre-incubation of MM cells with specific caspase inhibitors such as 10 mM of AC-DEVD-CHO, Z-IETD-fmk, Z-LEHD-fmk or 50 mM of Z-VAD only minimally protects the cancer cells from MJ exposure. Therefore, the impact of the MJ is not solely due to caspase triggered proteolytic cascades. Measurements of cellular ATP content by cell titer glow (CTG; Promega, Madison, WI) assay showed rapid depletion of ATP triggered by MJ action in sensitive MM cell lines. Additionally, we observed that 1 h exposure to 2 mM MJ modulated signaling pathways including IRS1/PI3K/AKT, MEK1/2, as well as Stat3 and JNK. FACS-based cell cycle analysis after propidium iodide staining did not show cell cycle arrest, but rather a rapid transition of cells to G0/G1 No correlation of sensitivity of MM cell lines and the number of mitochondria per cancer cell, as determined by Mitotracker Green (Invitrogen, Carlsbad, CA) -based flow analysis, was observed. We next examined if MJ exhibits either significant antagonism or synergy with established or novel anti-MM agents, including Bortezomib, Lenalidomide, Doxorubicin, Rapamycin or Dexamethasone, but discovered neither. However, MJ displayed synergy when combined with 2-Deoxyglucose. Finally, MJ was tested in vivo in scid/nod mice irradiated with 150 rads, injected with 1× 106 MM1S cells, and then, treated at 500 mg/kg by IP administration on a 5 days on / 2 days off schedule starting two weeks after tumor cell injection, There was an overall survival advantage of MJ-treated animals over the respective controls, with all treated mice (n=10) still alive but 6/10 control mice dead after 27 d. Conclusions Based on its rapidity of anti-MM action, favorable safety profile in preclinical models, distinct pattern of molecular sequelae, and compatibility with established anti-MM agents, MJ represents a promising investigational anti-MM agent. Disclosures Laubach: Novartis: Consultancy, Honoraria. Richardson:Millennium: (Speakers Bureau up to 7/1/09), Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: (Speakers Bureau up to 7/1/09), Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Anderson:Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Mitsiades:Novartis Pharmaceuticals: Consultancy, Honoraria; Milllennium: Consultancy, Honoraria; Bristol-Myers Squibb : Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals : Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; PharmaMar: Patents & Royalties; Amgen: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis Pharmaceuticals: Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2999-2999 ◽  
Author(s):  
Samantha Pozzi ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
Doris M Nabikejje ◽  
Kishan Patel ◽  
...  

Abstract Abstract 2999 Multiple myeloma (MM) is a treatable but incurable hematological malignancy and novel targeted therapies are under investigation. MM is characterized by dysregulation of the cell cycle, consequent to the overexpression of cyclins and their related kinases, the cyclins dependent kinases (CDK), a group of Ser/Thr proteine kinases. CDKs represent a promising therapeutic target, and inhibitors have been developed for anticancer treatment. We have previously studied seliciclib in the context of MM. CYC065, a second generation CDK inhibitor is the more potent derivative of seliciclib. It is mainly active on CDK 2, 5 and 9, involved in progression of the cell cycle and protein transcription. It has already shown promising results in preclinical studies in breast cancer and acute leukemia. We tested CYC065 in in vitro experiments in MM. Our preliminary data in 7 MM cell lines showed cytotoxicity of CYC065, both in MM cell lines sensitive as well as resistant to conventional chemotherapy, with an IC50 ranging between 0.06 and 2μ M, at 24 and 48h. Tritiated thymidine uptake assay confirmed the antiproliferative effects of CYC065 in MM, and its ability to overcome the growth advantage conferred by co-culture with bone marrow stromal cells derived from MM patients, and cytokines like interleukin 6 (10ng/ml) and insulin like growth factor-1 (50ng/ml). The anti-proliferative effect was evident both at 24 and 48h, starting at concentrations as low as 0.015μ M. The AnnexinV/PI assay in the MM1.s cell line confirmed CYC065's ability to induce apoptosis in a time dependent manner starting at 9 hours of treatment, at a concentration of 0.125 μ M, inducing 82% of apoptosis after 48h of exposure. Cell cycle analysis in the same MM1.s cell line showed an increase of subG1 phase, starting at 9 hours of treatment, at 0.125 μ M of CYC065. Preliminary results of western blot analysis confirmed the apoptotic effect of CYC065 in the MM1s cell line, highlighted by the cleavage of caspase 3, 8, 9 and PARP. The compound was tested in primary CD138+ cells isolated from three refractory MM patients, confirming its efficacy at 0.125 μ M, both at 24 and 48h. Comparative analysis in PBMCs from normal donors, for the evaluation of the drug toxicity is ongoing and will be presented. In conclusion our preliminary data confirm the efficacy of CYC065 in MM cell lines and primary MM cells, at nanomolar concentrations. Ongoing mechanistic and in vivo studies will delineate its role in the now increasing spectrum of CDK inhibitors in MM and better define its potential for clinical development in MM. Disclosures: Green: Cyclacel: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Acetylon: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1937-1937
Author(s):  
Alexander Leeksma ◽  
Ingrid A.M. Derks ◽  
Brett Garrick ◽  
Torsten Trowe ◽  
Aldo Jongejan ◽  
...  

Abstract Background Nonsense-mediated decay (NMD) is a cellular quality control system that degrades mRNAs containing premature termination codons (PTCs) as well as ~10% of normal mRNAs (Kurosaki and Maquat, 2016). NMD thus prevents translation of misfolded proteins, and potential activation of the unfolded protein response (UPR). Mutations in splicing factors such as SF3B1, SRSF2, U2AF1 and ZRSR2 found in hematological as well as solid tumors, can lead to generation of aberrant mRNAs that contain PTCs. Aberrant splicing patterns in cancer cells can possibly result in increased pressure on the NMD machinery. CC-115, a potent inhibitor of mTOR kinase (TORK) and of DNA-dependent protein kinase, (DNA-PK; Mortensen et al., 2015; Tsuji et al., 2017), is in clinical development for the treatment of solid and hematologic malignancies (Thijssen et al., 2016). Preclinical data revealed an additional target of CC-115 and its differential effect on NMD. Our hypothesis was that a subset of tumor cells, especially hematologic tumors with high protein production and/or splicing factor mutations, would be susceptible to NMD inhibition by CC-115. Methods In total, 141 cell lines were screened for sensitivity to CC-115-mediated inhibition of proliferation and induction of cell death, in comparison to specific inhibition of TORK (CC-223). Isogenic DNA-PK knockout cell lines HCT116/HCT116 DNA-PK-/- and M059K/M059J DNA-PK-/- were treated with CC-115 and CC-223. Activity on NMD in vivo was tested using HCT-116 xenograft tumors treated with Vehicle or CC-115. Dependence on CC-115 sensitivity was determined using CRISPR/Cas9 technology of apoptosis or UPR genes in various MM cell lines. RNA sequencing was used for identification of potential targets in sensitive and resistant cell lines. Results A subset of cancer cell lines underwent cell death at sub-micromolar concentrations of CC-115 due to inhibition of NMD, but this was independent of mutations in splicing factors such as SF3B1. We next focused on MM cells as these generally produce high levels of (immunoglobulin) proteins and are prone to ER stress, and therefore potentially susceptible to NMD inhibition. Indeed, treatment with CC-115 resulted in activation of the UPR independent of TORK and DNA-PK inhibition, and cell death in 11/12 MM cell lines. Activity of CC-115 correlated strongly with cell death by the known ER-stress inducer, thapsigargin. Cell death by CC-115 occurred by the mitochondrial pathway of apoptosis, as it depended on caspase activity and the presence of Bax-Bak. Analysis of RNA sequencing data is ongoing and has indicated potential targets dictating sensitivity to CC-115-mediated cell death. Conclusions We describe that hematologic tumors with high protein production are specifically sensitive to CC-115, a novel and clinically exploitable inhibitor of NMD. This might lead to application in malignancies that depend on NMD to avoid excessive protein stress, such as multiple myeloma. Disclosures Garrick: Celgene: Employment. Trowe:Celgene: Employment. Kater:Acerta: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Eldering:Celgene: Research Funding. Filvaroff:Celgene: Employment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4060-4060 ◽  
Author(s):  
Walter Hanel ◽  
Liudmyla Tsyba ◽  
Dennis Huszar ◽  
Alex Prouty ◽  
Xiaoli Zhang ◽  
...  

Mantle cell lymphoma (MCL) is an aggressive and incurable subtype of B-cell Non-Hodgkin's lymphoma (NHL) characterized by genetic dysregulation of CyclinD1. Despite the improvement in response rates with current therapies, MCL patients inevitably relapse and outcomes remain poor. This is particularly true for MCL patients progressing on novel targeted therapies such as ibrutinib, highlighting the continued need for new therapeutic approaches. SUMOylation is a post-translational modification regulated by SUMO Activating Enzymes 1 and 2 (SAE1/2) affecting function, stability, and subcellular localization of a multitude of proteins such as Cyclin D1 and regulating multiple cellular functions such as cell cycle control and DNA damage response. While not yet explored in MCL, it is known that hyper-SUMOylation is associated with augmented cell proliferation and tumor growth of a number of cancers including B-cell NHL. We evaluated the expression levels of SAE1/2, total SUMO1, and SUMO 2/3 in normal human B cells, primary MCL patient samples, and a panel of 8 MCL cell lines via immunoblotting. We found significantly increased levels of SAE1/2 and total protein SUMOylation in 4 out of 5 MCL patient samples and all MCL cell lines compared to normal human B-cells. To validate the SAE complex as a potential therapeutic target in MCL, we performed genetic knockdown of SAE1 and SAE2 using both shRNA and an inducible CRISPR/Cas9 system and found significant reduction in viability of MCL cells (p < 0.001) thus confirming that SUMOylation is essential for MCL survival. TAK-981 (Takeda Pharmaceuticals) is a potent and selective inhibitor of the SAE1/2 complex currently in a phase 1 clinical trial (NCT036483). We found that treatment of MCL cell lines with TAK-981 resulted in time- and dose-dependent cell death in 7 of 8 MCL cell lines (IC50 17 - 62.5 nM at 72 hr) which was associated with relevant decrease in protein sumoylation. MCL cells were sensitive to TAK regardless of ATM or p53 mutations. Finally, TAK-981 treatment prolonged the survival of SCID mice engrafted with a human MCL cell line (Jeko) compared with placebo control [median overall survival (OS): TAK-981, 34 days; placebo, 29 days, p = 0.008] and also extended the survival of a novel patient derived xenograft (PDX) mouse model of ibrutinib-resistant MCL (median OS: TAK-981, 60 days; placebo, 55 days, p = 0.001), thus establishing the in vivo efficacy of TAK-981 in models of aggressive MCL. Mechanistically, 24 hours of treatment with TAK-981 resulted in a profound G2M cell cycle arrest in 6 out of 7 TAK-981-sensitive MCL cell lines. Cell synchronization with palbociclib followed by release into TAK-981 showed significant apoptosis upon G2M re-entry. In addition, in p53-deficient MCL cell lines, we found rapid accumulation of polyploid and aneuploid cells followed by rapid cell death following 48 hours of drug exposure. These findings strongly support mitotic catastrophe as a significant mechanism of tumor cell death mediated by TAK-981. Upon fractionation of cells at distinct phases of the cell cycle, we found significantly increased levels of protein SUMOylation by both SUMO1 and SUMO2/3 at the G2M transition. Further mechanistic data will be presented at the meeting. Given the multiple immune dampening mechanisms of SUMOylation, we are currently studying the anti-MCL immune effects of TAK-981. To do this, we are employing a novel immunocompetent mouse model of MCL in which murine lymphoma cells from Eμ-SOX11/CCND1 double transgenic animals are adoptively transferred into syngeneic mice. These mice develop a systemic lymphoma with morphological, molecular, and phenotypic features characteristic of MCL resulting in death within 3-4 weeks. Preliminary results with this model show that treatment with TAK-981 leads to decrease in lymphoma burden and significant prolongation of survival. Studies into the immune mediated anti-lymphoma effects of TAK-981 using this model are ongoing and will be presented at the meeting. Together, our data strongly support further development of TAK-981 as a novel MCL therapeutic. Disclosures Huszar: Takeda Pharmaceuticals: Employment, Equity Ownership. Parekh:Karyopharm Inc.: Research Funding; Foundation Medicine Inc.: Consultancy; Celgene Corporation: Research Funding. Maddocks:BMS: Research Funding; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; Merck: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Teva: Membership on an entity's Board of Directors or advisory committees. Baiocchi:Prelude: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 853-853
Author(s):  
Katarina K Jovanovic ◽  
Léa Fléchon ◽  
Mairead Reidy ◽  
Jihye Park ◽  
Xavier Leleu ◽  
...  

Introduction. MYC alterations trigger transition from monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to multiple myeloma (MM). They also represent secondary genomic events inducing tumor progression. MYC localization to the nucleus and the short life of the protein are key factors that limit its direct targeting. To overcome these issues, we sought to determine the top genomic dependencies in MYC overexpressing MM by analyzing large-scale knockdown screening, followed by functional validations. Methods. We performed in silico analyses from the Dependency Map (Achilles 2.4.3) together with CCLE (Affymetrix U133+2 expression array), CLUE (Connectivity Map) and MM patient datasets (Chng et al. 2007, Gutiérrez et al. 2010, MMRF RG Dataset), to look for gene dependencies and differentially expressed pathways in MYC OE cancer cell lines and MM patient samples. We generated an isogenic model of MYC OE in U266 MM cell line by using EF1A-C-MYC lentiviral vector, and performed RNA sequencing, a quantitative proteomic analysis by Tandem Mass Tag mass spectrometry (TMT-MS) and a drug screening with ~2000 compounds. To further investigate dependency on glutamine metabolism in MYC OE cell lines, we treated them with GLS1 inhibitor CB-839 and siRNA targeting GLS1 in several cell lines with various MYC expressions and in our isogenic model. Results. By analyzing correlations between MYC expression and gene ATARiS scores corresponding to the effect of over 9000 knockdowns in 236 cell lines, we identified specific vulnerabilities of MYC overexpressing cells for the genes involved in glutamine metabolism and cell cycle pathways. Top dependencies were observed with MYC binding protein MAX (r = -0.51, p &lt; .001), representing an internal control as it is a co-activator of MYC, followed by GLS1 (r = -0.48, p &lt; .001) and SLC1A1 (r = -0.42, p &lt; .001), both involved in glutamine metabolism, together with E2F6 (r = -0.41, p &lt; .001), involved in cell cycle. To further validate dependencies obtained from Achilles data, we generated an isogenic model of MYC OE in U266 (a low c-myc expressing MM cell line). GSEA analysis of RNA seq data showed strong enrichments of translation and cell cycle pathways, with similar results observed in CCLE and MM patient data. Quantitative proteomics analysis of U266 isogenic model showed overexpression of genes involved in glutamine transport (SLC1A5; FC = 1.28, p &lt; .05), glucose metabolism (HK2; FC = 3.68, p &lt; .001) and cell cycle progression (CDK6; FC = 2.85, p &lt; .001). To explore the therapeutic potential of these dependencies, we performed a primary screen of 1902 small-molecules and identified 47 compounds with potent activity on U266/MYC model. Validation screen of these hits identified three leading compounds to which U266/MYC cells showed highest sensitivity at 10 µM concentration - Torin-2 (U266/C 40.28 ± 6.74% vs. U266/MYC 16.05 ± 3.21%), LY2835219 (U266/C 52.70 ± 9.63% vs. U266/MYC 5.52 ± 0.89%) and AT7519 (U266/C 43.03 ± 4.02% vs. U266/MYC 30.13 ± 4.90%), targeting proteins involved in translation and cell cycle pathways. For the functional validation of GLS1 dependency in MYC overexpressing cells, MYC OE cell lines were treated with GLS1 inhibitors CB-839 and 968. MYC high MM cell lines showed higher sensitivity to CB-839 inhibitor compared to MYC low cell lines at 1 µM concentration, after 48 (KMS-12-BM 14.19 ± 0.07%, KMS-18 31.56 ± 2.84%, MM.1S 23.21 ± 1.21% vs. NCI-H1650 46.49 ± 3.48%, U266 52.72 ± 4.99%, LOUCY 37.14 ± 1.14%, OVCAR-3 64.14 ± 5.19%) and 72 h (KMS-18 19.69 ± 3.15%, MM.1S 15.09 ± 1.28% vs. NCI-H1650 34.82 ± 0.95%, U266 61.73 ± 1.70%, LOUCY 46.27 ± 6.27%, OVCAR-3 65.34 ± 1.23%). This suggests that GLS1 dependency in MYC OE cells offers a therapeutic window for the use of GLS1 inhibitors in MM. Conclusion. By using a combination of different datasets and models, we characterized the main dependencies in MYC overexpressing MM. Glutamine metabolism and cell cycle emerged as strong dependencies by using therapeutic inhibitors. Altogether, our results demonstrate that MYC OE MM cells are dependent on glutamine metabolism and cell cycle, and these findings can potentially lead to development of new therapeutic approaches in MM patients. Disclosures Leleu: Oncopeptide: Honoraria; Sanofi: Honoraria; Takeda: Honoraria; Carsgen: Honoraria; Incyte: Honoraria; Novartis: Honoraria; Karyopharm: Honoraria; Amgen: Honoraria; Celgene: Honoraria; Janssen: Honoraria; BMS: Honoraria; Merck: Honoraria. Facon:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees. Manier:Amgen: Research Funding; Celgene: Research Funding; Janssen: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3259-3259
Author(s):  
Tina Bagratuni ◽  
Nicolas Gaboriad-Kolar ◽  
Roubini Zakopoulou ◽  
Vassilios Myrianthopoulos ◽  
Efstathios Kastritis ◽  
...  

Abstract Current drugs in the treatment of Multiple Myeloma (MM) result in cell death via a number of mechanisms including a direct effect on plasma cells as well as alteration in the BM microenvironment. Although effective to some extent, none of the drug mechanisms of action are fully targeting a biological process essential and necessary for PC survival. Among the FDA approved kinase inhibitors, few are based on natural scaffolds. 6-bromoindirubin-3'-oxime (6BIO) is a potent kinase inhibitor based on the natural 6-bromoindirubin scaffold. Indirubin and 6-bromoindirubin are two natural products that have found a particular interest in dye chemistry as the main constituent of indigo and Tyrian purple dyes. Recent findings discovered that 6BIO was a promising anti-cancer agent acting on the JAK/STAT signaling pathway mediating cell proliferation. After enhancement of the chemical structure of 6BIO, further reports exposed that MLS-2438 and MLS-2384 were Akt signaling pathway inhibitor (MLS-2438) and potent c-Src kinase direct inhibitors. A library containing 2000 natural molecules was constructed using several data platforms. Each molecule was processed through different filters such as tautomeric studies, protonation and steroisomerism status in order to be used for calculations of virtual evaluation. Two approaches were followed: the structure-based virtual screening and the ligand-based virtual screening. To achieve structural based virtual screening, binding and evaluation of the chemical relation of each molecule in the crystallographic structure of the proteasome β5 subunit was performed. In the ligand-based virtual screening, calculations were made to identify the structural similarities of each molecule with the known proteasome inhibitor, bortezomib. The results of both approaches were combined, the molecules ranked, and 100 out of 2000 were identified as strong potential bioactive hits for the β5 subunit. Out of these 100 molecules, the chemical structures of high interest were the following: indole alkaloids derivatives (indirubins), flavonoids, secoiridoids, simple phenolic acids and acetophenone. A rational selection of indirubins derivatives was conducted in order to study their cytotoxic effects on MM. Fifty indirubins derivatives were selected based on different criteria: structure, known/unknown targets, chemodiversity in substitution patterns. To explore the inhibitory effects of indirubins in MM, we performed the WST1 proliferation assay in three MM cell lines (H929, JJN3, L363). Initially, all the selected indirubins (~50 indirubins) were tested at 7.5μM in L363 cell line and proliferation results from the WST1 assay extracted after 24 hours of treatment. More than half of the indirubins tested displayed more than 50% reduction of the proliferation at 7.5μM. Interestingly, 10 out of the 50 indirubins tested reduced more than 80% proliferation after 24 hours. The most active indirubins were tested in H929 and JJN3 cell lines, where similar effects were seen after 24 hours of treatment. All tested indirubins acted in a dose-dependent manner. Based on our first set of data, we suggest that indirubins have significant anti-proliferative effects on MM cell lines. Among the most active indirubins, two molecules namely 805 and 673 emerged as attractive for further development. Compound 805 is an analog of MLS-2384 while compound 673 is an analog of MLS-2438. The latter derivative represents a promising candidate displaying an IC50below the micromolar range on H929 and JJN3 cells. To determine the kind of cell death caused by one of the most active indirubins, 673, cell cycle analysis was performed before and after treatment in H929 cell line. In particular changes in RNA expression of 84 genes key to cell cycle regulation were analyzed in H929 cell line. Our results show that among other genes, the ones which have a dramatic increase in their expression (>5 fold) are mainly involved in cell cycle arrest such as GADD45A, CDC34, TP53, CHEK1 and CHEK2. A more detailed analysis of the profiler array will be presented at the meeting. In conclusion, this is the first study to show the inhibitory effects of indirubins in MM. Further investigation of these compounds may offer a therapeutic advantage that would affect MM pathogenesis and treatment. Disclosures Kastritis: Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Genesis: Consultancy, Honoraria. Terpos:Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Dimopoulos:Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genesis: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 191-191
Author(s):  
Fengyan Jin ◽  
Shaji K. Kumar ◽  
Yun Dai

Abstract Introduction: Histone lysine methylation, a reversible event dynamically and reciprocally regulated by lysine methyltransferases (KMTs) and demethylases (KDMs), represents one of the major epigenetic mechanisms for regulation of chromatin remodeling and gene expression re-programming. The KDM4 family, which belongs to the Jumonji C (JmjC)-domain-containing proteins (JMJDs), consists of five members, including KDM4A-E that demethylate H3K9me2/3 and/or H3K36me2/3 in a Fe2+- and α-ketoglutarate-dependent manner. KDM4 proteins are involved in various cellular processes such as gene transcription and translation, DNA replication, DNA repair, apoptosis, and stem cell renewal. Notably, increasing evidence implicates KDM4 dysregulation in promoting genomic instabilities and oncogenesis, thereby which is considered as a potential target for emerging cancer epigenetic therapy. Although KDM4A, a member of the KDM4 family, has been widely studied in many solid tumors including breast, prostate, bladder cancer, its role in hematopoietic malignancies, including multiple myeloma (MM), remains unknown. Materials and Methods: Human MM cell lines (U266, RPMI8226, H929, OPM-2) were employed. After exposed to hypoxia (or the chemical hypoxia mimetic lactic acid) and anti-MM agents (e.g., bortezomib/Btz), cells were analyzed by flow cytometry, qPCR, Western blot to monitor apoptosis, cell cycle, proliferation (Ki67), DNA double-strand break/DSB (γH2A.X), expression of 1q21 and anti-apoptotic genes, as well as activation of the NF-κB and HIF pathways. The shRNA approach was used to knock down KDM4A for functional evaluation. The findings from in vitro experiments involving cell lines were then validated in primary MM samples to link KDM4A expression to disease progression and therapeutic response. Results: Analysis of the MM genome-wide GEP databases revealed that KDM4A mRNA was significantly up-regulated in MGUS and MM, but not SMM, compared to normal control, as well as in relapsed MM, compared to newly-diagnosed MM. To our surprise, KDM4A expression rather favored overall survival of MM patients, including those carrying 1q21 gain in whom KDM4A expression was indeed lower than those who did not have this high risk cytogenetic abnormality. Moreover, KDM4A expression correlated adversely with expression of 1q21 genes (e.g., CKS1B, MCL1, PSMD4, ARNT). Whereas basal KDM4A protein level was moderately but clearly higher in MM cell lines carrying 1q21 gain or acquired drug resistance than their counterparts, exposure to hypoxia or lactic acid (but not cobalt chloride) resulted in marked KDM4A up-regulation, accompanied by NF-κB and HIF pathway activation. However, while NF-κB inhibition and to a lesser extent ARNT/HIF-1β knockdown led to a robust increase in hypoxia-induced KDM4A expression, shRNA knockdown or pharmacological inhibition of KDM4A triggered NF-κB activation and HIF expression, as well as up-regulated anti-apoptotic proteins (e.g., Mcl-1, TNFAIP3/A20, CKS1B), in association with increased H3K36me3 rather than H3K9me3. Furthermore, KDM4A knockdown or inhibition sharply diminished Btz lethality and overrode hypoxia-mediated cytoprotection. Interestingly, KDM4A knockdown also increased MM cell proliferation, promoted S phase entry, and attenuated Btz-induced DSB. Last, IHC of sequential bone marrow biopsies revealed that while KDM4A protein was relatively low at diagnosis, its level was markedly increased when patients achieved CR and then fell to the baseline low level at relapse. Conclusion: KDM4A/JMJD2A, a lysine demethylase that has been recognized as an pro-oncogenic protein via its epigenetic and/or non-epigenetic properties, is identified for the first time as a potential tumor suppressor in MM, particularly in a high risk subtype carrying 1q21 gain. Whereas KDM4A is expressed in MM and can be further induced by hypoxia that naturally exists in bone marrow niche, it seems to play multiple inhibitory roles in cell growth, cell cycle, DNA repair, and drug resistance by suppressing expression of oncogenic and anti-apoptotic genes (especially 1q21 genes), likely via H3K36me3 demethylation, and antagonizing NF-κB and HIF activation. These findings suggest that in contrast to its pro-oncogenic role in certain solid tumors, KDM4A might instead act as a tumor suppressor in MM. This work was supported by NNSFC (81471165, 81670189, and 81670190). Disclosures Kumar: AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1729-1729
Author(s):  
Melissa G Ooi ◽  
Robert O'Connor ◽  
Jana Jakubikova ◽  
Justine Meiller ◽  
Steffen Klippel ◽  
...  

Abstract Abstract 1729 Poster Board I-755 Background Multidrug transporters are energy-dependent transmembrane proteins which can efflux a broad range of anticancer drugs and thereby play a role in resistance to the actions of substrate agents. Classically, three transporters, p-glycoprotein (Pgp; MDR-1; ABCB1), multidrug resistant protein-1 (MRP-1; ABCC1) and breast cancer resistance protein (BCRP; MXR; ABCG2), have been found to have the broadest substrate specificity and a strong correlation with drug resistance in vitro and in vivo in many models and forms of cancer. We have sought to characterize the interaction of bortezomib with these transporters and thereby explore the potential for these agents to play a role in resistance. Bortezomib is a novel proteosome inhibitor with significant activity in multiple myeloma, although subsets of patients remain refractory to the activity of the drug. Hence, better characterization of the interactions of this drug with classical resistance mechanisms may identify improved treatment applications. Methods and Results We investigated the role of these transporters by using isogenic cell line models which are resistant due to overexpression of a particular transporter: DLKP lung cancer cell line that overexpresses MRP-1; DLKP-A which overexpresses Pgp; and DLKP-SQ-Mitox which overexpresses BCRP. DLKP-A cells exhibited a 4.6-fold decrease in responsiveness to bortezomib compared to parental DLKP cells. In DLKP-SQ-Mitox, bortezomib-induced cytotoxicity was comparable to DLKP. When bortezomib was combined with elacridar, a Pgp and BCRP inhibitor, significant synergy was evident in DLKP-A (100% viable cells with single agent treatment versus 11% with the combination), but not DLKP-SQ-Mitox. Sulindac, an MRP-1 inhibitor, combined with bortezomib failed to produce any synergy in MRP-1 positive DLKP cells. Conversely, combination assays of Pgp substrate cytotoxics such as doxorubicin with Bortezomib were largely additive in nature. This indicates that bortezomib has little, if any, direct Pgp inhibitory activity, as combinations of a traditional Pgp inhibitor (such as elacridar) and doxorubicin would show marked synergy rather than just an additive effect in Pgp positive cells. To further characterize the extent of this interaction with Pgp, we conducted cytotoxicity assays in cell lines with varying levels of Pgp overexpression. NCI/Adr-res (ovarian cancer, high Pgp overexpression), RPMI-Dox40 (multiple myeloma, moderate Pgp overexpression) and A549-taxol (lung cancer, low Pgp overexpression). The combination of bortezomib and elacridar that produced the most synergy was in cell lines expressing moderate to high levels of Pgp expression. Cell lines with lower Pgp expression produced an additive cytotoxicity. We next examined whether bortezomib had any direct effect on Pgp expression. In RPMI-Dox40 cells, Pgp expression is reduced in a time-dependent manner with bortezomib treatment. Conclusions Our studies therefore show that bortezomib is a substrate for Pgp but not the other drug efflux pumps. In tumor cells expressing high levels of Pgp, the efficacy of bortezomib is synergistically enhanced by combinations with a Pgp inhibitor, while bortezomib treatment itself can reduce the expression of Pgp. This study suggests that in the subset of patients with advanced multiple myeloma or solid tumors which express high levels of Pgp, inhibition of its function could contribute to enhanced responsiveness to bortezomib. Disclosures Richardson: millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; celgene: Membership on an entity's Board of Directors or advisory committees, speakers bureau up to 7/1/09; MLNM: speakers bureau up to 7/1/09. Mitsiades:Millennium Pharmaceuticals : Consultancy, Honoraria; Novartis Pharmaceuticals : Consultancy, Honoraria; Bristol-Myers Squibb : Consultancy, Honoraria; Merck &Co: Consultancy, Honoraria; Kosan Pharmaceuticals : Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; PharmaMar: licensing royalties ; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono : Research Funding; Sunesis Pharmaceuticals: Research Funding. Anderson:Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; Biotest AG: Consultancy, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1556-1556
Author(s):  
Albert Perez-Ladaga ◽  
Bennett Caughey ◽  
Huafeng Xie ◽  
Stuart H. Orkin ◽  
David B. Sykes ◽  
...  

Abstract Introduction We investigate the role of Ezh2 in neutrophil function using murine progenitor cells differentiated into neutrophils lacking the Ezh2 gene. Ezh2 is the catalytic component of the polycomb repressive complex 2, which methylates lysine 27 of histone H3. It is frequently disrupted in myelodysplastic syndromes (MDS) leading to loss of function (Ernst et al., 2010). Mutations in EZH2 are found in 6% of MDS patients and while not strongly linked to cytopenias or blast proportion, they are independently associated with worse overall survival compared to patients with wildtype EZH2 (Bejar R. et al., 2011 and 2012). We hypothesize that Ezh2 mutations may cause qualitative defects in myeloid cells that impact their function and could contribute to the adverse prognosis observed in EZH2 mutant MDS. Methods Bone marrow from Ezh2 null (Ezh2-/-) and littermate control mice (WT) were transduced with HOXB8 fused to the estrogen receptor ligand-binding domain to produce immortalized myeloid progenitor cells. Removal of estrogen from the media allows these cells differentiate into mature neutrophils (Wang G.G., 2006). Differentiated cells were characterized for surface markers by flow cytometry and for gene expression by PCR of mRNA. Spontaneous cell death was measured by annexin/PI staining. Cell cycle patterns were determined by measuring the red emission of PI. Chemotactic function was assessed by counting cells that migrated across a transwell in presence/absence of the attractant zymosan. For phagocytosis experiments, cells were incubated with Fluoresbrite YG carboxylate beads at 37°C or 4°C. Reactive oxygen species (ROS) generation was measured by the oxidation of dihydrorhodamine 123 into fluorescent rhodamine 123. Results Estrogen withdrawal caused differentiation of both WT and Ezh2-/- lines into cells with mature neutrophil morphology after six days (Figure 1a). Both differentiated lines expressed the neutrophil surface markers CD11b and CD62L and the neutrophil-specific genes lactoferrin and Itgb2l. Ezh2 -/- cells had an increased rate of spontaneous cell death compared to WT in undifferentiated (32.81% vs. 20.33%) and mature cells (32.82% vs. 14.23%). Nevertheless, both progenitor cell lines showed similar cell cycle patterns, demonstrating that Ezh2 absence had no other effect on cell cycle progression. Ezh2 -/- neutrophils failed to migrate towards zymosan (Figure 1b). Expression of Tlr2, which binds zymosan, and other Toll-like receptors (Tlr4/5/9) were similar between the differentiated cell lines. Cells incubated with FITC-zymosan at 37°C showed no fluorescence differences between cell lines, indicating similar adherence. Experiments with neutrophils from an MDS patient with homozygous EZH2 mutations demonstrated a similar migration defect. Additional studies in MDS patient samples are ongoing and will be presented. Phagocytosis was reduced in Ezh2-/-cells. Unstimulated, the number of cells ingesting and adhering YG-beads was significantly greater with WT cells than with Ezh2-/-cells. When activated with fMLP, both lines showed increased adherence of YG-beads but the number of phagocytosing Ezh2-/- cells was reduced. The average number of beads ingested by each cell was lower for Ezh2-/- cells compared to WT (5.95 vs 2.94, p < 0.001) in resting cells, and 9.47 vs. 3.73 in fMLP-activated cells, p < 0.01. The fraction of Ezh2-/- neutrophils generating ROS when stimulated with PMA is 2.4-fold higher than for WT cells. ROS production was greatly reduced in the presence of diphenyleneiodonium (DPI), confirming the role of NADPH oxidase in the generation of ROS. Conclusion Our results indicate impaired function of neutrophils derived from Ezh2-/- mice, demonstrating increased spontaneous cell death, impaired migration, decreased phagocytosis, and overproduction of ROS. Qualitative defects observed in neutrophils deficient for EZH2 may help explain the adverse prognosis associated with these mutations in MDS patients. Disclosures: Bejar: Genoptix: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 273-273
Author(s):  
Salomon Manier ◽  
John T Powers ◽  
Antonio Sacco ◽  
Michaela R Reagan ◽  
Michele Moschetta ◽  
...  

Abstract Background MicroRNAs (miRNAs) play a pivotal role in tumorigenesis, due to their ability to target mRNAs involved in the regulation of cell proliferation, survival and differentiation. Lin28B is an RNA binding protein that regulates Let-7 miRNA maturation. Lin28B and Let-7 have been described to act as oncogenes or tumor suppressor genes, respectively, as demonstrated both in solid cancer and hematologic malignancies. However, the role of the Lin28B/Let-7 axis in Multiple Myeloma (MM) has not been studied. Method Lin28B level expression in MM patients was studied using previously published gene expression profiling (GEP) datasets. Let-7 expression levels were assessed in CD138+ primary MM cells and bone marrow stromal cells (BMSCs) by using PCR, as well as in circulating exosomes using miRNA array (Nanostring® Technology). Exosomes were collected from both normal and MM peripheral blood, using ultracentrifugation; and further studied by using electron microscopy and immunogold labeling for the detection of CD63 and CD81. The knockdown of Lin28B was performed on MM cell lines (U266, MM.1S, MOLP-8) by using a lentiviral Lin28B shRNA. Gain- and loss-of function studies for Let-7 were performed using Let-7 mimic and anti-Let-7 transfection in MM cell lines (MM1S, U266) and primary BMSCs. Cell proliferation has been evaluated by using thymidine assays. Effects of Let-7 and Lin28B on signaling cascades have been evaluated by western blot. Results Two independent GEP datasets (GSE16558; GSE2658) were analyzed for Lin28B expression, showing a significantly higher level in MM patients compared to healthy controls. In addition, high Lin28B levels correlated with a shorter overall survival (p = 0.0226). We next found that the Let-7 family members are significantly down-regulated in MM primary cells, particularly Let-7a and b (5 fold change, p < 0.05), as demonstrated by using qRT-PCR. Similarly, miRNA arrays showed a lower expression of Let-7-related miRNAs in circulating exosomes obtained from MM patients compared to healthy individuals. We further dissected the functional relevance of Lin28B in MM cells, by performing Lin28 knockdown (KD) in MM cell lines (U266, MOLP-8). This led to a significant decrease in MM cell proliferation associated with G1 phase cell cycle arrest. This was supported by up-regulation of Let-7 and down-regulation of c-Myc, Ras and Cyclin D1 in Lin28 KD MM cells. To further prove that Lin28B-dependent effects on MM cells are mediated by Let7, we next showed that let-7 gain- and loss-of-function studies regulate MM cell proliferation and Myc expression. Lin28B regulation in MM cells is dependent on Let-7, as demonstrated by an increase of both cell proliferation and c-Myc expression after anti-Let-7 transfection in the Lin28B KD cells. We therefore studied the regulation of Let-7 in MM cells through the interaction with BMSCs. Let-7 expression levels were significantly lower in BMSCs obtained from MM patients compared to healthy donors. Interestingly, the Let-7 expression level in MM cells was increased after co-culture with Let-7 over-expressing BMSCs, associated with a decrease of both cell proliferation and c-Myc expression. This suggests a potential transfer of Let-7 from BMSCs to MM cells. Conclusion This work describes a new signaling pathway involving Lin28B, Let-7, Myc and Ras in MM. Let-7 expression in MM cells is also regulated through the interaction of MM cells with BMSCs, leading to cell proliferation and Myc regulation in MM. Interference with this pathway might offer therapeutic perspectives. Disclosures: Leleu: CELGENE: Honoraria; JANSSEN: Honoraria. Daley:Johnson and Johnson: Consultancy, Membership on an entity’s Board of Directors or advisory committees; MPM Capital: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Verastem: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Epizyme: Consultancy, Membership on an entity’s Board of Directors or advisory committees; iPierian: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Solasia, KK: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Ghobrial:Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document