Tocilizumab-Refractory Cytokine Release Syndrome (CRS) Triggered By Chimeric Antigen Receptor (CAR)-Transduced T Cells May Have Distinct Cytokine Profiles Compared to Typical CRS

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3358-3358 ◽  
Author(s):  
Kazusa Ishii ◽  
Haneen Shalabi ◽  
Bonnie Yates ◽  
Cindy Delbrook ◽  
Crystal L. Mackall ◽  
...  

Abstract Background: Cytokine release syndrome (CRS) in the setting of CAR T cell therapy manifests as a wide constellation of symptoms with multi-organ involvement. CRS can vary from a mild, self-limited course to a life-threatening systemic inflammatory response which, in severe cases, may be associated with manifestations similar to those seen in hemophagocytic lymphohistiocytosis (HLH). Tocilizumab, an anti-human IL-6 receptor antibody, has become a widely accepted pharmacologic intervention of first choice in severe CRS based on the observation of elevated levels of inflammatory cytokines, most notably interleukin (IL)-6 and interferon (IFN)-γ. Indeed, following administration of tocilizumab, most patients show rapid signs of improvement. However, in rare circumstances, CRS may be refractory to tocilizumab, and repeat administration or institution of additional immunosuppression is needed. Here we summarize cytokine profiles and CRS seen in patients treated with anti-CD22-CAR T cells and propose tocilizumab-refractory CRS as a potentially distinct pathophysiological entity from typical CRS that may merit alternative immunosuppressive interventions other than tocilizumab. Methods: Children and young adults with relapsed/refractory CD22+ ALL were treated with anti-CD22 CAR T cells. Serial samples for serum cytokine levels (IFN-γ, IL-6, IL-2, IL-10, IL-12p70, IL-1β, IL-15, IL-13, IL-4, IL-8, TNF-α, GM-CSF, MIP1-α) were obtained at pre-specified time points (0, 12, 24, 48, 72 hours, then daily on days 4 - 14 and 28 following CAR T cell infusion). Transduced CAR T cell dosage ranged from 3x10e5 cells/kg (dose level [DL] 1), 1x10e6 cells/kg (DL2), and 3x10e6 cells/kg (DL3). CRS severity was determined according to recently proposed grading system (Lee DW et al., Blood. 2014). Disease burden was assessed using standard morphology and flow cytometry analysis of bone marrow and peripheral blood samples. Results: Cytokine profiles are available on 10 patients treated: first 9 patients enrolled in our phase I trial (NCT02315612), and the tenth patient was treated off-protocol on an emergency investigational new drug protocol given lack of alternative treatment option for rapidly progressing disease. All subjects, median age 20 years (range, 6-22 years), had a diagnosis of multiply relapsed ALL. Seven of 10 subjects developed CRS. Five subjects with CRS were complete responders to CAR therapy (Table). The median time to the onset of CRS was 9 days (range, 7-12 days) post-infusion and resolved within 1 week with supportive care alone except in one patient who received pharmacologic intervention for grade 4 CRS. Rise in C-reactive protein (CRP) tended to correlate with clinical severity of CRS. Chronological changes in the level of IFN-γ, IL-6, IL-1β, IL-8, TNF-α, and MIP1-α generally mirrored the CRP trend, typically preceding CRP change by 1-2 days. In contrast to the CRS (maximum grade 2) seen in the first 9 patients, the 10th patient treated at DL3 developed grade 4 CRS with manifestations characteristic of HLH unresponsive to tocilizumab. Cytokine profile for this patient, compared to those of other CRS patients, was notable for a substantially higher serum IL-2 (35 pg/mL vs median 6.1 (range, 1.2-13.5)) and GM-CSF level (28 pg/mL vs median 1.0 (range, 0-6.1)) at 12 hours post infusion. Subsequent CRP elevation was not initially accompanied by a rise in IL-6 as in other patients, which may have explained the lack of response to tocilizumab (Figure). Evaluation for a genetic cause of HLH did not reveal any mutations (PRF1, MUNC13-4, RAB27A, STX11, STXBP2). Although this patient was a complete responder to therapy, the clinical course was complicated by pre-existing respiratory compromise and bacteremia, which may have contributed to increased CAR toxicity with variability in the cytokine profile. Conclusion: Based on our early experience, we postulate that patients with an early increase in GM-CSF and IL-2 may potentially experience more atypical and severe CRS, which without a concomitant rise in IL-6, may not respond to tocilizumab and thus early intervention with other immunosuppression may be indicated. Analysis of larger numbers of patients is required to better delineate clinical confounders and to develop rational pharmacological approach to CAR-mediated inflammatory responses. Ongoing efforts are underway to further analyze clinical samples for biomarkers. Disclosures Mackall: NCI: Patents & Royalties: B7H3 CAR.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lintao Liu ◽  
Enguang Bi ◽  
Xingzhe Ma ◽  
Wei Xiong ◽  
Jianfei Qian ◽  
...  

AbstractCAR-T cell therapy is effective for hematologic malignancies. However, considerable numbers of patients relapse after the treatment, partially due to poor expansion and limited persistence of CAR-T cells in vivo. Here, we demonstrate that human CAR-T cells polarized and expanded under a Th9-culture condition (T9 CAR-T) have an enhanced antitumor activity against established tumors. Compared to IL2-polarized (T1) cells, T9 CAR-T cells secrete IL9 but little IFN-γ, express central memory phenotype and lower levels of exhaustion markers, and display robust proliferative capacity. Consequently, T9 CAR-T cells mediate a greater antitumor activity than T1 CAR-T cells against established hematologic and solid tumors in vivo. After transfer, T9 CAR-T cells migrate effectively to tumors, differentiate to IFN-γ and granzyme-B secreting effector memory T cells but remain as long-lived and hyperproliferative T cells. Our findings are important for the improvement of CAR-T cell-based immunotherapy for human cancers.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5891-5891
Author(s):  
Jacob Halum Basham ◽  
Terrence L. Geiger

Abstract Chimeric antigen receptor-modified T lymphocytes (CART cells) have shown benefit as an adjuvant immunotherapy in the treatment of B cell malignancies. This success of re-targeted T cells has not been extended to other hematologic malignancies. We have developed an immunotherapeutic approach to treat acute myeloid leukemia (AML) using CAR T cells re-directed against the myeloid-specific antigen CD33 (CART-33). CART-33 cells are potent and specific in eliminating AML cells in vitro and in vivo. Despite this, CART-33 cells have shown poor in vivo expansion and persistence in NOD-SCID IL2rγ (-/-) (NSG) AML xenograft models. To address the reason for this, we assessed the impact of AML-expressed programmed death ligands 1 & 2 (PD-L1/2) on CART-33 cell activity. PD-L1 inhibits T cell functions upon binding PD-1, which is upregulated with T cell activation. Less is known about PD-L2's effect. Interferon-gamma (IFN-γ), a primary effector cytokine secreted by CD4+ and CD8+ effector T cells, is a known potent inducer of PD-L1 on AML blasts. Using AML cell lines U937, Oci-AML3, CMK, and MV4-11 we show that IFN-γ, TNF-α, and activated CART-33 supernatant can induce up-regulation of PD-L1 and PD-L2 on AML. IFN-γ and TNF-α synergize strongly in up-regulating PD-1 ligands on AML. The kinetics and induction of PD-L2 are distinct from that of PD-L1. Although PD-L1 is well documented to suppress T cell function via ligation of T cell expressed PD-1, induction of PD-L1/L2 had no effect on the cytolytic activity of CART-33 cells against AML in short term (<48 h) cultures. Paradoxically, 24 hr pre-treatment of AML with either IFN-γ or CART-33 supernatant increased AML susceptibility to killing by CART-33 cells despite elevated expression of PD-L1/L2 by AML. Our results highlight the regulatory complexity of AML cytolysis by re-targeted T lymphocytes, and argue that tumor-expressed PD-L1 and PD-L2 impacts the sustainability, but not short-term killing activity, of adoptively transferred CAR T cells in the treatment of AML. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jan Joseph Melenhorst ◽  
Gregory M Chen ◽  
Meng Wang ◽  
David . L Porter ◽  
Peng Gao ◽  
...  

The adoptive transfer of T lymphocytes reprogrammed to target tumor cells has demonstrated significant potential in various malignancies. However, little is known about the long-term potential and the clonal stability of the infused cells. Here, we studied the longest persisting CD19 redirected chimeric antigen receptor (CAR) T cells to date in two chronic lymphocytic leukemia (CLL) patients who achieved a complete remission in 2010. CAR T-cells were still detectable up to 10+ years post-infusion, with sustained remission in both patients. Surprisingly, a prominent, highly activated CD4+ population developed in both patients during the years post-infusion, dominating the CAR T-cell population at the late time points. This transition was reflected in the stabilization of the clonal make-up of CAR T-cells with a repertoire dominated by few clones. Single cell multi-omics profiling via Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) with TCR sequencing of CAR T-cells obtained 9.3 years post-infusion demonstrated that these long-persisting CD4+ CAR T-cells exhibited cytotoxic characteristics along with strong evidence of ongoing functional activation and proliferation. Our data provide novel insight into the CAR T-cell characteristics associated with long-term remission in leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4646-4646
Author(s):  
Emmanouil Simantirakis ◽  
Vassilis Atsaves ◽  
Ioannis Tsironis ◽  
Margarita Gkyzi ◽  
Kostas Konstantopoulos ◽  
...  

Introduction A novel approach that can cover the therapeutic gap in NHL treatment are the autologous T cells, expressing Chimeric Antigen Receptors (CAR-T cells) against tumor markers. Such clinical-grade products based on Lenti (LV) or Retro- vectors have hit the market. An alternative vector system for CAR gene transfer in T-cells are Foamy Viruses (FV). To evaluate the potential of FV vectors in CAR-T cell development, we synthesized an antiCD19 scFv cDNA and cloned it in both an FV and an LV backbone; both vectors were tested in paired experiments Material and Methods The anti-CD19 CAR was under the control of the EF1a promoter; EGFP expression was under the control of an IRES2 element. The anti-CD19 CAR sequence was deduced from published data. FV vectors were made with a 4-plasmid vector system in 293T cells. 2nd generation LV vectors were purchased from Addgene. Cord blood (CB), healthy donor peripheral blood (PB) and CLL patients' PB was used as a source for CD3+ cells using immunomagnetic enrichment. Informed consent has been obtained in all cases of human sample use. T cells were activated by antiCD3/CD28 beads and transduced with antiCD19 LV or FV vectors. Transduction efficiency was assayed by flow cytometry (FCM) using a PE-conjugated anti-mouse Fab antibody. FV and LV CAR-T cells were expanded with Rapid Expansion Protocol (REP) and their cytotoxicity assays was evaluated against the CD19+ cell lines Raji and Daudi. The CLL patient derived CAR-Ts were evaluated against autologous B cells. Cytotoxicity was evaluated with an FCM protocol using CFSE-stained target cells vs unstained effector CARTs in different ratios. At the end of the incubation cells were stained with 7AAD to discriminate against live/dead cells. CAR-T cell activation was also assayed by INF-γ ELISA, following cocultures with target cells at a ratio of 1:1 for 24h. Results Vector titers: LV vector titers were between 3-5x10^5 TU/ml for both LV vectors (with or without EGFP cassette). FV vector titers were between 2-4x10^5 TU/ml regardless of the presence of the EGFP cassette. Tx efficiency: FV can mediate efficient gene transfer on T cells in the presence of heparin at an effective dose of 20-40 U/ml using a spinoculation technique. Transduction efficiency ranged from 40-65% at MOI=3-5, and was comparable to the transduction efficiency of LV vectors at a much higher MOI (10 to 30). Cytotoxicity data on lines: Following REP, the cell population consisted mostly (close to 96% purity) of CAR-T cells regardless of the vector used or of the T cell source. Effector cells were cocultured with the CD19+ cell lines, Daudi and Raji at varying ratios. With cord blood derived FV-CAR-T cells, at 4h post coculture we observed a 39.4% cell lysis at a ratio of 10:1 effector to target (n=1). Similar results were obtained for LV vectors. Peripheral blood derived CAR-T cells at THE same ratio (10:1), demonstrated 83.9% and 93.1% cell lysis for FV-CART and LV-CART cells respectively (n=2). Cytotoxicity data on CLL cells: T-cells from peripheral blood of CLL patients were used to generate LV- and FV-CAR-T cells. At the ratio of 10:1, we observed 73.1% and 69,8% cytotoxicity for FV-CAR-Ts and 70.1% and 70.7% with LV-CAR-Ts, in 2 independent paired experiments. IFN as activation marker: In two paired activation experiments, CB-derived FV-CAR-T cells secrete 560 and 437pg/ml of IFN-γ; similarly, LV-CAR-Ts secrete 534 and 554pg/ml IFN-γ. Untransduced control cells, produced 68pg/ml and 12pg/ml for FV-CAR-T and LV-CAR-T experimental arm respectively. Conclusion In the current work, we developed and tested FV vectors for anti- CD19 CAR-T cell production. We proved that FV viral vectors are capable of mediating efficient gene transfer to human T cells. We developed a method to efficiently transfer FV vectors into T-cells, using a clinically relevant protocol with heparin. The FV-derived CAR T cells demonstrate the same cytotoxic properties in vitro as their LV-derived counterpart and the same activation levels in the presence of CD19 expressing target cells as measured by IFN-γ secretion. FV CARTs derived from PB of CLL patients were capable of mediating comparable cytotoxicity levels as their LV-derived counterparts. Overall, we provide a proof of concept that FVs could be a safe and efficient alternative to LV derived vectors for CAR-T cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2067-2067
Author(s):  
Muneyoshi Futami ◽  
Keisuke Suzuki ◽  
Satomi Kato ◽  
Yoshio Tahara ◽  
Yoichi Imai ◽  
...  

Cancer immunotherapy using chimeric antigen receptor-armed T cells (CAR-T cells) have shown excellent outcomes in hematological malignancies. However, cytokine release syndrome (CRS), characterized by excessive activation of CAR-T cells and macrophages remains to be overcome. Steroid administration usually resolves signs and symptoms of CRS but abrogates CAR-T cell expansion and persistence. Tocilizumab, a humanized monoclonal antibody against interleukin-6 receptor (IL-6R), attenuates CRS without significant loss of CAR-T cell activities, while perfect rescue of CRS symptoms cannot be achieved by IL-6/IL-6R blockade. There is actual need for novel strategies to prevent or cure CRS. TO-207, an N-benzoyl-L-phenylalanine derivative compound, significantly inhibits inflammatory cytokine production in a human monocyte/macrophage-specific manner. Here we tested TO-207 for its ability to inhibit cytokine production without impaired CAR-T cell function in a CRS-simulating co-culture system consisting of CAR-T cells, target leukemic cells and monocytes. To observe a precise pattern of cytokine release from CAR-T cells and monocytes, we first established a co-culture system that mimics CRS using K562/CD19 cells, 19-28z CAR-T cells, and peripheral blood CD14+ cells. IFN-γ was produced exclusively from CAR-T cells, and TNF-α, MIP-1α, M-CSF, and IL-6 were produced from both CAR-T cells and monocytes, but monocytes were the major source of these cytokine production. MCP-1, IL-1β, IL-8, and IL-10 were released exclusively from monocytes. To observe the effect of drugs on cytokine production, prednisolone (PSL), TO-207, tocilizumab, and anakinra (an IL-1R antagonist) were added to the co-culture. PSL exhibited suppressive effects on TNF-α and MCP-1 production. Tocilizumab did not suppress these cytokines. Anakinra up-regulated IL-6 and IL-1β production, probably due to activation of negative feedback loops. Interestingly, TO-207 widely suppressed all of these monocyte-derived cytokines including TNF-α, IL-6, IL-1β, MCP-1, IL-8, and GM-CSF. Next, we observed whether the cytokine inhibition by TO-207 attenuates killing effect of CAR-T cells. PSL attenuated killing effect of CD4+ CAR-T cells and CD8+ CAR-T cells toward K562/CD19 cells. In contrast, TO-207 did not exhibit any change in cytotoxicity of CD4+ CAR-T cells and CD8+ CAR-T cells. To determine whether the effect of PSL and TO-207 on cytotoxicity changes in the presence of CD14+ monocytes, CD14+ cells were added to the co-culture. In the absence of CAR-T cells, PSL induced a modest attenuation of cytotoxicity, whereas to the CAR-T cells, PSL exhibited a significant attenuation of cytotoxicity. TO-207 exhibited a minimal effect on cytotoxicity in the absence or presence of CAR-T cells. These results suggested that CAR-T cells play a major role in the cytotoxicity toward leukemia cells, and drugs that do not affect CAR-T cell functions, such as TO-207, maintain their cytotoxic effects on leukemia cells. In conclusion, our present co-culture model with K562/CD19 cells, 19-28z CAR-T cells, and CD14+ monocytes accurately recapitulate killing effect and cytokine release profiles. IFN-γ was produced exclusively by CAR-T cells, but majority of other cytokines such as TNF-α, MIP-1α, M-CSF, IL-6, MCP-1, IL-1β, IL-8, and IL-10 were from CD14+ monocytes/macrophages. Because killing effect was largely dependent on CAR-T cells while cytokine production was dependent on monocytes/macrophages, selective inhibition of pro-inflammatory cytokines from monocytes by TO-207 would be ideal for treatment of CAR-T-related CRS. These results encourage us to consider a clinical application for CRS. Figure Disclosures Futami: Torii Pharmaceutical: Research Funding. Suzuki:Torii Pharmaceutical: Employment. Kato:Torii Pharmmaceutical: Research Funding. Tahara:Torii Pharmaceutical: Employment. Imai:Celgene: Honoraria, Research Funding; Janssen Pharmaceutical K.K: Honoraria, Research Funding; Bristol-Myers Squibb: Research Funding. Mimura:Torii Pharmaceutical: Employment. Watanabe:Torii Pharmaceutical: Employment. Tojo:AMED: Research Funding; Torii Pharmaceutical: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 816-816 ◽  
Author(s):  
Mauro P. Avanzi ◽  
Dayenne G. van Leeuwen ◽  
Xinghuo Li ◽  
Kenneth Cheung ◽  
Hyebin Park ◽  
...  

Abstract Chimeric antigen receptor (CAR) T cell therapy has consistently shown significant results against acute lymphoblastic leukemia (ALL) in clinical trials1. However, results with other hematological or solid malignancies have been far more modest2. These disparate outcomes could be partially due to an inhibitory tumor microenvironment that suppresses CAR T cell function3. Thus, in order to expand the anti-tumor CAR T cell applications, a novel strategy in which these cells are capable of overcoming the hostile tumor microenvironment is needed. The cytokine interleukin-18 (IL-18) induces IFN-γ secretion, enhances the Th1 immune response and activates natural killer and cytotoxic T cells4. Early phase clinical trials that utilized systemic administration of recombinant IL-18 for the treatment of both solid and hematological malignancies have demonstrated the safety of this therapy5. We hypothesize that CAR T cells that constitutively secrete IL-18 could enhance CAR T cell survival and anti-tumor activity, and also activate cells from the endogenous immune system. To generate CAR T cells that constitutively secrete IL-18, we modified SFG-1928z and SFG-19m28mz CAR T cell constructs and engineered bicistronic human and murine vectors with a P2A element to actively secrete the IL-18 protein (1928z-P2A-hIL18 and 19m28mz-P2A-mIL18, respectively). Human and mouse T cells were transduced with these constructs and in vitro CAR T cell function was validated by coculturing the CAR T cells with CD19+ tumor cells and collecting supernatant for cytokine analysis. Both human and mouse CAR T cells secreted increased levels of IL-18, IFN-γ and IL-2. Proliferation and anti-tumor cytotoxic experiments were conducted with human T cells by coculturing CAR T cells with hCD19+ expressing tumor cells. 1928z-P2A-hIL18 CAR T cells had enhanced proliferation over 7 days and enhanced anti-tumor cytotoxicity over 72 hours when compared to 1928z CAR T cells (p=0.03 and 0.01, respectively) Next, the in vivo anti-tumor efficacy of the IL-18 secreting CAR T cell was tested in xenograft and syngeneic mouse models. Experiments were conducted without any prior lympho-depleting regimen. In the human CAR T cell experiments, Scid-Beige mice were injected with 1x106 NALM-6 tumor cells on day 0 and 5x106 CAR T cells on day 1. Survival curves showed a significant improvement in mouse survival with the 1928z-P2A-hIL18 CAR T cell treatment when compared to 1928z CAR T cell (p=0.006). Subsequently, to determine if IL-18 secreting CAR T cells could also improve anti-tumor efficacy in immunocompetent mice, we tested the murine 19m28mz-P2A-mIL18 CAR T cells in a syngeneic mouse model. The C57BL/6 hCD19+/- mCD19+/- mouse model was utilized and injected with 1x106 EL4 hCD19+ tumor cells on day 0 and 2.5 x106 CAR T cells on day 1. Mice treated with 19m28mz-P2A-mIL18 CAR T cells had 100% long-term survival, when compared to 19m28mz (p<0.0001). 19m28mz-P2A-mIL18 CAR T cells were detected in peripheral blood for up to 30 days after injection, whereas the 19m28mz CAR T cells were not detectable at any time point. In addition, 19m28mz-P2A-mIL18 CAR T cells were capable of inducing B cell aplasia for greater than 70 days, whereas 19m28mz treatment was not capable of inducing B cell aplasia. In vivo serum cytokine analysis demonstrated that 19m28mz-P2A-mIL18 CAR T cells, as compared to 19m28mz, significantly increased the levels of IFN-γ and TNF-α in the peripheral blood for up to 14 days after injection (p<0.0001 and 0.01, respectively). Despite the increase in IFN-γ and TNF-α cytokines, there was no increase in IL-6 levels. Our findings demonstrate that anti-CD19 CAR T cells that constitutively secrete IL-18 significantly increase serum cytokine secretion, enhance CAR T cell persistence, induce long-term B cell aplasia and improve mouse survival, even without any prior preconditioning. To our knowledge, this is the first description of an anti-CD19 CAR T cell that constitutively secretes IL-18 and that induces such high levels of T cell proliferation, persistence and anti-tumor cytotoxicity. We are currently investigating other mechanisms by which this novel CAR T cell functions, its interactions with the endogenous immune system, as well as testing its applicability in other tumor types. We anticipate that the advances presented by this new technology will expand the applicability of CAR T cells to a wider array of malignancies. Disclosures Brentjens: Juno Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3773-3773 ◽  
Author(s):  
Cameron J Turtle ◽  
Laila-Aicha Hanafi ◽  
Carolina Berger ◽  
Daniel Sommermeyer ◽  
Barbara Pender ◽  
...  

Abstract BACKGROUND: Chemotherapy followed by autologous T cells that are genetically modified to express a CD19-specific chimeric antigen receptor (CAR) has shown promise as a novel therapy for patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL); however, the risk of severe cytokine release syndrome (sCRS) and neurotoxicity has tempered enthusiasm for widespread application of this approach. The functional heterogeneity that is inherent in CAR-T cell products that are manufactured from undefined T cell subsets has hindered definition of dose-response relationships and identification of factors that may impact efficacy and toxicity. METHODS: We are conducting the first clinical trial that administers CD19 CAR-T cells manufactured from a defined composition of T cell subsets to adults with relapsed or refractory B-ALL. CD8+ and CD4+ T cells were enriched from each patient, transduced with a CD19 CAR lentivirus and separately expanded in vitro before formulation for infusion in a 1:1 ratio of CD8+:CD4+ CAR+ T cells at 2x105, 2x106 or 2x107 CAR-T cells/kg. Prior to CAR-T cell infusion, patients underwent lymphodepletion with a high-dose cyclophosphamide (Cy)-based regimen with or without fludarabine (Flu). RESULTS: Twenty-nine adults with B-ALL (median age 40, range 22 - 73 years; median 17% marrow blasts, range 0 - 97%), including 10 patients who had relapsed after allogeneic transplantation, received at least one CAR-T cell infusion. Twenty-four of 26 restaged patients (92%) achieved bone marrow (BM) complete remission (CR) by flow cytometry. CD4+ and CD8+ CAR-T cells expanded in vivo after infusion and their number in blood correlated with the infused CAR-T cell dose. Thirteen patients received lymphodepletion with Cy-based regimens without Flu. Ten of 12 restaged patients (83%) achieved BM CR by flow cytometry; however, 7 of these (70%) relapsed a median of 66 days after CAR-T cell infusion. Disease relapse correlated with a loss of CAR-T cell persistence in blood. We observed a CD8 cytotoxic T cell response to the murine scFv component of the CAR transgene that contributed to CAR-T cell rejection, and resulted in lack of CAR-T cell expansion after a second CAR-T cell infusion in 5 patients treated for persistent or relapsed disease. To minimize immune-mediated CAR-T cell rejection 14 patients were treated with Cy followed by Flu lymphodepletion (Cy/Flu, Cy 60 mg/kg x 1 and Flu 25 mg/m2 x 3-5) before CAR-T cell infusion. All patients (100%) who received Cy/Flu lymphodepletion achieved BM CR after CAR-T cell infusion. CAR-T cell expansion and persistence in blood was higher in Cy/Flu-lymphodepleted patients compared to their counterparts who received Cy alone (Day 28 after 2x106 CAR-T cells/kg: CD8+ CAR-T cells, mean 55.8/μL vs 0.10/μL, p<0.01; CD4+ CAR-T cells, 2.1/μL vs 0.02/μL, p<0.01), enabling reduction in CAR-T cell dose for Cy/Flu-treated patients. Patients who received Cy/Flu lymphodepletion appear to have longer disease-free survival (DFS) than those who received Cy alone (Cy/Flu, median, not reached; Cy alone, 150 days, p=0.09). CAR-T cell infusion was associated with sCRS, characterized by fever and hypotension requiring intensive care in 7 of 27 patients (26%) and neurotoxicity (≥ grade 3 CTCAE v4.03) in 13 of 27 patients (48%). Two patients died following complications of sCRS. Patients with sCRS or neurotoxicity had higher peak serum levels of IL-6, IFN-γ, ferritin and C-reactive protein compared to those without serious toxicity. Importantly IL-6, IFN-γ and TNF-α levels in serum collected on day 1 after CAR-T cell infusion from those who subsequently developed neurotoxicity were higher than those collected from their counterparts who did not develop neurotoxicity (IL-6, p<0.01; IFN-γ, p=0.05; TNF-α, p=0.04), providing potential biomarkers to test early intervention strategies to prevent neurotoxicity. The risks of sCRS and neurotoxicity correlated with higher leukemic marrow infiltration and increasing CAR-T cell dose. We have now adopted a risk-stratified approach to CAR-T cell dosing in which the CAR-T cell dose inversely correlates to the patient's bone marrow tumor burden. CONCLUSION: Risk-stratified dosing of CD19 CAR-T cells of defined subset composition is feasible and safe in a majority of patients with refractory B-ALL, and results in a CR rate of 92%. Addition of Flu to Cy-based lymphodepletion improves CAR-T cell expansion, persistence and DFS. Disclosures Turtle: Juno Therapeutics: Patents & Royalties, Research Funding. Berger:Juno Therapeutics: Patents & Royalties. Jensen:Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding. Riddell:Adaptive Biotechnologies: Consultancy; Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Cell Medica: Membership on an entity's Board of Directors or advisory committees. Maloney:Seattle Genetics: Honoraria; Janssen Scientific Affairs: Honoraria; Roche/Genentech: Honoraria; Juno Therapeutics: Research Funding.


Cancers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 323 ◽  
Author(s):  
Robert Berahovich ◽  
Hua Zhou ◽  
Shirley Xu ◽  
Yuehua Wei ◽  
Jasper Guan ◽  
...  

The cell-surface protein B cell maturation antigen (BCMA, CD269) has emerged as a promising target for CAR-T cell therapy for multiple myeloma. In order to create a novel BCMA CAR, we generated a new BCMA monoclonal antibody, clone 4C8A. This antibody exhibited strong and selective binding to human BCMA. BCMA CAR-T cells containing the 4C8A scFv were readily detected with recombinant BCMA protein by flow cytometry. The cells were cytolytic for RPMI8226, H929, and MM1S multiple myeloma cells and secreted high levels of IFN-γ in vitro. BCMA-dependent cytotoxicity and IFN-γ secretion were also observed in response to CHO (Chinese Hamster Ovary)-BCMA cells but not to parental CHO cells. In a mouse subcutaneous tumor model, BCMA CAR-T cells significantly blocked RPMI8226 tumor formation. When BCMA CAR-T cells were given to mice with established RPMI8226 tumors, the tumors experienced significant shrinkage due to CAR-T cell activity and tumor cell apoptosis. The same effect was observed with 3 humanized BCMA-CAR-T cells in vivo. These data indicate that novel CAR-T cells utilizing the BCMA 4C8A scFv are effective against multiple myeloma and warrant future clinical development.


2021 ◽  
Author(s):  
Jan Melenhorst ◽  
Gregory Chen ◽  
Meng Wang ◽  
David Porter ◽  
Peng Gao ◽  
...  

Abstract The adoptive transfer of T lymphocytes reprogrammed to target tumor cells has demonstrated significant potential in various malignancies. However, little is known about the long-term potential and the clonal stability of the infused cells. Here, we studied the longest persisting CD19 redirected chimeric antigen receptor (CAR) T cells to date in two chronic lymphocytic leukemia (CLL) patients who achieved a complete remission in 2010. CAR T-cells were still detectable up to 10+ years post-infusion, with sustained remission in both patients. Surprisingly, a prominent, highly activated CD4+ population developed in both patients during the years post-infusion, dominating the CAR T-cell population at the late time points. This transition was reflected in the stabilization of the clonal make-up of CAR T-cells with a repertoire dominated by few clones. Single cell multi-omics profiling via Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) with TCR sequencing of CAR T-cells obtained 9.3 years post-infusion demonstrated that these long-persisting CD4+ CAR T-cells exhibited cytotoxic characteristics along with strong evidence of ongoing functional activation and proliferation. Our data provide novel insight into the CAR T-cell characteristics associated with long-term remission in leukemia.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4026-4026
Author(s):  
Sara Ghorashian ◽  
Anne Marijn Kramer ◽  
Sarah Jayne Albon ◽  
Catherine Irving ◽  
Lucas Chan ◽  
...  

Abstract Introduction: Recent clinical trials with T cells engineered to express 2nd generation CD19 chimeric antigen receptors (CARs) unprecedented anti-leukemic responses. We have developed a novel CD19CAR with a new scFv in the 41BBz format (CAT-41BBz CAR) which confers enhanced cytotoxicity and cytokine secretion in response to stimulation with CD19+ targets in vitro as well as equivalent in vivo anti-tumour efficacy to the FMC63 41BBZ CAR in use in clinical studies. We have designed, optimized and validated GMP-grade CAR T cell production using this novel CAR. Based on these data, we have recently initiated a Phase I clinical study (CARPALL) of this novel CAR in pediatric patients with relapsed ALL and other CD19+ hematological malignancies to determine the safety profile and durability of responses to CD19CART therapy. This will be critical in determining whether CD19CAR T cells are best used as a stand-alone therapy or as a bridge to stem cell transplant (SCT). Methods: We initially optimized our GMP production methodology in terms of activation method, cytokine milieu and expansion conditions on healthy donor peripheral blood mononuclear cells (PBMCs) to give optimal transduction efficiency and preserve early memory subsets within the CAR T cell product. We have subsequently validated this methodology using unstimulated leucaphereses from 5 lymphopenic patients with ALL. PBMCs were activated with anti-CD3/CD28 microbeads (Dynabeads CTS) and then lentivirally transduced with the CAT CAR vector. T cells were then expanded in the WAVE bioreactor before bead removal on a magnetic system and cryopreservation. Patients on study receive lymphodepletion with fludarabine and cyclophosphamide followed by a single dose of 106 CAR+ T cells/kg and are then monitored as an in-patient for 14 days post infusion for toxicities such as cytokine release syndrome or neurotoxicity. The primary end-points of the study are toxicity and the proportion of patients achieving molecular CR at 1 month post CD19CAR T cell infusion. Following this, patients undergo intensive monitoring of disease status for a total of 2 years post infusion. To determine the durability of responses, patients achieving a molecular CR will be monitored closely for the re-emergence of molecular level disease without additional consolidative therapy or SCT Results: We were able to generate the target dose of 1x106 CAR+ T cells/kg in 6 of 7 production runs (involving 2 healthy donors and 5 patients) to date, all of which met sterility release criteria. Transduction efficiency was on average 37% (range 7-84%, see table 1). Mean viral copy was 4.2 (range 1.2-5.8). Memory T cells of stem cell-like phenotype (CAR+ CCR7+ CD45RA+ CD95+ CD127+) formed a mean of 9% (range 0-31%), central memory T cells (CAR+ CCR7+ CD45RA-) formed a mean of 43% (range 16-70%) and effector memory T cells formed a mean of 31% (range 0-77%) of the final CAR T cell product. The percentage of CAR T cells expressing dual exhaustion markers (TIM3+ PD-1+) was on average 5% (range 2-8%). So far 2 patients have been treated. Conclusions We have optimized and successfully validated a robust GMP production method for CD19CAR T cells lentivirally transduced with a novel CD19CAR. Preliminary results of therapy with CAT-41BBz CAR T cells in initial patients on the clinical study will be presented. Disclosures Qasim: Autolus: Consultancy, Equity Ownership, Research Funding; Cellectis: Research Funding; Calimmune: Research Funding; Catapult: Research Funding. Pule:Autolus Ltd: Employment, Equity Ownership, Research Funding; UCL Business: Patents & Royalties; Amgen: Honoraria; Roche: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document