A Machine-Learning Analysis Suggests That FLX925, a FLT3/CDK4/6 Kinase Inhibitor, Is Potent Against FLT3-Wild Type Tumors Via Its CDK4/6 Activity

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3520-3520
Author(s):  
Gene Cutler ◽  
Jordan S Fridman

Abstract Fms-like tyrosine kinase 3 (FLT3) is universally expressed in Acute Myeloid Leukemia (AML) blast cells (Zheng R, et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood. 2004) and activating mutations of FLT3 are amongst the most common genetic lesions in AML (Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? ASH Education Program Book. 2013). FLX925, a small molecule inhibitor of FLT3 would be expected to have antitumor efficacy against FLT3-driven AML tumors. However, FLX925 also inhibits two closely related cyclin-dependent kinases (CDKs), CDK4 and CDK6 (described together as CDK4/6). Since CDK4/6 are important cell cycle genes and CDK4/6 inhibitors have demonstrated anti-tumor activity, the anti-CDK4/6 activity of FLX925 may drive anti-tumor efficacy in additional and potentially overlapping patient populations. To generate hypotheses about which tumors would be sensitive to FLX925 treatment and to understand the relative contributions of FLX925's FLT3- and CDK4/6-inhibitory activities, a panel of XXX tumor-derived cell lines were screened for sensitivity to FLX925. We performed a Gradient Boosting Machine (GBM) analysis, a machine-learning approach, to generate a model that predicts sensitivity to FLX925 based on RNA-Seq expression data. This sensitivity model can predict which cell lines and tumors are likely to be sensitive to FLX925 and also which gene expression patterns contribute to that sensitivity. The GBM analysis was performed on 133 (75%) of the assayed cell lines with a random 45 (25%) of the cell line datasets reserved for model validation. Pearson's correlations of r=0.96 on the test cell lines and r=0.68 on the validation cell lines were observed, indicating good predictive performance with modest overfitting. The two most important predictive genes in the model were Retinoblastoma 1 (RB1) and by Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A). RB1 and CDKN2A are important cell cycle genes immediately downstream and upstream, respectively, of CDK4/6, suggesting that sensitivity to FLX925 in these cell lines is driven by FLX925's CDK4/6 inhibitory activity. To strengthen this conclusion, the modeling was repeated but gene sets covering cell cycle genes or genes in the FLT3/STAT5 signaling pathway were separately excluded from the analysis. While excluding the FLT3/STAT5 pathway genes had no impact on the predictive power of the model, excluding the cell cycle gene set completely abrogated the ability of the GBM to predict sensitivity to FLX925. Thus, we conclude that in this panel of largely FLT3-wild type (FLT3-WT) cell lines, FLX925-sensitivity is driven solely by the compound's CDK4/6 activity. These results suggest that independent, but potentially overlapping, sets of tumors will be responsive to FLX925 due to both its FLT3- and its CDK4/6-inhibitory activities. To predict which tumor types would be most sensitive to FLX925 treatment, we applied our GBM model to the RNA-Seq expression data for 10,537 tumors from The Cancer Genome Atlas (TCGA) consortium. Even though this model is indifferent to FLT3/STAT5-pathway gene expression, it nevertheless identifies AML tumors as having the highest median predicted sensitivity to FLX925. This is true even when all haem/lymph malignancy-derived cell lines are excluded from the training set. Thus, both FLT3-WT and FLT3-activated tumors are expected to have sensitivity to FLX925 treatment, the former due to FLX925's CDK4/6 activity alone and the latter due to the independent FLT3 and CDK4/6 activities of the drug. The anti-tumor activity of FLX925 is currently being investigated in a Ph1/b dose-escalation study in subject with relapsed or refractory AML (NCT02335814). Disclosures Cutler: Amgen, Inc: Equity Ownership; FLX Bio: Employment, Equity Ownership. Fridman:FLX Bio: Employment, Equity Ownership.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5087-5087
Author(s):  
Andrea Tomirotti ◽  
Giuseppe Merlino ◽  
Alessio Fiascarelli ◽  
Simone Baldini ◽  
Alessia Tagliavini ◽  
...  

SEL24/MEN1703 is a first-in-class, orally available, dual PIM/FLT3 kinase inhibitor currently investigated in patients with Acute Myeloid Leukemia (AML) in the first-in-human study CLI24-001 (NCT03008187). PIM and FLT3 kinases are considered to play an important role in AML and are inhibited by SEL24/MEN1703. Moreover, there is evidence that inhibition of PIM kinases might contribute to overcoming acquired resistance induced by approved FLT3 inhibitors1. In AML, different signal transducers in the FLT3 pathway are substrates of kinases. Therefore, their phosphorylation levels might be modulated by kinase inhibitors and may be exploited as a potential pharmacodynamic biomarker in clinical development. In particular, phosphorylation of S6, 4E-BP1, and STAT5 is regulated by both FLT3 and PIM1/2. Thus, the objective of this investigation was to identify the most promising pharmacodynamic biomarker/s for implementation in the clinical trials of SEL24/MEN1703. Initially, we assessed the in vitro cytotoxic effect of SEL24/MEN1703 in a panel of 26 AML cell lines harboring different genetic mutations, to identify suitable cell lines for subsequent experiments. In the selected panel of AML cell lines, SEL24/MEN1703 resulted in the inhibition of phosphorylation of S6, 4-EBP1 and STAT5 as measured by immunoblotting. Notably, the reduction in phosphorylated S6 (pS6) in response to SEL24/MEN1703 was particularly evident. Since SEL24/MEN1703 displays a broad cytotoxic activity in AML cell lines, we clustered sensitive and resistant cell lines considering 0.5 μM as the IC50 cut-off value. Then, we investigated the relationship between SEL24/MEN1703 cytotoxic activity in AML cell lines and the inhibition of the above mentioned phosphorylated proteins in a 24-hour cytotoxic assay, showing a correlation between IC50 and the reduction of pS6 (Pearson correlation coefficient: -0.6905, R2= 0.477). To further confirm the in vitro data, SEL24/MEN1703 ability to modulate phosphoproteins was assessed also in xenograft mice bearing MOLM-16 cell line. The phosphorylation status of S6, 4E-BP1 and STAT5 was analyzed by immunoblot in tumor tissues from mice treated at 25 mg/kg of SEL24/MEN1703 at baseline and at 4, 8, and 16 hours after treatment. Results showed that also in vivo, SEL24/MEN1703 administration resulted in a decrease of pS6, with maximum reduction in this parameter observed 4 hours after the administration of the investigational compound. Based on these results, pS6 was identified as the pharmacodynamic biomarker to be implemented in the CLI24-001 clinical trial. Among different available methods, flow cytometry was selected as the preferred platform to analyze patient samples, because of its ability to provide quantitative assessment of cellular events and pharmacodynamic evaluation in a selected, relevant cell subpopulation, such as the AML blast cells. The assessment of pS6 in the clinical trial is planned both at baseline and at cycle 1 day 14 for whole blood and bone marrow. In addition, pS6 levels will be measured in whole blood at additional time points during treatment cycles. We have implemented the measurement of pS6 in the CLI24-001 trial, and pS6 levels as well as their relationship with the main pharmacokinetic parameters in patients treated with SEL24/MEN703 at 100 and 125 mg will be presented. 1Green A.S. et al., Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia, Sci Adv, 2015 Disclosures Tomirotti: Menarini Ricerche S.p.A.: Employment. Merlino:Menarini Ricerche S.p.A.: Employment. Fiascarelli:Menarini Ricerche S.p.A.: Employment. Baldini:Menarini Ricerche S.p.A.: Employment. Tagliavini:Menarini Ricerche S.p.A: Employment. Borella:Menarini Ricerche S.p.A.: Employment. Mazan:Selvita S.A.: Employment. Brzózka:Selvita S.A.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Bressan:Menarini Ricerche S.p.A.: Employment. Pellacani:Menarini Ricerche S.p.A.: Employment; Amgen: Equity Ownership. Salerno:Menarini Ricerche S.p.A.: Employment. Binaschi:Menarini Ricerche S.p.A.: Employment. Bellarosa:Menarini Ricerche S.p.A.: Employment.


2019 ◽  
Vol 18 (10) ◽  
pp. 1457-1468
Author(s):  
Michelle X.G. Pereira ◽  
Amanda S.O. Hammes ◽  
Flavia C. Vasconcelos ◽  
Aline R. Pozzo ◽  
Thaís H. Pereira ◽  
...  

Background: Acute myeloid leukemia (AML) represents the largest number of annual deaths from hematologic malignancy. In the United States, it was estimated that 21.380 individuals would be diagnosed with AML and 49.5% of patients would die in 2017. Therefore, the search for novel compounds capable of increasing the overall survival rate to the treatment of AML cells is urgent. Objectives: To investigate the cytotoxicity effect of the natural compound pomolic acid (PA) and to explore the mechanism of action of PA in AML cell lines with different phenotypes. Methods: Three different AML cell lines, HL60, U937 and Kasumi-1 cells with different mechanisms of resistance were used to analyze the effect of PA on the cell cycle progression, on DNA intercalation and on human DNA topoisomerases (hTopo I and IIα) in vitro studies. Theoretical experiments of the inhibition of hTopo I and IIα were done to explore the binding modes of PA. Results: PA reduced cell viability, induced cell death, increased sub-G0/G1 accumulation and activated caspases pathway in all cell lines, altered the cell cycle distribution and inhibited the catalytic activity of both human DNA topoisomerases. Conclusion: Finally, this study showed that PA has powerful antitumor activity against AML cells, suggesting that this natural compound might be a potent antineoplastic agent to improve the treatment scheme of this neoplasm.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2951-2951
Author(s):  
Raoul Tibes ◽  
Ashish Choudhary ◽  
Amanda Henrichs ◽  
Sadia Guled ◽  
Irma Monzon ◽  
...  

Abstract In order to improve treatment strategies for Acute Myeloid Leukemia (AML), we adapted a functional genomics approach using RNAi screening to identify molecular targets that are vital to the growth of AML. Herein we report the first large-scale kinome gene silencing screen in AML. A high throughput RNAi screen was developed for the efficient siRNA transfection of AML cell lines. Eight commercially available cationic lipid-based transfection reagents were tested for their ability to transfect several AML cell lines with siRNA. These extensive transfection optimization experiments identified two AML cells lines TF-1 and ML4 with up to 95–100 and 70–75% transfection efficiency respectively. Two independent replicate kinome screens were performed on both cell lines using a siRNA library targeting 572 kinase genes with 2 siRNA/gene. At 96 hours post transfection, cell proliferation was assessed and the B-score method was used to background correct and analyze the screening data. Several siRNA to specific kinases were identified that significantly inhibit cell proliferation of up to ~40–88%. Hits were defined at two thresholds: siRNA having a B-score of <−2 providing a statistically significance of p<0.05 (confidence of > 95%) and a cutoff B-score of <−1.5 providing greater than 87% confidence for each siRNA hit. Two different kinases (2 siRNA/gene/screen) were identified as major growth regulating kinases in TF1 cells with all 4 siRNA/gene having a B-score <−2. For two additional kinases, 3/4 siRNA for each gene had a Bscore <−2. Expanding the cutoff to a B-score <−1.5 three further kinases were targeted by at least 3/4 siRNA/gene. Similar analysis using the same criteria for ML4 cells identified one kinase targeted by 3/4 siRNA at a B-score <−2, seven kinases with 2/4 siRNA <−2 and two kinases with 3/4 siRNA/gene at a B-score of <−1.5. Common hits for both cell lines with at least 6/8 siRNA per gene from 4 screens performing at a B-score <−2 identified two kinases, one of them PLK1. Applying a B-score threshold of <−1.5, we identified five kinases for which at least 5/8 siRNA/gene from 4 screens met these criteria. Kinases/genes will be presented at the meeting.Confirmation of gene silencing and validation of growth response is currently underway for a subset of genes. Among the strongest hits are siRNA targeting PLK1, as well as siRNA targeting three other kinase-genes involved in regulating cell cycle progression and checkpoints and gene ontology (GO) analysis showed enrichment in cell cycle and cell cycle-checkpoint processes. Inhibitors against PLK1 and other kinase hits identified in the screen are in (pre)-clinical development and if confirmed, our experiments provide a strong rational to test these in AML. The application of RNAi based screening is useful in the identification of genes important in AML proliferation, which could serve as targets for therapeutic intervention and guide AML drug development. Furthermore, results from these types of functional genomics approaches hold promise to be rapidly translated into clinical application.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 581-581
Author(s):  
Patrick Griffin ◽  
Steffan T Nawrocki ◽  
Takashi Satou ◽  
Claudia M Espitia ◽  
Kevin R. Kelly ◽  
...  

Abstract Abstract 581 The long-term prognosis for the majority of patients diagnosed with acute myeloid leukemia (AML) is very poor due, in part, to pre-existing myelodysplasia, multidrug resistance, and co-existing morbidities that limit therapeutic options. Novel strategies are essential in order to improve clinical outcomes. TAK-901 is an investigational small molecule kinase inhibitor that is currently being evaluated in Phase I trials. In preclinical studies, TAK-901 has demonstrated significant effects against a number of kinases with important roles in cancer including the Aurora kinases, which are key regulators of mitosis and whose overexpression in cancer promotes genetic instability, malignant pathogenesis, and drug resistance. We hypothesized that simultaneously targeting the activity of the Auroras and other oncogenic kinases with TAK-901 would disrupt AML pathogenesis. In order to test our hypothesis, we investigated the efficacy and pharmacodynamic activity of TAK-901 human AML cell lines, primary AML specimens, and an orthotopic bioluminescent disseminated mouse model of AML. TAK-901 potently diminished the viability of a panel of 8 AML cell lines as well as primary cells obtained from patients with AML. Acute exposure to TAK-901 ablated clonogenic survival, triggered the accumulation of polyploid cells, and induced apoptosis. The cytostatic and cytotoxic effects of TAK-901 were associated with significantly increased expression of the cyclin-dependent kinase inhibitor p27, growth arrest and DNA-damage-inducible 45a (GADD45a), and the BH3-only pro-apoptotic protein PUMA. Chromatin immunoprecipitation (ChIP) assays revealed that the elevation in the expression of these genes caused by administration of TAK-901 was due to increased FOXO3a transcriptional activity. The in vivo anti-leukemic activity of TAK-901 was investigated in a disseminated xenograft mouse model of AML established by intravenous injection of luciferase-expressing MV4-11 cells. IVIS Xenogen imaging was utilized to monitor disease burden throughout the study. In this mouse model, administration of TAK-901 was very well-tolerated and significantly more effective than the standard of care drug cytarabine with respect to suppressing disease progression and prolonging overall survival. Analysis of specimens collected from mice demonstrated that TAK-901 inhibited the homing of AML cells to the bone marrow microenvironment and induced AML cell apoptosis in vivo. Our collective findings indicate that TAK-901 is a novel multi-targeted kinase inhibitor that has significant preclinical activity in AML models and warrants further investigation. Disclosures: Satou: Takeda Pharmaceuticals: Employment. Hasegawa:Takeda Pharmaceuticals: Employment. Romanelli:Millennium Pharmaceuticals: Employment. de Jong:Takeda San Diego: Employment. Carew:Millennium Pharmaceuticals: Research Funding.


2019 ◽  
Vol 20 (22) ◽  
pp. 5739
Author(s):  
Yanle Zhi ◽  
Zhijie Wang ◽  
Chao Yao ◽  
Baoquan Li ◽  
Hao Heng ◽  
...  

Fms-like receptor tyrosine kinase 3 (FLT3) has been emerging as an attractive target for the treatment of acute myeloid leukemia (AML). By modifying the structure of FN-1501, a potent FLT3 inhibitor, 24 novel 1H-pyrazole-3-carboxamide derivatives were designed and synthesized. Compound 8t showed strong activity against FLT3 (IC50: 0.089 nM) and CDK2/4 (IC50: 0.719/0.770 nM), which is more efficient than FN-1501(FLT3, IC50: 2.33 nM; CDK2/4, IC50: 1.02/0.39 nM). Compound 8t also showed excellent inhibitory activity against a variety of FLT3 mutants (IC50 < 5 nM), and potent anti-proliferative effect within the nanomolar range on acute myeloid leukemia (MV4-11, IC50: 1.22 nM). In addition, compound 8t significantly inhibited the proliferation of most human cell lines of NCI60 (GI50 < 1 μM for most cell lines). Taken together, these results demonstrated the potential of 8t as a novel compound for further development into a kinase inhibitor applied in cancer therapeutics.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2544-2544 ◽  
Author(s):  
Lina Han ◽  
Qi Zhang ◽  
Ce Shi ◽  
Joel Leverson ◽  
Monique Dail ◽  
...  

Abstract Pro-survival molecules including BCL-2 play critical roles in leukemia transformation and chemoresistance. ABT-199/GDC-0199 (venetoclax) is an orally available BH3-mimetic that binds with high affinity to BCL-2, but lacks affinity for BCL-XL and MCL-1. We have recently demonstrated anti-leukemia potency of venetoclax in acute myeloid leukemia (AML) models (Pan et al. Cancer Discovery 2014). However, venetoclax poorly inhibits MCL-1, causing resistance in leukemia cells that rely on MCL-1 for survival. The RAF/MEK/ERK (MAPK) cascade is a major effector pathway in AML that is activated by upstream mutant proteins such as FLT3, KIT and RAS. Additionally, the MAPK pathway regulates BCL-2 family proteins by stabilizing anti-apoptotic MCL-1 and inactivating pro-apoptotic BIM. In this study, we evaluated the anti-tumor effects of concomitant BCL-2 and MAPK blockade by venetoclax in combination with MEK1/2 inhibitor GDC-0973 (cobimetinib).. We initially examined activity of these agents in a panel of myeloid leukemia cell lines with diverse genetic alterations (Fig. 1A). The IC50 values of cobimetinib ranged from < 0.01 µM to > 1 µM after 72 hours of drug treatment but did not correlate with the basal level of p-ERK1/2. In 7 out of 11 cell lines, combination of the agents elicited synergistic growth inhibition. Notably synergism of venetoclax with cobimetinib was observed in venetoclax-resistant cell lines (MOLM14, OCI-AML3, NB4 and THP1). Ongoing analysis of pharmacodynamic markers include transcriptome assessment by RNA sequencing, functional proteomics by reverse phase protein array (RPPA) and quantification of BCL-2:BIM and MCL-1:BIM complexes using the electrochemiluminescent ELISA assay (Meso Scale Discovery, MSD-ELISA). The preliminary MSD data revealed that BCL-2:BIM complex was disrupted in most cell lines and accumulated following cobimetinib treatment, which may be due to the disruption of MCL-1:BIM complex by inhibition of MEK (Fig. 1B). In a long-term culture of primary AML blasts in serum-free stem cell growth medium supplemented with cytokines and StemRegenin 1 (SR1) to main the immature state of leukemia cells, the combination of venetoclax and cobimetinib induced distinct apoptotic cell death, with AML #1 sensitive to venetoclax but resistant to cobimetinib. Alternatively, AML #2 and #3 samples were resistant to venetoclax but sensitive to cobimetinib and the combination of both drugs (Fig. 1C). We next investigated signaling patterns and BCL-2 family protein expression in AML stem/progenitor cells using a 34-antibody panel and time-of-flight mass cytometry (CyTOF). In AML#1, BCL-2 was expressed in leukemia blasts, with enrichment in a progenitor AML population phenotypically defined as CD45dim CD34+ CD38+ CD123+ CD33+ (Fig. 1D). The high expression level of BCL-2 and low expression of MCL-1 and BCL-XL may account for sensitivity to venetoclax in AML#1. Both basal and G-CSF- or SCF-stimulated p-ERK was efficiently down-regulated by cobimetinib; however, G-CSF-evoked p-STAT3/5 and SCF-induced p-AKT were only slightly reduced (Fig. 1E). Notably we observed increased phosphorylation of STAT5 pathway upon treatment with cobimetinib, suggesting that active MAPK signals inhibit phosphorylation of the JAK-STAT pathway, as previously reported (Krasilnikov et al. Oncogene, 2003 and Lee at al. Cancer Cell, 2014). To test the efficacy of both compounds in vivo, we injected NSG mice with genetically engineered OCI-AML3/Luc/GFP cells. Bioluminescent imaging (BLI) demonstrated significantly reduced leukemia burden in treated groups compared to controls, more prominently in the cobimetinib single agent and venetoclax plus cobimetinib co-treated mice (Fig. 1F). The efficacy study is ongoing and median survival for cobimetinib and venetoclax co-treated mice has yet to be determined (Fig. 1G). In summary, our data demonstrates that combinatorial blockade of MAPK and BCL-2 pathways is synergistic in the majority of AML cell lines tested and can overcome intrinsic resistance to venetoclax. Ongoing studies will evaluate efficacy of this combination therapy in primary human AML xenografts and elucidate mechanisms of synergy. Disclosures Leverson: AbbVie: Employment, Equity Ownership. Dail:Genentech: Employment, Equity Ownership. Phillips:AbbVie: Employment, Other: Shareholder, Patents & Royalties. Chen:Abbvie: Employment, Equity Ownership. Jin:Abbvie: Employment, Equity Ownership. Jabbour:Pfizer: Consultancy, Research Funding. Sampath:Genentech: Employment, Equity Ownership. Konopleva:Novartis: Research Funding; AbbVie: Research Funding; Stemline: Research Funding; Calithera: Research Funding; Threshold: Research Funding.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Matteo Allegretti ◽  
Maria Rosaria Ricciardi ◽  
Roberto Licchetta ◽  
Simone Mirabilii ◽  
Stefania Orecchioni ◽  
...  

Abstract Aberrant activation of the PI3K/Akt/mTOR pathway is a common feature of acute myeloid leukemia (AML) patients contributing to chemoresistance, disease progression and unfavourable outcome. Therefore, inhibition of this pathway may represent a potential therapeutic approach in AML. The aim of this study was to evaluate the pre-clinical activity of NVP-BKM120 (BKM120), a selective pan-class I PI3K inhibitor, on AML cell lines and primary samples. Our results demonstrate that BKM120 abrogates the activity of the PI3K/Akt/mTOR signaling, promoting cell growth arrest and significant apoptosis in a dose- and time-dependent manner in AML cells but not in the normal counterpart. BKM120-induced cytotoxicity is associated with a profound modulation of metabolic behaviour in both cell lines and primary samples. In addition, BKM120 synergizes with the glycolitic inhibitor dichloroacetate enhancing apoptosis induction at lower doses. Finally, in vivo administration of BKM120 to a xenotransplant mouse model of AML significantly inhibited leukemia progression and improved the overall survival of treated mice. Taken together, our findings indicate that BKM120, alone or in combination with other drugs, has a significant anti-leukemic activity supporting its clinical development as a novel therapeutic agent in AML.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 981-981
Author(s):  
Lina Han ◽  
Eric Rowinsky ◽  
Christopher Brooks ◽  
Tomasz Zal ◽  
M. Anna Zal ◽  
...  

Abstract Outcomes of acute myeloid leukemia (AML) remain poor and warrant the development of novel therapeutic agents. CD123 (interleukin-3 [IL-3] receptor alpha subunit), is overexpressed on AML blasts and leukemia progenitor/stem cells (LSCs) compared to normal hematopoietic cells (Jordan et al. Leukemia 2000). SL-101 is a novel anti-CD123 antibody-conjugate comprised of anti-CD123 scFv fused to a truncated and optimized pseudomonas exotoxin (PE) lacking its native targeting domain. We have previously demonstrated SL-101's cell killing efficacy in AML cell lines (Han et al. ASH 2013). Here we report the anti-tumor efficacy of SL-101 against primary AML cells and the underlying mechanisms of its cytotoxicity. Fourteen genetically diverse primary AML samples were treated with various doses of SL-101 for 48 h. Most samples express high levels of CD123 (median 89.9%, range 20.4-99.3%) and intermediate levels of CD131 (median 54.0%, range 9.0-91.1%), the IL-3 beta subunit. SL-101 was highly active against AML samples, with an IC50 of 0.19 µg/ml (range 0.003 - 0.98 µg/ml). No significant correlation was found between SL-101 activity and levels of CD123 or CD131 (n=12). SL-101 also selectively and significantly suppressed AML colony formation (69.5% ± 15.0% inhibition of total colonies, n=7) while sparing normal bone marrow (5.6% ± 3.3% inhibition, n=4; p=0.0001) (Fig. 1A). We next investigated the mechanisms of the cytotoxic activity of SL-101. Using annexinV/DAPI flow cytometry, we first evaluated the induction of apoptosis in AML blasts and phenotypically defined CD45dimCD34+CD38-CD123+ LSCs. After 48 h treatment, SL-101 at 1.0 µg/ml induced higher specific apoptosis in the AML LSCs (51.2% ± 25.4%) than in blasts (39.4% ± 19.0%, p=0.006, n=10). Quantification of the annexinV–/DAPI– viable cells using counting beads demonstrated further reduction of cell numbers by SL-101 (LSCs 72%, blasts 64.6%), indicating additional mechanisms of cell growth inhibition. It was recently demonstrated that upon internalization, PE traffics through the endoplasmic reticulum to the cytosol, where it inactivates protein synthesis by catalyzing ADP ribosylation of elongation factor 2 and causes non-apoptotic cell death (Wayne et al. Blood 2014). To examine the contribution of the direct inhibition of protein synthesis by PE, we first studied SL-101 internalization utilizing DyLight 680-labeled SL-101 by flow cytometry and fluorescence imaging. In CD123-expressing AML cell lines MV4-11 and MOLM13, the intracellular median intensity of DyLight 680 signal increased 5.4- and 3.5-fold, respectively, within 4 h of treatment and 22.3- and 16.3-fold after 24 h (Fig 1B). Fluorescence imaging confirmed cytosolic localization of SL-101 in both cell lines, demonstrating efficient cellular uptake of SL-101. We also examined the efficacy of SL-101 in inhibiting nascent protein synthesis in MV4-11 cells using an AHA Alexa Fluor 488 protein synthesis assay. SL-101 significantly reduced protein synthesis (40.3%, p=0.0005) within 4 h (Fig 1C), even at low concentrations (0.01 µg/ml), which was comparable to the positive control cycloheximide (44.8% ± 7.9%, p=0.0001). These findings confirmed the potential of SL-101 to efficiently internalize and promote cell death through protein synthesis blockade. We further investigated the ability of SL-101 to inhibit intracellular signaling in response to IL-3. To this end, cytokine-dependent Mo7e leukemia cells were serum starved and pre-treated with SL-101 at 1.0 µg/ml overnight, followed by stimulation with IL-3. SL-101 significantly suppressed IL-3-induced activation of p-STAT5 (57.1% ± 2.6% inhibition, p=0.003) and modestly inhibited p-AKT (17.4% ± 5.4% inhibition, p=0.04), but not p-ERK signaling (Fig. 1D). In summary, our data demonstrate that the novel anti-CD123 antibody-conjugate, SL-101, is highly active in AML and induces growth arrest and apoptosis in AML blasts and LSCs by inhibiting protein synthesis and interfering with IL-3 signal transduction pathways. Ongoing studies that will be reported at this meeting investigate the in vivo anti-leukemia efficacy of SL-101 in NSG mice engrafted with primary AML cells. In conclusion, SL-101 is a novel, potent antibody-conjugate directed against AML blasts and LSCs, and our studies warrant further development of this agent. Figure 1 Figure 1. Disclosures Rowinsky: Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics: Employment, Equity Ownership.


Author(s):  
Ling Zhang ◽  
Xiaozhen Wang ◽  
Jieying Wu ◽  
Ruozhi Xiao ◽  
Jiajun Liu

Abstract Here, we aimed to investigate the biological roles and the regulatory mechanisms of miR-335-3p in acute myeloid leukemia (AML). We first found miR-335-3p was significantly down-regulated in blood samples from leukemia patients and cell lines using reverse transcription quantitative PCR. Through CCK-8 assay and flow cytometry, we observed that miR-335-3p overexpression significantly inhibited cell proliferation, induced cell cycle G0/G1 arrest and apoptosis in AML cell lines (THP-1 and U937). Moreover, miR-335-3p directly targets EIF3E and negatively regulated its expression. More importantly, EIF3E overexpression reversed the effects of miR-335-3p on cell proliferation, G1/S transition and apoptosis. Furthermore, miR-335-3p overexpression obviously downregulated the expression of CDK4, Cyclin D1 and Bcl-2, while upregulated the expression of p21 and Bad, which were significantly rescued by the co-transfection of pcDNA3.1-EIF3E. Collectively, our study proposes that miR-335-3p/EIF3E axis could be a promising therapeutic target to mitigate the progression of AML.


Sign in / Sign up

Export Citation Format

Share Document