Megakaryocyte Expansion and Platelet CD34 Expression Observed in GFI1BQ287*-Related Bleeding and Platelet Disorder Is Caused By Quenching of the Lysine Specific Demethylase LSD1/KDM1A

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 363-363
Author(s):  
Rinske van Oorschot ◽  
Anna E. Marneth ◽  
Marten Hansen ◽  
Saskia M. Bergevoet ◽  
Alexander B. Meijer ◽  
...  

Abstract The heterozygous Q287* mutation in Growth Factor Independence 1B (GFI1B) causes an autosomal-dominant bleeding disorder characterized by gray platelets as a result of reduced α-granule content.Affected individuals also exhibited macro-thrombocytopenia, increased megakaryocyte numbers and platelet CD34 expression. GFI1B functions as transcriptional repressor by recruiting the histone modifying enzyme LSD1/KDM1A. The C-terminally truncated GFI1B-Q287* mutant has lost its repressive function and inhibits the function of wild type GFI1B in a dominant-negative manner. To study how mutant GFI1B affects megakaryopoiesis, we expressed it in megakaryoblastic MEG01 cells by retroviral transduction. Compared to empty vector transduced cells, expression of GFI1B-Q287* caused a significant growth advantage, which is in line with the strong increase in megakaryocytes in the bone marrow of affected individuals. In contrast to GFI1B-Q287*, expression of GFI1B-WT significantly impaired MEG01 expansion (Figure 1). GFI1B recruits LSD1 through its proline and lysine amino acids at positions 2 and 8, respectively. Individual alanine mutations at these positions disturb the LSD1 interaction. We tested whether the LSD1 interaction was required for the growth phenotypes induced by GFI1B-WT and GFI1B-Q287* by separately introducing alanine mutations (P2A and K8A). This showed that both mutations nullified the growth advantage and disadvantage of GFI1B-Q287* and GFI1B-WT, respectively (Figure 1). Thus, GFI1B-WT may limit megakaryoblast expansion through LSD1 recruitment. The mutant protein may inhibit wild type GFI1B by quenching LSD1. Indeed, preliminary results show that co-expression of LSD1 and GFI1B-Q287* resulted in loss of the proliferative advantage as seen for GFI1B-Q287* alone. Figure 1: P2A and K8A mutations in GFI1B nullified the growth advantage of GFI1B-Q287* and the and growth disadvantage GFI1B-WT. GFP% of MEG01 cells was followed for 26 days. Data is normalized to day 5. To address this finding in more detail, we treated normal human CD34+ bone marrow cells with 4 µM LSD1 inhibitor GSK2879552 and induced megakaryocyte differentiation. This showed an 1.4-fold increased CD34+/CD41+ megakaryoblast expansion after 2 days of treatment. In addition, we observed that CD34 expression was retained and elevated. Thus, LSD1 inhibition of primary CD34+ cells during in vitro megakaryocyte differentiation phenocopies disease characteristics observed in individuals with the GFI1B-Q287* mutation. To further study megakaryopoiesis, we generated induced pluripotent stem (IPS) cells from two individuals with GFI1B-Q287* plus a healthy control. Hematopoietic differentiation of IPS colonies was induced using Stemline II, VEGF and BMP4 for the first 6 days and from day 6 onward in CellQuin, VEGF, BMP4, SCF, IL-1β, IL-3, IL-6 and TPO. Non-adherent hematopoietic cells where harvested and differentiated towards megakaryocytes using CellQuin, IL-1β and TPO. Upon megakaryocyte differentiation a 10-fold increase in expansion of megakaryocytes, sustained CD34 expression and increased hypolobulation was observed compared to GFI1B-WT differentiated IPS cells. Thus, GFI1B-Q287* IPS originated megakaryocytes phenocopy disease characteristics observed in individuals with the GFI1B-Q287* mutation. Our data indicate that the LSD1-GFI1B interaction is key to controlling megakaryoblast expansion and that it is important for proper megakaryocyte maturation as assessed by CD34 expression. These data also suggest that mutant GFI1B-Q287* inhibits the function of wild type GFI1B by quenching the demethylase LSD1. Induced LSD1 expression in the megakaryocyte lineage may be of therapeutic relevance for GFI1B related bleeding and platelet disorders. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-11
Author(s):  
Daniel J Enriquez ◽  
Rachel J. Mitchell ◽  
Krisztina Zuborne Alapi ◽  
Elizabeth Cervantes ◽  
Karina Cancino ◽  
...  

Frequency of IKZF1 Deletions in a Peruvian Population with B-cell Acute Lymphoblastic Leukemia Background: B-cell Acute Lymphoblastic Leukemia (B-ALL) is an aggressive disease with worse outcomes in older patients, and latino ethnicity. Additionally, Latino populations are at higher risk of developing B-ALL.IKZF1is an essential lymphoid transcription factor with deletions (ΔIKZF1)implicated in treatment failure and relapses. We aimed to evaluate the frequency ofIKZF1deletions in a cohort of Peruvian patients with newly diagnosed B-ALL. Methods: We collected diagnostic bone marrow samples from 41 consecutive patients with B-ALL diagnosed between 2015-2019 at Instituto Nacional de Enfermedades Neoplasicas (INEN; Lima, Peru). Bone marrow samples were cryopreserved prior to induction treatment. DNA was extracted using High Pure PCR Template Preparation Kit (Roche) at INEN. Samples with adequate DNA were screened forΔIKZF1by multiplex endpoint PCR covering four main deletions - dominant negative Δ4-7 or the loss of function Δ2-7, Δ4-8, and Δ2-8 IKZF1 deletions at UCL Cancer Insitute (London, UK) using the primers described by Caye et. al. We analyzed outcomes byIKZF1status. Results: Forty-one cases were enrolled during the study period. Clinical characteristics are presented in Table 1. Median age was 20 years[1-63]. Fifteen∆IKZF1cases (37%) were detected (67%BCR-ABL1 negand 33%BCR-ABL1pos).Cases withΔIKZF1were older than those with wild-typeIKZF1(median age 31 vs 13 years, p=0.002). Median presenting white blood count (WBC) was 48 x109/L [R:2-218], with a higher WBC inΔIKZF1compared to wild-type (87 vs 24 x109/L, p=0.001). The most frequent deletion was ∆4-7 (sevenBCR-ABL1 negand threeBCR-ABL1 pos) additional deletions are described in table 2. All patients received intensive 'pediatric-based' treatment, 21 with BFM-2009 and 19 with the CALGB 10403 protocol. CR rates after induction were 67% and 92% for∆IKZF1and wild-type cases, respectively. Eleven (73%) of patients with∆IKZF1subjects (73%) were MRD positive by flow cytometry after induction compared to 11 (44%) among wild-type. At a median follow-up of 2 years EFS was 38% in the∆IKZF1group and 58% in the wild type group, correspond OS was 38% and 58%, respectively. Conclusion: A high frequency of IKZF1 deletions was found in a Peruvian population with B-ALL and was associated with older age and higher presenting white blood counts. Prospective studies with larger Latino population are warranted to confirm this finding. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 91-91
Author(s):  
Shane R. Horman ◽  
Chinamenveni S. Velu ◽  
Tristan Bourdeau ◽  
Avinash Baktula ◽  
Jinfang Zhu ◽  
...  

Abstract An intrinsic mechanism of self-renewal is critical for the maintenance of hematopoietic stem cells (HSC), but this HSC function is extinguished during differentiation of progenitors. Here we show that the self-renewal capacity of hematopoietic progenitor cells is regulated through physical competition for occupancy of select DNA binding sites. Initially, we found that conditional deletion of the Growth factor independent-1 (Gfi1) gene results in the accumulation of abnormally persistent myeloid progenitors in vivo. Specifically, while germline Gfi1 deletion induces defective HSC self renewal and a block to granulopoiesis, we find that conditional deletion of Gfi1 induces a severe but transient block to neutrophil development with repopulation of the bone marrow by the remaining wild type HSC within 8 weeks post deletion. However, even though normal levels of granulocyte colony forming units (G-CFU) returned by 8 weeks post deletion, an abnormal Gfi1−/− myeloid progenitor remained in the bone marrow in vivo. Subsequently, we find in vitro that both wild-type bone marrow cells expressing Gfi1-dominant-negative mutants, and Gfi1−/− Lin- bone marrow contain cells that replate indefinitely. We hypothesized that Gfi1 is critical to extinguish self renewal in hematopoietic progenitors. In seemingly unrelated work, we discovered antagonism between the drosophila orthologs of Gfi1 and the Hoxa9/Pbx1/Meis1 transcription factor complex during drosophila embryo segmentation. We extended our drosophila findings to discover that a subset of mammalian DNA regulatory sequences encode DNA binding sites for both Gfi1 and Hoxa9/Pbx1/Meis1. These DNA sequences are able to bind either factor, and function as a molecular switch. Interestingly, composite Gfi1/ Hoxa9/Pbx1/Meis1 binding sites are present in the regulatory regions of the gene encoding Hoxa9. We note that Gfi1 expression is normally induced, while Hoxa9 expression is down-regulated, during the transition from common myeloid progenitor (CMP) to the granulocyte-monocyte progenitor (GMP). CMP have greater self renewal potential than GMP. Conditional deletion of Gfi1 in sorted CMP or GMP both increases Hoxa9 expression and generates progenitors capable of replating indefinitely in vitro. Thus, Gfi1 is critical to limit self renewal in these progenitors. Deregulated Hoxa9 expression or activity appears pivotal to this new Gfi1-null phenotype, because Gfi1 dominant-negative mutants immortalize wild-type (or Hoxa7−/−) but not Hoxa9−/− bone marrow cells in vitro. An abnormal gain of self-renewal can unleash the leukemic potential of progenitor cells. We find that both limiting Gfi1 gene dosage and expression of Gfi1 dominant-negative mutants significantly increases Nup98-Hoxa9-mediated colony formation. In contrast, forced expression of Gfi1 prevents Nup98-Hoxa9 immortalization. Notably, the expression of Hoxa9 (independent of cases with Nup98-Hoxa9 fusions) has been reported to be of significant prognostic value in human acute myeloid leukemia. In conclusion, Gfi1 and the Hoxa9/Pbx1/Meis1 complex compete to control the expression of genes (such as Hoxa9) which are critical to extinguish self renewal and limit the leukemogenic potential of hematopoietic progenitors. The antagonism between these transcription factor complexes is conserved from drosophila segment formation to mammalian hematopoietic progenitor biology.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3962-3962
Author(s):  
Rachel Joy Bergerson ◽  
Lara S Collier ◽  
Sanne Lugthart ◽  
Raha Allaei ◽  
Molly J Nixon ◽  
...  

Abstract Abstract 3962 Poster Board III-898 By altering the activity of specific transcription complexes, the MLL-AF9 fusion oncogene can initiate the process of acute myeloid leukemia (AML) development. However, all the genetic pathways that can cooperate with MLL-AF9 expression to cause full-blown AML are unknown. These pathways will provide therapeutic targets for MLL-AF9-associated AML. Mice with constitutive expression of the Mll-AF9 fusion oncoprotein under the control of the endogenous promoter develop AML but only after a prolonged latency. This model thus provides a system for understanding the evolution of AML initiated by an MLL fusion oncoprotein. We hypothesized that infection with a recombinant Murine Leukemia Virus, abbreviated M4070, could cooperate with MLL-AF9 expression to accelerate the onset of leukemia by causing the secondary mutations required for cancer progression. We bred Mll-AF9 heterozygous males to wild type females, and the offspring were injected at three days of age with M4070 virus (n=211) or were mock infected (n=68). All mice were genotyped and observed for disease progression. Virally infected Mll-AF9/+ mice succumb to disease with a significantly reduced latency period when compared to virally infected wild type (WT) mice (p < .0001) and uninfected Mll-AF9/+ mice (p < .0001), indicating that M4070 infection causes significant leukemia acceleration in these mice. Histopathology, immunohistochemical staining, analysis of the surface immunophenotype by flow cytometry, and Southern blot analysis of T and B cell receptor rearrangement indicated that infected Mll-AF9/+ animals developed primarily myeloid leukemia (myeloperoxidase positive, Mac1 or Mac1/Gr1 positive, CD3 negative) while infected WT animals developed mostly lymphoid leukemia (CD3 positive, CD4 and/or CD8 positive, myeloperoxidase negative). Retroviral insertion sites were cloned from 167 leukemic tissues from the accelerated leukemia mice using two different restriction enzymes in a shotgun-based, linker-mediated, cloning protocol to identify the genes most frequently mutated in Mll-AF9 positive leukemia. More than 4,100 independent insertions were isolated and 101 common insertion sites (CIS), defined as genomic locations with several proviral insertions from at least 3 mice, were identified. The majority of the CIS harbored proviral insertions in both Mll-AF9/+ and wild type mice, but a subset of CIS were found in only one group or the other. Some of the genes closest to the CIS have been identified as target genes in other proviral screens and some are known cancer genes. We studied a subset of the CIS-associated genes for aberrant expression in leukemic tissues. There was elevated expression of Mn1, and a trend towards increased expression of Bcl11a and Fosb, in our Mll-AF9 murine leukemia samples with proviral insertions nearby these genes. Moreover, elevated expression of MN1, FOSB, and BCL11A has been observed in microarray studies of human patients with AML. We have completed a bone marrow transduction/transplantation experiment to seek functional evidence of cooperation with Mll-AF9. Mice transplanted with Mll-AF9/+ bone marrow that had been transduced with a retrovirus encoding the candidate gene MN1 succumb to myeloid malignancy faster than mice transplanted with wild type bone marrow transduced with MN1, or Mll-AF9/+ bone marrow transduced with a retrovirus encoding just the Green Fluorescent Protein gene. This data suggests that MN1 can cooperate with Mll-AF9 to accelerate myeloid leukemia in a mouse model. We are currently using shRNA knockdown strategies in human cell lines to confirm cooperation of more candidate genes with MLL-AF9 in AML development. Thus, CIS-associated genes from leukemias accelerated by M4070 in Mll-AF9/+ mice may help define important genetic pathways that are altered during progression of AML induced by MLL fusion oncogenes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1372-1372
Author(s):  
Hendrik W. Van Deventer ◽  
Robert Mango ◽  
Jonathan Serody

Abstract Abstract 1372 Background: Chemotherapy resistance in chronic lymphocytic leukemia (CLL) can be mediated by anti-apoptotic signals produced by stromal or nurse-like cells. Developing strategies to overcome this resistance is hindered by the lack of suitable “stromal” targets responsible for these signals. We have discovered that erythroid differentiation regulator 1 (ERDR1) may be a candidate target for such a strategy. In this study, we show Erdr1 is generated by several stromal cell types including bone marrow stromal cells, fibrocytes, and nurse-like cells. Furthermore, inhibition of stroma-generated Erdr1 results in increased apoptosis of co-cultured CLL cells. Methods/Results: We initially identified Erdr1 on an Affymetrix array that compared the gene expression of wild type and CCR5-/- mice with pulmonary metastasis. The increased expression of Erdr1 in the wild type mice was particularly pronounced in the pulmonary mesenchymal cells. Therefore, these cells were transfected with one of two shRNAs (shRNA #9 or shRNA#11) and the survival of these cells was compared with mesenchymal cells transfected with a non-targeted control vector. After 15 days in culture, the control cells expanded normally; however, no significant expansion was seen in either the shRNA#9 or shRNA#11 transfected cells. These differences in cellular expansion were associated with differences in apoptosis. 21.4+1.6% of the Erdr1 knockdown cells were annexin V+ compared to 11.2+1.9% of the non-targeted control (p<0.03). Using GFP as a marker for transfection, we were also able to show that knockdown of Erdr1 increased the apoptosis of surrounding non-transfected mesenchymal cells. Thus, Erdr1 is a critical protein for the survival of stromal cells. Further analysis of the mesenchymal cell subpopulations revealed the greatest expression of Erdr1 in the CD45+, thy1.1+/− fibrocytes. When compared to CD45- fibroblasts, the fibrocytes expressed CCR5 and increased Erdr1 expression by 14.2+/−2.9 fold when treated with the CCR5 ligand CCL4. Given the similarities between fibrocytes and nurse-like cells, we went on to measure the effect of Erdr1 inhibition on CLL cells. In these experiments, stable Erdr1 knockdown and control clones were selected after the transfection of the bone marrow stromal cell line M2-10B4. These clones were then co-cultured with primary CLL cells. At 96 hours, leukemia cells co-cultured with the control lines had expanded by 1.33 + 0.9 compared to 0.74 + 0.22 fold in the knock-down lines (p<0.03). As before, the lack of cellular expansion was associated with an increase in apoptosis. To further show the relevance of these findings to CLL, we demonstrated that human fibrocytes and nurse-like cells expressed mRNA and protein for ERDR1 in all patient samples tested. Implications for the treatment of human disease: Our data demonstrate that ERDR1 is a critically important protein for the survival of nurse-like cells. These data suggest that targeting ERDR1 or the upstream pathway through CCR5 might be a novel approach for the treatment of CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 792-792
Author(s):  
Qiang Wen ◽  
Zan Huang ◽  
Sara Small ◽  
Niket Bubna ◽  
Frank An ◽  
...  

Abstract Abstract 792 Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia characterized by expansion of immature megakaryocytes and bone marrow myelofibrosis. AMKL is frequently associated with chromosomal abnormalities, such as trisomy 21 or t(1;22), which leads to expression of the OTT-MAL fusion protein. Mutations in GATA1 are present in nearly all cases of Down syndrome AMKL, while mutations in JAK3, MPL, KIT, and FLT3 are associated with a smaller subset of patients. Since most patients with AMKL face a very poor prognosis, new therapies are desperately needed. Given that megakaryocytes undergo polyploidization during the normal course of differentiation, we hypothesized that small molecule inducers of polyploidization would drive megakaryoblasts to exit the proliferative cell cycle and induce terminal differentiation. These agents would thus serve as targeted differentiation therapeutics for AMKL in a manner analogous to ATRA for treatment of acute promyelocytic leukemia. To identify small molecules that induce megakaryocyte polyploidization, we incubated the CMK megakaryoblastic cell line, which harbors both GATA1 and JAK3 mutations, with libraries of kinase or histone deacetylase inhibitors, natural products, and small molecules derived from diverse oriented synthesis. After three days, we stained the cells with Hoechst dye, imaged plates with the ImageXpress Micro microscope and converted image files into quantitative values of DNA content with Cell Profiler software. By screening 10,000 compounds, we identified 207 molecules that significantly and reproducibly increased polyploidization. Among the compounds scoring in this screen were microtubule disrupting and stabilizing agents and actin disrupting agents, which are expected to cause alterations in spindle formation or cytokinesis and result in polyploidization. A more interesting subset of compounds led to robust polyploidization, with DNA contents reaching 32N and 64N, and also to induction of megakaryocyte differentiation. We have focused our efforts on the most potent compound of the latter class, dimethylfasudil (diMF), a known Rho kinase inhibitor. diMF blocked proliferation and simultaneously induced marked polyploidization, differentiation and apoptosis of human and murine megakaryoblastic leukemia cell lines as well as primary murine and human megakaryocyte progenitors. diMF also inhibited megakaryocyte colony formation and induced polyploidization and differentiation of GATA-1 deficient and GATA-1s knock-in fetal liver megakaryocytes, which mimic the aberrant megakaryopoiesis seen in infants with DS. Importantly, diMF did not induce polyploidization of the CD41-negative fraction of primary murine or human ex vivo cultures, revealing its specificity for megakaryocytes. When administered to mice by oral gavage, diMF selectively affected megakaryocytes within the bone marrow and did not alter peripheral blood counts. diMF also effectively inhibited AMKL development in mice transplanted with MPL mutant, OTT-MAL expressing cells: 50% and 30% of the recipients treated with 66 mg/kg and 33 mg/kg diMF bid respectively, remain disease free after three months whereas all placebo treated mice succumbed to AMKL within 3 weeks. To identify the targets of diMF, we used a combination of the SILAC (stable isotope labeling with amino acids in cell culture) proteomic approach and Ambit's KinomeScan. These unbiased assays identified multiple binding targets of diMF, including JAK3, MAP4K2, and Rho kinase 1 (ROCK1). Using shRNA mediated knock-down, we found that decreased expression of ROCK1, but not ROCK2, led to increased sensitivity of CMK cells to diMF induced polyploidization. Knockdown of ROCK1 alone also induced features of megakaryocyte differentiation such as enhanced CD41 expression. These studies implicate ROCK1 in regulation of the switch between proliferation and differentiation of megakaryocytes and show that diMF acts through inhibition of ROCK1. Taken together, our work demonstrates that diMF and other polyploidy inducing agents discovered in our screen represent potential targeted agents for AMKL. Furthermore, since diMF acted similarly on megakaryoblasts with the various genetic lesions associated with each of the different classes of AMKL, we predict that this approach will be an effective therapeutic strategy for all categories of megakaryocytic neoplasms. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3864-3864
Author(s):  
Julia E Draper ◽  
William G Wood ◽  
Catherine Porcher ◽  
Paresh Vyas

Abstract Abstract 3864 Precise regulation of Gata1 expression is required in order to control the balance between lymphoid/granulomonocytic (GM) and megakaryocytic-erythroid (MegE) specification, as well as to ensure correct differentiation of the MegE lineages. Transcriptional control is conferred in part by cis regulatory elements. An upstream enhancer, HS-3.5, and the erythroid first exon IE of Gata1 are necessary and sufficient to direct transgene expression in primitive but not definitive erythroid cells. Transgene expression in definitive red blood cells is restored by inclusion of an intronic DNaseI hypersensitive site, HS+3.5. Here we report the characterization of the HS+3.5 null embryonic stem cells and the HS+3.5 knockout mouse. In vitro differentiation of HS+3.5 null ES cells resulted in reduced myeloid and megakaryocytic colony formation compared to wild type. The ΔHS+3.5 ES cells retained normal primitive erythroid colony formation. ΔHS+3.5 definitive erythroid colony progenitors displayed a decreased sensitivity to Interleukin 3 (IL3) signalling compared to wild type. ΔHS+3.5 mice were viable and had normal blood counts and films. GM and erythroid progenitors also developed normally. However, there was a mild expansion of the E14.5 foetal liver Megakaryocytic Progenitor (MkP) compartment and an increase in Gata2 expression in both the bone marrow and foetal liver MkPs. Turning to Gata1, a decrease in Gata1 expression was observed in the following compartments: the bone marrow long term haematopoietic stem cell (LT-HSC) and the foetal liver common myeloid progenitor (CMP). The relationship between the effect of the HS+3.5 deletion on Gata1 expression and the haematopoietic phenotype will be discussed. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3257-3257
Author(s):  
Renata Grozovsky ◽  
Silvia Giannini ◽  
Karin M. Hoffmeister

Abstract Abstract 3257 The regulatory mechanisms of platelet homeostasis remain elusive. We investigated here the role of hepatic asialoglycoprotein receptor (a.k.a. Ashwell-Morell receptor) in platelet clearance. Mice lacking the hepatic asialoglycoprotein receptor Asgpr2 subunit had increased platelet survivals (T1/2 = 49.5±2h) when compared to wild type (WT, T1/2 = 31±4h) mice. Consequently, Asgpr2−/− mice had platelet counts increased by ∼20%, compared to WT, with increased terminal galactose exposure, as demonstrated using the galactose specific lectin RCA1. Bone marrow and spleen megakaryocyte numbers were reduced by ∼15% and ∼20% in Asgpr2−/− mice, compared to WT mice. Sialidase (NA, Clostidium perfringens, 50mU/mice) maximally desialylated circulating platelets when injected intravenously, as evidenced by increased RCA1 binding. Sialidase injection resulted in a ∼60% depletion of circulating platelets after 24h in Asgpr2−/− mice, compared to >90% in WT mice, indicating that desialylated platelets were partially removed by Asgpr1/2. In contrast to platelets, red blood cell counts were unaffected by sialidase treatment. Sialidase injection for 72h resulted in a 2.3-fold and 1.2-fold increase in megakaryocyte numbers in the spleen and bone marrow of WT mice, respectively, but not in Asgpr2−/− mice. In contrast to sialidase treatment, injections of rabbit anti-mouse platelet serum (RAMPS) depleted >95% of circulating platelets and increased by 70% bone marrow, but not spleen MK numbers in both WT and Asgpr2−/− mice. The data shows that removal of desialylated, i.e, senescent, platelets by the hepatic Ashwell-Morell receptor differs to that of antibody-mediated platelet clearance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 859-859 ◽  
Author(s):  
Chen Zhao ◽  
Yan Xiu ◽  
John M Ashton ◽  
Lianping Xing ◽  
Yoshikazu Morita ◽  
...  

Abstract Abstract 859 RelB and NF-kB2 are the main effectors of NF-kB non-canonical signaling and play critical roles in many physiological processes. However, their role in hematopoietic stem/progenitor cell (HSPC) maintenance has not been characterized. To investigate this, we generated RelB/NF-kB2 double-knockout (dKO) mice and found that dKO HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Transplantation of wild-type bone marrow cells into dKO mice to assess the role of the dKO microenvironment showed that wild-type HSPCs cycled more rapidly, were more abundant, and had developmental aberrancies: increased myeloid and decreased lymphoid lineages, similar to dKO HSPCs. Notably, when these wild-type cells were returned to normal hosts, these phenotypic changes were reversed, indicating a potent but transient phenotype conferred by the dKO microenvironment. However, dKO bone marrow stromal cell numbers were reduced, and bone-lining niche cells supported less HSPC expansion than controls. Further, increased dKO HSPC proliferation was associated with impaired expression of niche adhesion molecules by bone-lining cells and increased inflammatory cytokine expression by bone marrow cells. Thus, RelB/NF-kB2 signaling positively and intrinsically regulates HSPC self-renewal and maintains stromal/osteoblastic niches and negatively and extrinsically regulates HSPC expansion and lineage commitment through the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1224-1224
Author(s):  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1224 How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we show that, in a hematopoietic stem cell (HSC) -specific inducible knockout model, the cytoskeleton-modulating protein profilin 1 (pfn1) is essential for the maintenance of multiple cell fates and metabolism of HSCs. The deletion of pfn1 in HSCs led to bone marrow failure, loss of quiescence, increased apoptosis, and mobilization of HSCs in vivo. In reconstitution analyses, pfn1-deficient cells were selectively lost from mixed bone marrow chimeras. By contrast, pfn1 deletion did not significantly affect differentiation or homing of HSCs. When compared to wild-type cells, levels of expression of Hif-1a, EGR1, and MLL were lower and an earlier switch from glycolysis to mitochondrial respiration with increased ROS level was observed in pfn1-deficient HSCs. This switch preceded the detectable alteration of other cell fates. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that pfn1 maintained metabolism is required for the quiescence of HSCs. Furthermore, we demonstrated that expression of wild-type pfn1 but not the actin-binding deficient or poly-proline binding-deficient mutants of pfn1 rescued the defective phenotype of pfn1-deficient HSCs. This result indicates that actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Thus, pfn1 plays an essential role in regulating the retention and metabolism of HSCs in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4831-4831
Author(s):  
Stefanie Bugl ◽  
Stefan Wirths ◽  
R Müller Martin ◽  
Märklin Melanie ◽  
Tina Wiesner ◽  
...  

Abstract Abstract 4831 Introduction: Previously it was demonstrated that lymphopoiesis is rapidly established after transplantation of wild type stem cells into lymphopenic NODSCIDcγ−/− mice. These data were interpreted as evidence for an “empty” preformed lymphopoietic niche being replenished by lymphoid progenitors. We hypothesized that antibody-induced neutropenia might influence early post transplant fate decision to myeloid rather than lymphoid differentiation resulting in delayed lymphoid reconstitution. Materials and Methods: 25,000 flow sorted CD45.2-expressing wild type Lin-/Sca1+/c-Kit+ (LSK) cells from C57BL/6 mice were transplanted into sublethally irradiated B-/T-/NK-cell deficient NODSCIDcγ−/− mice (CD45.1). Three groups of n = 7 mice received anti-Gr1 or anti-1A8 i.p. every 48 h to induce continuous antibody-mediated neutropenia vs. PBS as control. Blood was harvested at regular intervals to monitor the engraftment. After 16, 22, and 34 days, animals were sacrificed and underwent blood and bone marrow analysis. Results: Hematopoietic regeneration started with the emergence of donor-derived monocytes in all groups as well as neutrophils in the control group as early as 9 days after transplantation. On day 14, B cells were to be detected for the first time, followed by T lymphocytes approximately 20 days after transplantation. Besides the fact that neutrophils were undetectable in the antibody treated groups, the peripheral blood revealed no significant changes between the neutropenic mice and the control group at any point of time. At the bone marrow level, an increase of LSK and granulocyte-macrophage progenitors (GMPs) at the expense of megakaryocyte erythrocyte progenitor cells (MEPs) was found in neutropenic mice. Common lymphoid progenitors (CLPs), however, were not significantly different. Conclusions: The engraftment of wild type donor cells after hematopoietic stem cell transplantation into NODSCIDcγ−/− mice started with the production of monocytes and neutrophils. B-lymphocytes were detectable by day 14 after transplantation. The production of T-cells started around day 20. Continuous antibody-mediated neutropenia did not significantly delay lymphoid regeneration. Although the marrow of neutropenic mice displayed increased proliferation of granulocyte progenitors, CLPs were unchanged. We conclude that the detection of donor-derived lymphocytes in the host peripheral blood is a relatively early event after LSK transplantation. Moreover, antibody induced neutropenia is not sufficient to induce sustainable changes in early hematopoietic fate decisions on the bone marrow level. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document