scholarly journals Completely Non-Myeloablative/Non-Lymphoablative Conditioning for BMT/HSCT Using Anti-Ckit Immunotoxins

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 493-493 ◽  
Author(s):  
Agnieszka Czechowicz ◽  
Rahul Palchaudhuri ◽  
Amelia Scheck ◽  
Jonathan Hoggatt ◽  
Borja Saez ◽  
...  

Abstract Bone marrow/hematopoietic stem cell transplantation (BMT/HSCT) holds the remarkable ability to correct any blood or immune disease. Unfortunately, despite the tremendous potential of this procedure, BMT remains fairly limited in part due to the severe risks associated with the toxic conditioning regimens, such as irradiation and chemotherapy that are currently employed to enable donor HSC engraftment. Although significant work has been done to dose reduce the amount of these preparative agents, patients still experience many side effects including neutropenia/infections, anemia, mucositis, infertility, organ damage and secondary malignancies. Complete elimination of these toxic conditioning regimens could dramatically improve the safety profile of BMT and expand the potential applications to include many more non-malignant hematologic disorders, a wide variety of autoimmune disorders including diabetes, as well as facilitate solid organ tolerance. We have previously shown that competition with host HSC limits donor HSC engraftment, and that in immunocompromised hosts antagonistic anti-ckit monoclonal antibodies deplete host HSC and are an effective and safe alternative conditioning approach (Czechowicz, Science 2007). However, this modality of conditioning is not effective in hosts with competent immune systems. To further understand efficacy of antagonistic anti-ckit conditioning, we tested its functionality in multiple strains of immunocompromised mice and show that inhibition of SCF signaling is not sufficient to deplete host HSC in mouse strains with competent B-cells or T-cells, and that the addition of these cells interferes with the ability of antagonistic anti-ckit antibodies to effectively condition. In an attempt to overcome this hurdle, wildtype mice were immune-depleted with a variety of regimens but none enabled antagonistic anti-ckit conditioning in the immunocompetent setting. To strengthen the potency of anti-ckit mAbs we linked them to protein synthesis toxins, which when internalized by host HSC led to their rapid decline in vitro and in vivo. Administration of anti-ckit-saporin to wild-type mice resulted in >99% depletion of host HSC (Ckit+Lin-Sca1+CD150+CD48-), and lack of residual host HSC activity in the bone marrow was confirmed by CFC assays and competitive transplantation into lethally irradiated recipients. Interestingly, although ckit is expressed by a majority of HSPC, LT-HSC were most significantly affected and no cellularity changes in the bone marrow were observed. Uniquely this regimen was entirely non-peripheral blood ablative unlike other more broadly targeted conditioning regimens such as CD45 immunotoxins (Palchaudhuri, Nat Biotech 2016), and treated animals did not experience any significant depletion of myeloid, lymphoid, or erythroid cells. Figure 1 Figure 1. Treatment with anti-ckit-saporin effectively conditioned wild-type animals and near complete donor granulocyte chimerism was rapidly achieved post transplantation of whole bone marrow cells (99.54 ± 0.35 % vs. 6.79 ± 0.57 %, p<0.001), a >25-fold increase compared to unconditioned controls. Similarly, anti-ckit-saporin conditioning enable efficient engraftment of FACS purified donor HSC (Ckit+Lin-Sca1+CD150+CD48-). In both settings, donor HSC chimerism matched donor granulocyte chimerism further confirming replacement of host HSC. Importantly, host immunity was entirely intact in these animals throughout, with slower recalibration of the longer-lived immune cells given the lack of their direct depletion. Figure 2 Figure 2. This work sets the stage for redefining the way BMT/HSCT is performed, as it opens up the possibility for entirely safe, quick and easy transplantation that potentially could be done in the outpatient setting with no perturbation to host immunity. Extrapolation of these methods to humans may enable efficient yet gentle conditioning regimens for transplantation, which is especially exciting in the gene-therapy settings where no immune suppression is required, allowing for simple, safe and curative treatment of a wide magnitude of grievous blood and immune diseases ranging from sickle cell to hemophilia to HIV. As multiple anti-ckit mAbs are currently in development and being tested in clinical trials, such an approach may be rapidly translatable to patients. Disclosures Czechowicz: Third Rock Ventures: Consultancy; Global Blood Therapeutics: Equity Ownership; Editas Medicines: Equity Ownership, Patents & Royalties; Decibel Therapeutics: Equity Ownership; Magenta Therapeutics: Consultancy, Equity Ownership, Patents & Royalties; Forty Seven Inc: Patents & Royalties. Palchaudhuri:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hoggatt:Magenta Therapeutics: Consultancy, Equity Ownership, Research Funding. Scadden:Teva: Consultancy; Apotex: Consultancy; Magenta Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Dr. Reddy's: Consultancy; GlaxoSmithKline: Research Funding; Fate Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Bone Therapeutics: Consultancy. Rossi:Magenta Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Intellia Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Moderna Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 523-523
Author(s):  
Rasoul Pourebrahimabadi ◽  
Zoe Alaniz ◽  
Lauren B Ostermann ◽  
Hung Alex Luong ◽  
Rafael Heinz Montoya ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease that develops within a complex microenvironment. Reciprocal interactions between the bone marrow mesenchymal stem/stromal cells (BM-MSCs) and AML cells can promote AML progression and resistance to chemotherapy (Jacamo et al., 2014). We have recently reported that BM-MSCs derived from AML patients (n=103) highly express p53 and p21 compared to their normal counterparts (n=73 p&lt;0.0001) (Hematologica, 2018). To assess the function of p53 in BM-MSCs, we generated traceable lineage specific mouse models targeting Mdm2 or Trp53 alleles in MSCs (Osx-Cre;mTmG;p53fl/fl and Osx-Cre;mTmG;Mdm2fl/+) or hematopoietic cells (Vav-Cre;mTmG;p53fl/fl and Vav-Cre;mTmG;Mdm2fl/+). Homozygote deletion of Mdm2 (Osx-Cre;Mdm2fl/fl) resulted in death at birth and displayed skeletal defects as well as lack of intramedullary hematopoiesis. Heterozygote deletion of Mdm2 in MSCs was dispensable for normal hematopoiesis in adult mice, however, resulted in bone marrow failure and thrombocytopenia after irradiation. Homozygote deletion of Mdm2 in hematopoietic cells (Vav-Cre;Mdm2fl/fl) was embryonically lethal but the heterozygotes were radiosensitive. We next sought to examine if p53 levels in BM-MSCs change after cellular stress imposed by AML. We generated a traceable syngeneic AML model using AML-ETO leukemia cells transplanted into Osx-Cre;mTmG mice. We found that p53 was highly induced in BM-MSCs of AML mice, further confirming our findings in primary patient samples. The population of BM-MSCs was significantly increased in bone marrow Osx-Cre;mTmG transplanted with syngeneic AML cells. Tunnel staining of bone marrow samples in this traceable syngeneic AML model showed a block in apoptosis of BM-MSCs suggesting that the expansion of BM-MSCs in AML is partly due to inhibition of apoptosis. As the leukemia progressed the number of Td-Tomato positive cells which represents hematopoietic lineage and endothelial cells were significantly decreased indicating failure of normal hematopoiesis induced by leukemia. SA-β-gal activity was significantly induced in osteoblasts derived from leukemia mice in comparison to normal mice further supporting our observation in human leukemia samples that AML induces senescence of BM-MSCs. To examine the effect of p53 on the senescence associated secretory profile (SASP) of BM-MSCs, we measured fifteen SASP cytokines by qPCR and found significant decrease in Ccl4, Cxcl12, S100a8, Il6 and Il1b upon p53 deletion in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) compared to p53 wildtype mice. To functionally evaluate the effects of p53 in BM-MSCs on AML, we deleted p53 in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) and transplanted them with syngeneic AML-ETO-Turquoise AML cells. Deletion of p53 in BM-MSCs strongly inhibited the expansion of BM-MSCs in AML and resulted in osteoblast differentiation. This suggests that expansion of BM-MSCs in AML is dependent on p53 and that deletion of p53 results in osteoblast differentiation of BM-MSCs. Importantly, deletion of p53 in BM-MSCs significantly increased the survival of AML mice. We further evaluated the effect of a Mdm2 inhibitor, DS-5272, on BM-MSCs in our traceable mouse models. DS-5272 treatment of Osx-cre;Mdm2fl/+ mice resulted in complete loss of normal hematopoietic cells indicating a non-cell autonomous regulation of apoptosis of hematopoietic cells mediated by p53 in BM-MSCs. Loss of p53 in BM-MSCs (Osx-Cre;p53fl/fl) completely rescued hematopoietic failure following Mdm2 inhibitor treatment. In conclusion, we identified p53 activation as a novel mechanism by which BM-MSCs regulate proliferation and apoptosis of hematopoietic cells. This knowledge highlights a new mechanism of hematopoietic failure after AML therapy and informs new therapeutic strategies to eliminate AML. Disclosures Khoury: Angle: Research Funding; Stemline Therapeutics: Research Funding; Kiromic: Research Funding. Bueso-Ramos:Incyte: Consultancy. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; NIH/NCI: Research Funding; CPRIT: Research Funding; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Aptose: Equity Ownership; Reata: Equity Ownership; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Amgen: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy. OffLabel Disclosure: Mdm2 inhibitor-DS 5272



Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4496-4496 ◽  
Author(s):  
Luke Eastburg ◽  
David A. Russler-Germain ◽  
Ramzi Abboud ◽  
Peter Westervelt ◽  
John F. DiPersio ◽  
...  

The use of post-transplant cyclophosphamide (PTCy) in the context of haploidentical stem cell transplant (haplo-SCT) has led to drastically reduced rates of Graft-vs-Host (GvH) disease through selective depletion of highly allo-reactive donor T-cells. Early trials utilized a reduced-intensity Flu/Cy/TBI preparative regimen and bone marrow grafts; however, relapse rates remained relatively high (Luznik et al. BBMT. 2008). This led to the increased use of myeloablative (MA) regimens for haplo-SCT, which have been associated with decreased relapse rates (Bashey et al. J Clin Oncol. 2013). Most studies have used a MA total body irradiation (TBI) based regimen for haplo-SCT. Preparative regimens using fludarabine and melphalan (FluMel), with or without thiotepa, ATG, and/or low dose TBI have also been reported using bone marrow grafts. Reports on the safety and toxicity of FluMel in the haplo-SCT setting with PTCy and peripheral blood stem cell (PBSC) grafts are lacking. In this two-center retrospective analysis, the safety/toxicity of FluMel as conditioning for haplo-SCT was evaluated. We report increased early mortality and toxicity using standard FluMel conditioning and PBSC grafts for patients undergoing haplo-SCT with PTCy. 38 patients at the University of Rochester Medical Center and the Washington University School of Medicine underwent haplo-SCT with FluMel conditioning and PBSC grafts between 2015-2019. Outcomes were measured by retrospective chart review through July 2019. 34 patients (89.5%) received FluMel(140 mg/m2). Two patients received FluMel(100 mg/m2) and two patients received FluMel(140 mg/m2) + ATG. The median age at time of haplo-SCT was 60 years (range 21-73). 20 patients were transplanted for AML, eight for MDS, two for PMF, two for NHL, and five for other malignancies. The median Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI) score was 4 (≥3 indicates high risk). 11 patients had a history of prior stem cell transplant, and 16 patients had active disease prior to their haplo-SCT. Seven patients had sex mismatch with their stem cell donor. Median donor age was 42 (range 21-71). 20 patient deaths occurred by July 2019 with a median follow up of 244 days for surviving patients. Nine patients died before day +100 (D100, "early mortality"), with a D100 non-relapse mortality (NRM) rate of 24%. Median overall and relapse free survival (OS and RFS, respectively) were 197 days (95% CI 142-not reached) and 180 days (95% CI 141-not reached), respectively, for the entire cohort. The 1 year OS and NRM were 29% and 50%. The incidence of grades 2-4cytokine release syndrome (CRS) was 66%, and 52% of these patients were treated with tocilizumab. CRS was strongly associated with early mortality, with D100 NRM of 36% in patients with grade 2-4 CRS compared to 0% in those with grade 0-1. The incidence of acute kidney injury (AKI) was 64% in patients with grade 2-4 CRS, and 8% in those without (p < 0.001). 28% of patients with AKI required dialysis. Grade 2-4 CRS was seen in 54% of patients in remission prior to haplo-SCT and in 92% of those with active disease (p = 0.02). Of the 9 patients with early mortality, 89% had AKI, 44% needed dialysis, and 100% had grade 2-4 CRS, compared to 31%, 10%, and 55% in those without early mortality (p = 0.002, p = 0.02, p = 0.01). Early mortality was not significantly associated with age, HCT-CI score, second transplant, disease status at transplant, total dose of melphalan, volume overload/diuretic use, or post-transplant infection. In conclusion, we observed a very high rate of NRM with FluMel conditioning and PBSC grafts for haplo-SCT with PTCy. The pattern of toxicity was strongly associated with grade 2-4 CRS, AKI, and need for dialysis. These complications may be mediated by excessive inflammation in the context of allo-reactive donor T-cell over-activation. Consistent with this, multiple groups have shown that FluMel conditioning in haplo-SCT is safe when using bone marrow or T-cell depleted grafts. Based on our institutional experiences, we would discourage the use of FluMel as conditioning for haplo-SCT with PTCy with T-cell replete PBSC grafts. Alternative regimens or variations on melphalan-based regimens, such as fractionated melphalan dosing or inclusion of TBI may improve outcomes but further study and randomized controlled trials are needed. This study is limited in its retrospective design and sample size. Figure Disclosures DiPersio: WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Karyopharm Therapeutics: Consultancy; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liesveld:Onconova: Other: Data safety monitoring board; Abbvie: Membership on an entity's Board of Directors or advisory committees.



Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 804-804 ◽  
Author(s):  
Mark Bustoros ◽  
Chia-jen Liu ◽  
Kaitlen Reyes ◽  
Kalvis Hornburg ◽  
Kathleen Guimond ◽  
...  

Abstract Background. This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods. Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al., Blood 2014. The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and Dexamethasone at days 1, 8, 15, and 22. This induction phase is followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle is defined as 28 consecutive days, and therapy is administered for a total of 24 cycles total. Bone marrow samples from all patients were obtained before starting therapy for baseline assessment, whole exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle to isolate cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Stem cell collection is planned for all eligible patients. Results. In total, 26 of the planned 56 patients were enrolled in this study from February 2017 to April 2018. The median age of the patients enrolled was 63 years (range, 41 to 73) with 12 males (46.2%). Interphase fluorescence in situ hybridization (iFISH) was successful in 18 patients. High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 11 patients (61.1%). The median number of cycles completed was 8 cycles (3-15). The most common toxicities were fatigue (69.6%), followed by rash (56.5%), and neutropenia (56.5%). The most common grade 3 adverse events were hypophosphatemia (13%), leukopenia (13%), and neutropenia (8.7%). One patient had grade 4 neutropenia during treatment. Additionally, grade 4 hyperglycemia occurred in another patient. As of this abstract date, the overall response rate (partial response or better) in participants who had at least 3 cycles of treatment was 89% (23/26), with 5 Complete Responses (CR, 19.2%), 9 very good partial responses (VGPR, 34.6%), 9 partial responses (34.6%), and 3 Minimal Responses (MR, 11.5%). None of the patients have shown progression to overt MM to date. Correlative studies including WES of plasma cells and single-cell RNA sequencing of the bone microenvironment cells are ongoing to identify the genomic and transcriptomic predictors for the differential response to therapy as well as for disease evolution. Furthermore, we are analyzing the cfDNA and CTCs of the patients at different time points to investigate their use in monitoring minimal residual disease and disease progression. Conclusion. The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma. The high response rate, convenient schedule with minimal toxicity observed to date are promising in this patient population at high risk of progression to symptomatic disease. Further studies and longer follow up for disease progression are warranted. Disclosures Bustoros: Dava Oncology: Honoraria. Munshi:OncoPep: Other: Board of director. Anderson:C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy; Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Ghobrial:Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; BMS: Consultancy.



Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.



Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3229-3229 ◽  
Author(s):  
Ivana N Micallef ◽  
Eric Jacobsen ◽  
Paul Shaughnessy ◽  
Sachin Marulkar ◽  
Purvi Mody ◽  
...  

Abstract Abstract 3229 Poster Board III-166 Introduction Low platelet count prior to mobilization is a significant predictive factor for mobilization failure in patients with non-Hodgkin's lymphoma (NHL) or Hodgkin's disease (HD) undergoing autologous hematopoietic stem cell (HSC) transplantation (auto-HSCT; Hosing C, et al, Am J Hematol. 2009). The purpose of this study is to assess the efficacy of HSC mobilization with plerixafor plus G-CSF in patients with concomitant thrombocytopenia undergoing auto-HSCT. Methods Patients who had failed successful HSC collection with any mobilization regimen were remobilized with plerixafor plus G-CSF as part of a compassionate use program (CUP). Mobilization failure was defined as the inability to collect 2 ×106 CD34+ cells/kg or inability to achieve a peripheral blood count of ≥10 CD34+ cells/μl without having undergone apheresis. As part of the CUP, G-CSF (10μg/kg) was administered subcutaneously (SC) every morning for 4 days. Plerixafor (0.24 mg/kg SC) was administered in the evening on Day 4, approximately 11 hours prior to the initiation of apheresis the following day. On Day 5, G-CSF was administered and apheresis was initiated. Plerixafor, G-CSF and apheresis were repeated daily until patients collected the minimum of 2 × 106 CD34+ cells/kg for auto-HSCT. Patients in the CUP with available data on pre-mobilization platelet counts were included in this analysis. While patients with a platelet count <85 × 109/L were excluded from the CUP, some patients received waivers and were included in this analysis. Efficacy of remobilization with plerixafor + G-CSF was evaluated in patients with platelet counts ≤ 100 × 109/L or ≤ 150 × 109/L. Results Of the 833 patients in the plerixafor CUP database, pre-mobilization platelet counts were available for 219 patients (NHL=115, MM=66, HD=20 and other=18.). Of these, 92 patients (NHL=49, MM=25, HD=8 and other=10) had pre-mobilization platelet counts ≤ 150 × 109/L; the median platelet count was 115 × 109/L (range, 50-150). The median age was 60 years (range 20-76) and 60.4% of the patients were male. Fifty-nine patients (64.1%) collected ≥2 × 109 CD34+ cells/kg and 13 patients (14.1%) achieved ≥5 × 106 CD34+ cells/kg. The median CD34+ cell yield was 2.56 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 68.5%. The median time to neutrophil and platelet engraftment was 12 days and 22 days, respectively. Similar results were obtained when efficacy of plerixafor + G-CSF was evaluated in 29 patients with platelet counts ≤ 100 × 109/L (NHL=12, MM=10, HD=3 and other=4). The median platelet count in these patients was 83 × 109/L (range, 50-100). The median age was 59 years (range 23-73) and 60.4% of the patients were male. The minimal and optimal cell dose was achieved in 19(65.5%) and 3(10.3%) patients, respectively. The median CD34+ cell yield was 2.92 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 62.1%. The median time to neutrophil and platelet engraftment was 12 days and 23 days, respectively. Conclusions For patients mobilized with G-CSF alone or chemotherapy ±G-CSF, a low platelet count prior to mobilization is a significant predictor of mobilization failure. These data demonstrate that in patients with thrombocytopenia who have failed prior mobilization attempts, remobilization with plerixafor plus G-CSF allows ∼65% of the patients to collect the minimal cell dose to proceed to transplantation. Thus, in patients predicted or proven to be poor mobilizers, addition of plerixafor may increase stem cell yields. Future studies should investigate the efficacy of plerixafor + G-CSF in front line mobilization in patients with low platelet counts prior to mobilization. Disclosures Micallef: Genzyme Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jacobsen:Genzyme Corporation: Research Funding. Shaughnessy:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Marulkar:Genzyme Corporation: Employment, Equity Ownership. Mody:Genzyme Corporation: Employment, Equity Ownership. van Rhee:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3279-3279 ◽  
Author(s):  
Ann Janssens ◽  
Michael D. Tarantino ◽  
Robert Bird ◽  
Maria Gabriella Mazzucconi ◽  
Ralph Vincent V. Boccia ◽  
...  

Abstract Abstract 3279 Background: ITP is an autoimmune disorder characterized by increased platelet destruction and suboptimal platelet production. Romiplostim stimulates platelet production via the TPO-receptor, and is recommended for second- and third-line treatment of chronic ITP in adults. We report final data from a large prospective study of romiplostim in adults with ITP of varying duration and severity. Methods: Eligibility criteria were broad: patients ≥18 years of age, who had received prior ITP therapies (final protocol amendment: ≥1, previous amendments: ≥3), with low platelet counts (final amendment: ≤ 30 × 109/L, previous amendments: ≤ 10, ≤ 20 × 109/L) or experiencing uncontrolled bleeding. The only excluded comorbidities were: hematological malignancy, myeloproliferative neoplasms, MDS and bone marrow stem cell disorder. Romiplostim was initiated at 1 (final amendment) or 3 (previous amendments) μg/kg/week, with dose adjustments allowed to maintain platelet counts ≥50 × 109/L. Patients could continue on study until they had access to commercially available romiplostim. Rescue medications were allowed at any time; concurrent ITP therapies could be reduced when platelet counts were > 50 × 109/L. Primary endpoint was incidence of adverse events (AEs) and antibody formation. Secondary endpoint was platelet response, defined as either (1) doubling of baseline count and ≥ 50 × 109/L or (2) ≥20 × 109/L increase from baseline. Results: A total of 407 patients received romiplostim, 60% of whom were female. Median (Q1, Q3) time since ITP diagnosis was 4.25 (1.20, 11.40) years (maximum 57.1 years), with 51% of patients splenectomised and 39% receiving baseline concurrent ITP therapies. Seventy-one percent of patients completed the study, with requirement for alternative therapy and withdrawn consent the most common reasons for discontinuation (5% each). Median (Q1, Q3) on-study treatment duration was 44.29 (20.43, 65.86) weeks (maximum 201 weeks), with a total of 20,201 subject-weeks on study. Incidence and type of AEs were consistent with previous studies. The most common serious treatment-related AEs were cerebrovascular accident, headache, bone marrow reticulin fibrosis (with no evidence of positive trichrome staining for collagen and no evidence suggesting primary idiopathic myelofibrosis), nausea, deep vein thrombosis, hemorrhage and pulmonary embolism, with each reported in 2 of 407 (0.5%) patients. All other serious treatment-related AEs were each reported in one patient. Eighteen patients died; 3 deaths (hemolysis, intestinal ischaema, aplastic anemia) were considered treatment-related. No neutralizing antibodies to romiplostim or TPO were reported. Approximately 90% of patients achieved each of the platelet response definitions, regardless of splenectomy status. Overall, median (Q1, Q3) time to response was 2 (1, 4) weeks for response definition 1, and 1 (1, 3) week for response definition 2. Median (Q1, Q3) baseline platelet count was 14 (8, 21) × 109/L. After 1 week of treatment median (Q1, Q3) platelet count had increased to 42 (18, 101) × 109/L. From week 8 onwards, and excluding counts within 8 weeks of rescue medication use, median platelet counts were consistently above 100 × 109/L (range 101.0–269.5 × 109/L). Median (Q1, Q3) average weekly romiplostim dose was 3.62 (1.99, 6.08) μg/kg. Summary/conclusions: This is the largest prospective study in adult ITP reported to date. The data reported here are similar to those reported for previous romiplostim studies, with romiplostim able to safely induce a rapid platelet response in adult ITP patients with low platelet counts or bleeding symptoms. Romiplostim is an important, well-tolerated, treatment option for adult ITP patients, which significantly increases and maintains platelet counts. Adverse Event Subject Incidence Platelet Response Disclosures: Janssens: Amgen: Consultancy; Roche: Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Tarantino:Cangene corporation: Research Funding; Baxter: Research Funding; Talecris: Honoraria, Speakers Bureau; Up-to-date: Patents & Royalties; The Bleeding and Clotting Disorders Institute: Board Member. Bird:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Boccia:Amgen: Equity Ownership, Honoraria, Speakers Bureau. Lopez-Fernandez:Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kozak:Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Steurer:Amgen: Honoraria. Dillingham:Amgen Limited: Employment, Equity Ownership. Lizambri:Amgen: Employment, Equity Ownership.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 883-883
Author(s):  
Yu-Tzu Tai ◽  
Betty Y Chang ◽  
Sun-Young Kong ◽  
Mariateresa Fulciniti ◽  
Guang Yang ◽  
...  

Abstract Abstract 883 Specific expression of Bruton's tyrosine kinase (Btk) in osteoclasts (OC), but not osteoblasts (OB), suggests its role in regulating osteoclastogenesis. Although Btk is critical in B cell maturation and myeloid function, it has not been characterized in plasma cell malignancies including multiple myeloma (MM) and Waldenström Macroglobulinemia (WM). We here investigate effects of PCI-32765, an oral, potent, and selective Btk inhibitor with promising clinical activity in B-cell malignancies, on OC differentiation and function within MM bone marrow (BM) microenvironment, as well as on MM and WM cancer cells. We further define molecular targets of Btk signaling cascade in OCs and MM in the BM milieu. In CD14+ OC precursor cells, RANKL and M-CSF stimulate phosphorylation of Btk in a time-dependent fashion; conversely, PCI-32765 abrogates RANKL/M-CSF-induced activation of Btk and downstream PLCγ2. Importantly, PCI-32765 decreased number of multinucleated OC (>3 nuclei) by tartrate-resistant acid phosphatase (TRAP) staining and the secretion of TRAP5b (ED50 = 17 nM), a specific mature OC marker. It increased size of OCs and number of nuclei per OC, with significantly defective bone resorption activity as evidenced by diminished pit formation on dentine slices. Moreover, lack of effect of Dexamethasone on OC activity was overcome by combination of Dexamethasone with PCI-32765. PCI-32765 significantly reduced cytokine and chemokine secretion from OC cultures, including MIP1α, MIP1β, IL-8, TGFβ1, RANTES, APRIL, SDF-1, and activin A (ED50 = 0.1–0.48 nM). It potently decreased IL-6, SDF-1, MIP1α, MIP1β, and M-CSF in CD138-negative cell cultures from active MM patients, associated with decreased TRAP staining in a dose-dependent manner. In MM and WM cells, immunoblotting analysis confirmed a higher Btk expression in CD138+ cells from majority of MM patients (4 out of 5 samples) than MM cell lines (5 out of 9 cell lines), whereas microarray analysis demonstrated a higher expression of Btk and its downstream signaling components in WM cells than in CD19+ normal bone marrow cells. PCI-32765 significantly inhibits SDF-1-induced adhesion and migration of MM cells. It further blocked cytokine expression (MIP1a, MIP-1β) at mRNA level in MM and WM tumor cells, correlated with inhibition of Btk-mediated pPLCγ2, pERK and NF-kB activation. Importantly, PCI-32765 inhibited growth and survival triggered by IL-6 and coculture with BM stromal cells (BMSCs) or OCs in IL-6-dependent INA6 and ANBL6 MM cells. Furthermore, myeloma stem-like cells express Btk and PCI-32765 (10–100 nM) blocks their abilities to form colonies from MM patients (n=5). In contrast, PCI-32765 has no adverse effects on Btk-negative BMSCs and OBs, as well as Btk-expressing dendritic cells. Finally, oral administration of PCI-32765 (12 mg/kg) in mice significantly suppresses MM cell growth (p< 0.03) and MM cell-induced osteolysis on implanted human bone chips in a humanized myeloma (SCID-hu) model. Together, these results provide compelling evidence to target Btk in the BM microenvironment against MM and WM., strongly supporting clinical trials of PCI-32765 to improve patient outcome in MM and WM. Disclosures: Chang: Pharmacyclics Inc: Employment. Buggy:Pharmacyclics, Inc.: Employment, Equity Ownership. Elias:Pharmacyclics Inc: Consultancy. Treon:Millennium: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals, Inc.: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol-Myers Squibb: Consultancy; Actelion: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 860-860
Author(s):  
Pulin Li ◽  
Emily K Pugach ◽  
Elizabeth B Riley ◽  
Dipak Panigrahy ◽  
Garrett C Heffner ◽  
...  

Abstract Abstract 860 During bone marrow transplantation, hematopoietic stem/progenitor cells (HSPCs) are exposed to various stress signals, and undergo homing, rapid proliferation and differentiation in order to achieve engraftment. To explore how fate decisions are made under such stress conditions, we developed a novel imaging-based competitive marrow transplantation in zebrafish. The feasibility of handling hundreds of zebrafish for transplantation per day allowed us to screen a library of 480 small molecules with known bioactivity, aimed at identifying new drugs and pathways regulating HSPC engraftment. Two structurally related eicosanoids, 11,12-epoxyeicosatrienoic acid (EET) and 14,15-EET, were able to enhance GFP+ marrow engraftment compared to DsRed2+ engraftment in zebrafish. This remarkable effect of EETs on adult marrow prompted us to study the effect of EETs in embryonic hematopoiesis. Treating zebrafish embryos with 11,12-EET during definitive hematopoiesis increased the HSPC marker Runx1 expression in the AGM (Aorta-Gonad-Mesonephros), resulting in a significant increase of HSPC in the next hematopoietic site, caudal hematopoietic tissue, the equivalent of fetal liver/placenta in mammals. The same treatment condition also induced ectopic Runx1 expression in the tail mesenchyme, a non-hematopoietic tissue. Microarray analysis on EET-treated zebrafish embryos revealed an upregulation of genes involved in stress response, especially Activator Protein 1 (AP-1) family members. Genetic knockdown experiments confirmed AP-1 members, especially JunB and its binding partners, cFos and Fosl2, are required for Runx1 induction. Motif analysis also predicted several conserved AP-1 binding sites in the Runx1 enhancer regions. To understand how EETs induced AP-1 expression, a suppressor screen was performed in zebrafish embryos. The screen revealed that activation of both PI3K/Akt and Stat3 are required for induced AP-1 expression, and therefore Runx1 upregulation. Similarly, ex vivo treatment of mouse whole bone marrow with 11,12-EET resulted in a 2-fold increase of long-term repopulating units. Microarray data had previously shown that Cyp2j6, one of the cytochrome P450 enzymes involved in EET biosynthesis from arachidonic acid, is enriched in quiescent mouse long-term HSCs. To further increase the EET levels in HSPCs, human CYP2C8 enzyme was over-expressed in transgenic mice using the Tie2 promoter. These transgenic mice have a 4-fold increase of long-term multi-lineage repopulating unit compared to their wild-type siblings. In purified mouse HSPCs, EETs directly and cell-autonomously activate PI3K/AKT pathway. Co-treatment of mouse bone marrow with EET and a PI3K inhibitor, LY294,002, completely blocked EET-induced enhancement of mouse bone marrow engraftment. In conclusion, we performed the first competitive marrow transplantation-based chemical screen, leading to the discovery of arachidonic acid-cytochrome P450-EETs as a novel modulator of HSC cell fate decision. PI3K/Akt and Stat3 pathways activated by EETs are required for adult HSPC engraftment and/or embryonic HSC specification, partially through transcriptional regulation of AP-1. We also demonstrated the requirement of AP-1 family members for Runx1 expression during embryonic development. This discovery may have clinical application in marrow or cord blood transplantation. Disclosures: Daley: iPierian, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Epizyme, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Verastem, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Solasia, KK: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MPM Capital, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Zon:Fate Therapeutics: Founder; Stemgent: Consultancy.



Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2810-2810
Author(s):  
Srdan Verstovsek ◽  
Michael R. Savona ◽  
Ruben A. Mesa ◽  
Stephen Oh ◽  
Hua Dong ◽  
...  

Abstract Background: Simtuzumab (SIM) is a humanized monoclonal antibody that inhibits lysyl oxidase-like molecule 2 (LOXL2), an extracellular matrix enzyme that catalyzes the covalent cross-linking of collagen and is widely expressed across many fibrotic diseases. In pre-clinical models, inhibition of LOXL2 blocks fibroblast activation, which plays an important role in the development of organ fibrosis. In Phase 1 studies, SIM was well-tolerated in patients (pts) with advanced solid tumors, liver fibrosis, and idiopathic pulmonary fibrosis (IPF). A Phase 2, open-label study to determine the efficacy of SIM alone (Stage 1) and combined with ruxolitinib (rux) (Stage 2) in pts with primary myelofibrosis (PMF) and post-ET/PV MF was initiated. Methods: Eligible pts had intermediate-1, intermediate-2, or high risk disease and Eastern Cooperative Oncology Group performance status of <2. The primary endpoint was rate of clinical response as defined by a reduction in bone marrow fibrosis score following 24 weeks of treatment with SIM. Patients were randomized in a 1:1 ratio to receive 200 mg or 700 mg SIM by intravenous infusion every 2 weeks as monotherapy (Stage 1, n=24) or combined with rux (Stage 2, n=30). Patients received SIM for up to 24 weeks. Bone marrow biopsies and aspirates were performed approximately every 3 months. Bone marrow fibrosis scoring was performed and quantified at local investigator sites using the European Consensus on Grading Bone Marrow Fibrosis. Myelofibrosis symptoms were evaluated using the Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF) and changes in hematologic parameters and splenomegaly were assessed. Results: Between 7/14/11 and 9/22/14, 54 pts were randomized and treated (200 mg SIM [n=12], 700 mg SIM [n=12], 200 mg SIM/rux [n=15], and 700 mg SIM/rux [n=15]). In Stage 1, 0 subjects (0%) in the SIM 200 mg group and 2 subjects (16.7%; 90% CI 3.0%, 43.8%) in the SIM 700 mg group showed a reduction in bone marrow fibrosis score from Baseline to Week 24. In Stage 2, 1 subject (6.7%; 90% CI 0.3%, 27.9%) in the SIM 200 mg/rux group and 2 subjects (13.3%, 90% CI 2.4%, 36.3%) in the SIM 700 mg/rux group showed a reduction in bone marrow fibrosis score from Baseline to Week 24. In an exploratory analysis, similar numbers of subjects showed increases in bone marrow fibrosis scores. SIM treatment was not associated with meaningful improvements in hematologic parameters or reductions in MPN-SAF score or spleen size. The most frequent adverse events were those commonly associated with MF, including constitutional symptoms and reductions in hematological parameters. Conclusions: SIM treatment alone or in combination with rux is safe but does not reliably reduce bone marrow fibrosis in pts with MF. The reason for reduction of marrow fibrosis in some patients and increase in others is unclear and may be sampling variability. Clinical studies of SIM in IPF and liver fibrosis are ongoing. Disclosures Savona: Karyopharm: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees, Research Funding; TG Therapeutics: Research Funding; Astex Pharmaceuticals, Inc: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Mesa:Incyte Corporation: Research Funding; CTI Biopharma: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Pfizer: Research Funding; Promedior: Research Funding; Genentech: Research Funding; NS Pharma: Research Funding; Gilead: Research Funding. Oh:CTI Biopharma: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees. Dong:Gilead Sciences: Consultancy, Equity Ownership. Thai:Gilead Sciences: Employment, Equity Ownership. Gotlib:Allakos, Inc.: Consultancy.



Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1462-1462
Author(s):  
Lindsay Meg Gurska ◽  
Rachel Okabe ◽  
Meng Maxine Tong ◽  
Daniel Choi ◽  
Kristina Ames ◽  
...  

Abstract The Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF), are clonal hematopoietic stem cell disorders characterized by the proliferation of one or more myeloid lineage compartments. Activation of JAK/STAT signaling is a major driver of all Ph-negative MPNs. During disease progression, MPN patients experience increased pro-inflammatory cytokine secretion, leading to remodeling of the bone marrow microenvironment and subsequent fibrosis. The JAK inhibitor ruxolitinib is an approved targeted therapy for MPN patients and has shown promise in its ability to reduce splenomegaly and the cytokine storm observed in patients. However, JAK inhibitors alone are not sufficient to reduce bone marrow fibrosis or to eliminate the JAK2-mutated clone. Furthermore, JAK inhibitor persistence, or reactivation of JAK/STAT signaling upon chronic JAK inhibitor treatment, has been observed in both MPN mouse models and MPN patients. Therefore, there is an urgent need for new treatment options in MPN. The tyrosine kinase RON, a member of the MET kinase family, has well-characterized roles in erythroblast proliferation and pro-inflammatory cytokine production. RON can be phosphorylated by JAK2 to stimulate erythroblast proliferation. However, the role of RON in MPN pathogenesis is unknown. We found that the ALK/MET/RON/ROS1 inhibitor crizotinib inhibited colony formation by MPN patient CD34+ cells, regardless of their disease subtype, mutation status, or JAK2 inhibitor treatment history (Figure 1A). To determine whether this is due to inhibition of the JAK/STAT signaling pathway, we performed phospho-flow cytometry of STAT3 and STAT5 in myelofibrosis patient erythroblasts treated with crizotinib ex vivo as well as Western blot analysis in the JAK2-mutated cell lines SET2 and HEL. We found that crizotinib inhibits the phosphorylation of JAK2, STAT3, and STAT5 (Figure 1B). Since crizotinib has not been reported to directly inhibit JAK2, we asked whether these effects of crizotinib in MPN cells could be explained by RON inhibition. Consistent with this hypothesis, we observed that shRNA knockdown of multiple RON isoforms also decreases the phosphorylation of JAK2, STAT5, and STAT3 in HEL cells (Figure 1C-D). To determine whether crizotinib can alter the MPN disease course in vivo, we tested crizotinib by oral gavage in the MPLW515L bone marrow transplant murine model of myelofibrosis at 100mg/kg daily for 2 weeks. We showed that crizotinib decreased the disease burden of MPL-W515L mice, as evidenced by decreased spleen and liver weights (Figure 1E). To determine the effects of RON genetic deletion on MPN pathogenesis, we tested whether genetic deletion of Stk (mouse gene for RON) impairs disease progression in the JAK2V617F bone marrow transplant MPN model by transplanting Stk-/- c-Kit+ bone marrow cells transduced with the JAK2V617F-GFP retrovirus into lethally irradiated recipients. We observed a significant delay in disease onset in Stk-/- transplant recipients compared to WT controls (Figure 1F). However, we found that Stk-/- mice have normal numbers of hematopoietic stem and progenitor cells, and normal bone marrow myeloid colony forming capacity, suggesting that RON is a safe therapeutic target. To determine whether RON plays a role in the JAK inhibitor persistence phenotype, we generated persistent cells by treating SET2 cells with increasing doses of ruxolitinib over 8 weeks, and confirmed persistent proliferation and JAK/STAT activation. Interestingly, we found that RON phosphorylation is enhanced in JAK inhibitor persistent cells, and that dual inhibition of RON and JAK2 overcomes JAK inhibitor persistence in SET2 cells (Figure 1G-H), suggesting that RON may potentiate the JAK2 persistence phenotype in response to ruxolitinib. Importantly, we showed by immunoprecipitation that phospho-RON and phospho-JAK2 physically interact in JAK inhibitor persistent SET2 cells, and that this interaction is disrupted by crizotinib (Figure 1I). In summary, our data demonstrate that RON kinase is a novel mediator of JAK/STAT signaling in MPNs, and that it plays a particularly important role in JAK inhibitor persistence. Our work suggests that therapeutic strategies to inhibit RON, such as crizotinib, should be investigated in MPN patients. Figure 1 Figure 1. Disclosures Halmos: Guardant Health: Membership on an entity's Board of Directors or advisory committees; Apollomics: Membership on an entity's Board of Directors or advisory committees; TPT: Membership on an entity's Board of Directors or advisory committees; Eli-Lilly: Research Funding; Advaxis: Research Funding; Blueprint: Research Funding; Elevation: Research Funding; Mirati: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer-Ingelheim: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Astra-Zeneca: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding. Gritsman: iOnctura: Research Funding.



Sign in / Sign up

Export Citation Format

Share Document