Evaluation of Immune Mechanisms to Understand Idelalislib-Associated Diarrhea-Colitis

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5588-5588
Author(s):  
Richard R. Furman ◽  
Michael Hallek ◽  
Jeffrey P. Sharman ◽  
Peter Hillmen ◽  
Andrew D. Zelenetz ◽  
...  

Abstract Introduction: Idelalisib (IDELA) is a selective, small molecule inhibitor of PI3Kd that has shown significant efficacy in treatment of patients (pts) with relapsed chronic lymphocytic leukemia (CLL) and follicular lymphoma (FL). A common adverse event (AE) observed in IDELA studies is diarrhea/colitis (DC): grade ≥3 ~15%. Published preclinical data suggests that PI3Kd plays a critical role in regulating the function and development of regulatory T-cells (T-regs). This biomarker analysis aimed to evaluate possible immune mechanisms that may have contributed to DC in IDELA-treated pts. Methods: Longitudinal absolute peripheral blood T (CD4+ and CD8+), NK (CD16+/CD56+) cell subsets, cytokines, and chemokine levels from patients treated with IDELA were analyzed (Table 1). Since absolute numbers of T-reg cells were not available, we utilized epigenetic qPCR method (Kleen T. et. al. J Immunother Cancer 2015) to assess the status of T-regs by quantifying FOXP3 utilizing banked peripheral blood mononuclear cells (PBMCs). The following cytokines and chemokines were measured: IL-12p40, IL-17A, IFNγ, TNFα, G- CSF, MIP1α (CCL3), CCL5 (RANTES), IL-10, IL-1RA, IL-6, IL-7, IL-8, IL-15, CRP, and IP-10 (CXCL10). We evaluated the association of changes from baseline of these biomarker(s) with the occurrence and severity of DC events during IDELA treatment. Association of cytomegalovirus (CMV) with DC was not addressed in this study and is being presented separately. Results: There were no differences in absolute numbers of T (CD4+ or CD8+) and NK cells between pts treated with IDELA in both trials with grade ≥3 DC vs those with no DC. Consistently, results from epigenetic qPCR analysis also demonstrated no differences in temporal profiles for peripheral T-cell subsets (CD3+, CD8+, or FOXP3+) in CLL pts treated with IDELA with grade ≥3 DC vs no DC. Baseline and on-treatment changes in peripheral T-cell subsets were not predictive of DC. Analysis of T-cell subsets from the visit immediately prior (t-1) to the first occurrence of grade ≥3 DC was not predictive, and revealed no differences compared to pts with no DC. Lower levels of CD3+, CD8+, and FOXP3+ were noted longitudinally as well as at t-1 visits in grade 1/2 DC vs non-DC pts, but these changes were not predictive of grade 1/2 DC. Increased levels of circulating pro-inflammatory cytokines (IL-15, IFN-γ, and CLL5) were noted in both CLL and indolent non-Hodgkin lymphoma (iNHL) pts treated with IDELA. IL-17A level was significantly higher at the t-1 visit in CLL pts with grade ≥3 DC vs no DC. However, Receiver Operating Characteristic analysis deemed that neither individual cytokine/chemokine or in combination was not predictive for DC occurrence. CLL/iNHL pts with grade ≥3 DC vs no DC were noted to have higher on treatment IL-8. CLL pts presented lower baseline IL-6 and G-CSF levels in patients with grade ≥3 DC vs no DC (Table 2). There were no associations between baseline circulating plasma markers and DC in pts with iNHL. Conclusion: With currently available data, no single circulating immune biomarker is associated with or is predictive for the development of DC during treatment with IDELA. Lower levels of CD3+, CD8+, and FOXP3+ were noted longitudinally in grade 1/2 DC vs no DC pts. No differences were observed in temporal profiles for T-cell subsets in pts with grade ≥3 DC vs those with no DC. However, higher on-treatment IL-8 and lower baseline IL-6 and G-CSF were noted in the relapsed CLL pts with grade ≥3 DC when compared with no DC pts. While quantitative analysis of these T-cell subsets was not associated with grade ≥3 DC, the qualitative function of T-cells may play a role in mediating DC. Functional assays for T-cells were not explored in this study. In addition, our concurrent analysis of colonic biopsies and association with CMV in pts with IDELA associated DC will be presented separately. Disclosures Furman: Pharmacyclics: Consultancy, Speakers Bureau; Gilead Sciences: Consultancy; Janssen: Consultancy; Genentech: Consultancy; Abbvie: Consultancy, Honoraria. Hallek:Mundipharma: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Janssen-Cilag: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; F. Hoffmann-LaRoche: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau. Sharman:Gilead Sciences, Inc.: Honoraria, Research Funding. Hillmen:Pharmacyclics: Research Funding; Janssen: Honoraria, Research Funding; Roche: Honoraria, Research Funding; Gilead: Honoraria, Research Funding; Abbvie: Research Funding. Zelenetz:Gilead Sciences: Research Funding. Flinn:Janssen: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Gilead Sciences: Research Funding; ARIAD: Research Funding; RainTree Oncology Services: Equity Ownership. Jurczak:Gilead Sciences: Research Funding; Janssen: Research Funding; Celltrion, Inc: Research Funding; Acerta: Research Funding; Bayer: Research Funding. Munugalavadla:Gilead Sciences: Employment, Equity Ownership. Xiao:Gilead Sciences: Employment, Equity Ownership. Zheng:Gilead Sciences: Employment, Equity Ownership. Rao:Gilead Sciences: Employment, Equity Ownership. Dreiling:Gilead Sciences: Employment, Equity Ownership. Salles:Roche/Genentech: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Gilead: Honoraria, Research Funding; Celgene: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Mundipharma: Honoraria. O'Brien:Pharmacyclics, LLC, an AbbVie Company: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 815-815
Author(s):  
Farhad Ravandi ◽  
Naval Daver ◽  
Guillermo Garcia-Manero ◽  
Christopher B Benton ◽  
Philip A Thompson ◽  
...  

Abstract Background: Blocking PD-1/PD-L1 pathways enhances anti-leukemia responses by enabling T-cells in murine models of AML (Zhang et al, Blood 2009). PD-1 positive CD8 T-cells are increased in bone marrow (BM) of pts with AML (Daver et al, AACR 2016). PD1 inhibition has shown activity in AML (Berger et al, Clin Cancer Res 2008). We hypothesized that addition of nivolumab to an induction regimen of ara-C and idarubicin may prolong relapse-free survival (RFS) and overall survival (OS); this study was designed to determine the feasibility of this combination. Methods: Pts with newly diagnosed acute myeloid leukemia (by WHO criteria; ≥20% blasts) and high risk MDS (≥10% blasts) were eligible to participate if they were 18-65 yrs of age and had adequate performance status (ECOG ≤3) and organ function (LVEF ≥ 50%; creatinine ≤ 1.5 g mg/dL, bilirubin ≤ 1.5 mg/dL and transaminases ≤ 2.5 times upper limit of normal). Treatment included 1 or 2 induction cycles of ara-C 1.5 g/m2 over 24 hours (days 1-4) and Idarubicin 12 mg/m2 (days 1-3). Nivolumab 3 mg/kg was started on day 24 ± 2 days and was continued every 2 weeks for up to a year. For pts achieving complete response (CR) or CR with incomplete count recovery (CRi) up to 5 consolidation cycles of attenuated dose ara-C and idarubicin was administered at approximately monthly intervals. Eligible pts received an allogeneic stem cell transplant (alloSCT) at any time during the consolidation or thereafter. Results: 3 pts with relapsed AML were treated at a run-in phase with a dose of nivolumab 1 mg/kg without specific drug-related toxicity. Subsequently, 32 pts (median age 53 yrs; range, 26-65) were treated as above including 30 with AML (24 de novo AML, 2 therapy-related AML, 3 secondary AML and 1 therapy-related secondary AML) and 2 high risk MDS. Pre-treatment genetic risk by ELN criteria was 11 adverse, 16 intermediate, and 5 favorable, including 2 FLT3 -ITD mutated, 5 NPM1 mutated, and 7 TP53 mutated. All 32 pts were evaluable for response and 23 (72%) achieved CR/CRi (19 CR, 4 CRi). The 4-week and 8 week mortality was 6% and 6%. The median number of doses of nivolumab received was 6 (range, 0-13); one pt did not receive nivolumab due to insurance issues. 9 pts underwent an alloSCT. After a median follow-up of 8.3 mths (range, 1.5-17.0) the median RFS among the responding pts has not been reached (range, 0.1 - 15.8 mths) and the median OS has not been reached (range 0.5-17.0 mths). Grade 3/4 immune mediated toxicities have been observed in 5 pts and include rash, pancreatitis, and colitis. Other grade 3/4 toxicities thought to be potentially related to nivolumab include cholecystitis in one pt. 9 pts proceeded to an alloSCT. Donor source was matched related in 2, matched unrelated in 6 and haplo-identical in 1 pt. Conditioning regimen was Fludarabine plus busulfan-based in 8, and fludarabine plus melphalan in 1 pt. 4 pts developed graft versus host disease (GVHD)(grade I/II in 3, grade III/IV in 1), which responded to treatment in 3. Multicolor flow-cytometry studies are conducted by the Immunotherapy Platform on baseline (prior to first dose of nivolumab) and on-treatment BM aspirate and peripheral blood to assess the T-cell repertoire and expression of co-stimulatory receptors and ligands on T-cell subsets and leukemic blasts, respectively. The baseline BM was evaluated on 23 of the 32 evaluable pts, including 18 responders and 5 non-responders. Pts who achieved a CR/CRi had a trend of higher frequency of live CD3+ total T cell infiltrate as compared to non-responders in the baseline BM aspirates (Fig 1A). We evaluated expression of immune markers on T cell subsets: CD4 T effector cells [Teff]: CD3+CD4+CD127lo/+Foxp3-, CD4 T regulatory cells [Treg]: CD3+CD4+CD127-Foxp3+, and CD8 T cells. At baseline, BM of non-responders had significantly higher percentage of CD4 T effector cells co-expressing the inhibitory markers PD1 and TIM3 (p<0.05) and a trend towards higher percentage of CD4 T effector cells co-expressing PD1 and LAG3 compared to responders (Fig 1B). Co-expression of TIM3 or LAG3 on PD1+ T cells have been shown to be associated with an exhausted immune phenotype in AML (Zhou et al., Blood 2011). Conclusion: Addition of nivolumab to ara-C and anthracycline induction chemotherapy is feasible and safe in younger pts with AML. Among the pts proceeding to alloSCT the risk of GVHD is not significantly increased. Figure 1 Figure 1. Disclosures Daver: Pfizer Inc.: Consultancy, Research Funding; Otsuka America Pharmaceutical, Inc.: Consultancy; Sunesis Pharmaceuticals, Inc.: Consultancy, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Bristol-Myers Squibb Company: Consultancy, Research Funding; Kiromic: Research Funding; Karyopharm: Consultancy, Research Funding; Jazz: Consultancy; Immunogen: Research Funding; Daiichi-Sankyo: Research Funding; Incyte Corporation: Honoraria, Research Funding. Thompson: Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees. Jabbour: Bristol-Myers Squibb: Consultancy. Takahashi: Symbio Pharmaceuticals: Consultancy. DiNardo: Novartis: Honoraria, Research Funding; Daiichi-Sankyo: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Sharma: Jounce: Consultancy, Other: stock, Patents & Royalties: Patent licensed to Jounce; Astellas: Consultancy; EMD Serono: Consultancy; Amgen: Consultancy; Astra Zeneca: Consultancy; GSK: Consultancy; Consetellation: Other: stock; Evelo: Consultancy, Other: stock; Neon: Consultancy, Other: stock; Kite Pharma: Consultancy, Other: stock; BMS: Consultancy. Cortes: BMS: Consultancy, Research Funding; Sun Pharma: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Teva: Research Funding; ImmunoGen: Consultancy, Research Funding; ARIAD: Consultancy, Research Funding. Kantarjian: Delta-Fly Pharma: Research Funding; Amgen: Research Funding; ARIAD: Research Funding; Novartis: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5603-5603 ◽  
Author(s):  
Cherie Tracy Ng ◽  
Jeanette Ampudia ◽  
Robert J. Soiffer ◽  
Jerome Ritz ◽  
Stephen Connelly

Background: CD6 is a co-stimulatory receptor, predominantly expressed on T cells, that binds to activated leukocyte cell adhesion molecule (ALCAM), a ligand expressed on antigen presentation cells and various epithelial and endothelial tissues. The CD6-ALCAM pathway plays an integral role in modulating T cell activation, proliferation, differentiation and trafficking and is central to inflammation. While effector T cell (Teff) are CD6hi and upregulate expression upon activation, regulatory T cells (Treg) remain CD6lo/-, making this an attractive target to modulate Teff activity while preserving Treg activity. Early studies by Soiffer and colleagues demonstrated using T12, an anti-CD6 monoclonal antibody (mAb) that ex-vivo depletion of CD6+ donor cells prior to transplantation decreased the incidence of both acute and chronic GVHD, highlighting the importance of CD6+ cells in GVHD pathogenesis and validating it as a therapeutic target. However, it remains to be shown whether modulating the CD6-ALCAM pathway in vivo can attenuate GVHD. We investigated the use of itolizumab, a humanized anti-CD6 mAb that has demonstrated clinical efficacy in other autoimmune diseases, as both a preventive and therapeutic treatment for GVHD, using a humanized xenograft mouse model. Methods: Humanized xenograft mice were generated by intravenous transfer of 2x10^7 human PBMCs into 6-8 weeks old NOD/SCID IL2rγ-null (NSG). To investigate the ability of itolizumab to prevent GVHD, mice were dosed with either 60μg or 300μg of itolizumab, 150μg of abatacept (CTLA4-Ig), or vehicle, starting one day prior to PBMC transplantation. To investigate the therapeutic effect of itolizumab, mice were dosed with either 150μg of itolizumab or vehicle, starting at Day 5 post-PBMC transfer, when transplanted T cells are already activated. All treatments were administered IP every other day. Weight and disease scores were monitored throughout the study. At Days 18 and 35, peripheral blood was evaluated by flow cytometry to examine T cell prevalence, and tissues were collected for histological examination of pathology and T cell infiltration. Results: When administered as prevention (Day -1), treatment with either 60μg or 300μg of itolizumab significantly decreased mortality compared to the vehicle control (100% vs. 10%); this decrease was similar to the positive control group treated with abatacept (Figure 1). At 60μg, itolizumab-treated mice demonstrated significant reductions in the prevalence of human T cells in peripheral blood vs. vehicle-treated mice at Day 18 (<0.2% vs. 74.5%; p < 0.001). The reduction in peripheral T cells was accompanied by reductions in tissue-infiltrating T cells in lung (85-fold) and gut (9.5-fold), as well as reductions in disease scores and weight loss. When administered therapeutically, treatment with itolizumab was associated with a survival rate of 50% compared to 10% in the control group (Figure 2). Similarly, peripheral T cell prevalence (34.3% vs. 65.1%; p < 0.001), weight loss, and disease scores were inhibited by itolizumab compared to vehicle control mice. Conclusions: These data suggest that systemic treatment with itolizumab can modulate pathogenic Teff cell activity, establishing this antibody as a potential therapeutic for patents with GvHD. A phase I/II study using itolizumab as first line treatment in combination with steroids for patients with aGVHD is currently ongoing (NCT03763318). Disclosures Ng: Equillium: Employment, Equity Ownership. Ampudia:Equillium: Employment. Soiffer:Mana therapeutic: Consultancy; Kiadis: Other: supervisory board; Gilead, Mana therapeutic, Cugene, Jazz: Consultancy; Juno, kiadis: Membership on an entity's Board of Directors or advisory committees, Other: DSMB; Cugene: Consultancy; Jazz: Consultancy. Ritz:Equillium: Research Funding; Merck: Research Funding; Avrobio: Consultancy; TScan Therapeutics: Consultancy; Talaris Therapeutics: Consultancy; Draper Labs: Consultancy; LifeVault Bio: Consultancy; Celgene: Consultancy; Aleta Biotherapeutics: Consultancy; Kite Pharma: Research Funding. Connelly:Equillium: Employment, Equity Ownership.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 740-740 ◽  
Author(s):  
Jesus G. Berdeja ◽  
Yi Lin ◽  
Noopur Raje ◽  
Nikhil Munshi ◽  
David Siegel ◽  
...  

Abstract Introduction: Chimeric antigen receptor (CAR) T cell therapies have demonstrated robust and sustained clinical responses in several hematologic malignancies. Data suggest that achieving acceptable benefit:risk profiles depends on several factors, including the specificity of the antigen target and characteristics of the CAR itself, including on-target, off-tumor activity.To test the safety and efficacy of CAR T cells in relapsed and/or refractory multiple myeloma (RRMM), we have designed a second-generation CAR construct targeting B cell maturation antigen (BCMA) to redirect T cells to MM cells. BCMA is a member of the tumor necrosis factor superfamily that is expressed primarily by malignant myeloma cells, plasma cells, and some mature B cells. bb2121 consists of autologous T cells transduced with a lentiviral vector encoding a novel CAR incorporating an anti-BCMA scFv, a 4-1BB costimulatory motif and a CD3-zeta T cell activation domain. Methods: CRB-401 (NCT02658929) is a multi-center phase 1 dose escalation trial of bb2121 in patients with RRMM who have received ≥ 3 prior regimens, including a proteasome inhibitor and an immunomodulatory agent, or are double-refractory, and have ≥ 50% BCMA expression on malignant cells. Peripheral blood mononuclear cells are collected via leukapheresis and shipped to a central facility for transduction, expansion, and release testing prior to being returned to the site for infusion. Patients undergo lymphodepletion with fludarabine (30 mg/m2) and cyclophosphamide (300 mg/m2) daily for 3 days then receive 1 infusion of bb2121. The study follows a standard 3+3 design with planned dose levels of 50, 150, 450, 800, and 1,200 x 106 CAR+ T cells. The primary outcome measure is incidence of adverse events (AEs), including dose-limiting toxicities (DLTs). Additional outcome measures were quality and duration of clinical response assessed according to the IMWG Uniform Response Criteria for Multiple Myeloma, evaluation of minimal residual disease (MRD), overall and progression-free survival, quantification of bb2121 in blood, and quantification of circulating soluble BCMA over time. Results: Asof May 4, 2017, 21 patients (median 58 [37 to 74] years old) with a median of 5 (1 to 16) years since MM diagnosis, had been infused with bb2121, and 18 patients were evaluable for initial (1-month) clinical response. Patients had a median of 7 prior lines of therapy (range 3 to 14), all with prior autologous stem cell transplant; 67% had high-risk cytogenetics. Fifteen of 21 (71%) had prior exposure to, and 6 of 21 (29%) were refractory to 5 prior therapies (Bort/Len/Car/Pom/Dara). Median follow-up after bb2121 infusion was 15.4 weeks (range 1.4 to 54.4 weeks). As of data cut-off, no DLTs and no treatment-emergent Grade 3 or higher neurotoxicities similar to those reported in other CAR T clinical studies had been observed. Cytokine release syndrome (CRS), primarily Grade 1 or 2, was reported in 15 of 21 (71%) patients: 2 patients had Grade 3 CRS that resolved in 24 hours and 4 patients received tocilizumab, 1 with steroids, to manage CRS. CRS was more common in the higher dose groups but did not appear related to tumor burden. One death on study, due to cardiopulmonary arrest more than 4 months after bb2121 infusion in a patient with an extensive cardiac history, was observed while the patient was in sCR and was assessed as unrelated to bb2121. The overall response rate (ORR) was 89% and increased to 100% for patients treated with doses of 150 x 106 CAR+ T cells or higher. No patients treated with doses of 150 x 106 CAR+ T cells or higher had disease progression, with time since bb2121 between 8 and 54 weeks (Table 1). MRD negative results were obtained in all 4 patients evaluable for analysis. CAR+ T cell expansion has been demonstrated consistently and 3 of 5 patients evaluable for CAR+ cells at 6 months had detectable vector copies. A further 5 months of follow up on reported results and initial data from additional patients will be presented. Conclusions: bb2121 shows promising efficacy at dose levels above 50 x 106 CAR+ T cells, with manageable CRS and no DLTs to date. ORR was 100% at these dose levels with 8 ongoing clinical responses at 6 months and 1 patient demonstrating a sustained response beyond one year. These initial data support the potential of CAR T therapy with bb2121 as a new treatment paradigm in RRMM. CT.gov study NCT02658929, sponsored by bluebird bio and Celgene Disclosures Berdeja: Teva: Research Funding; Janssen: Research Funding; Novartis: Research Funding; Abbvie: Research Funding; Celgene: Research Funding; BMS: Research Funding; Takeda: Research Funding; Vivolux: Research Funding; Amgen: Research Funding; Constellation: Research Funding; Bluebird: Research Funding; Curis: Research Funding. Siegel: Celgene, Takeda, Amgen Inc, Novartis and BMS: Consultancy, Speakers Bureau; Merck: Consultancy. Jagannath: MMRF: Speakers Bureau; Bristol-Meyers Squibb: Consultancy; Merck: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Medicom: Speakers Bureau. Turka: bluebird bio: Employment, Equity Ownership. Lam: bluebird bio: Employment, Equity Ownership. Hege: Celgene Corporation: Employment, Equity Ownership. Morgan: bluebird bio: Employment, Equity Ownership, Patents & Royalties. Quigley: bluebird bio: Employment, Equity Ownership, Patents & Royalties. Kochenderfer: Bluebird bio: Research Funding; N/A: Patents & Royalties: I have multiple patents in the CAR field.; Kite Pharma: Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 742-742 ◽  
Author(s):  
Eric L Smith ◽  
Sham Mailankody ◽  
Arnab Ghosh ◽  
Reed Masakayan ◽  
Mette Staehr ◽  
...  

Abstract Patients with relapsed/refractory MM (RRMM) rarely obtain durable remissions with available therapies. Clinical use of BCMA targeted CAR T cell therapy was first reported in 12/2015 for RRMM, and based on small numbers, preliminary results appear promising. Given that host immune anti-murine CAR responses have limited the efficacy of repeat dosing (Turtle C. Sci Trans Med 2016), our goal was to develop a human BCMA targeted CAR T cell vector for clinical translation. We screened a human B cell derived scFv phage display library containing 6x1010 scFvs with BCMA expressing NIH 3T3 cells, and validated results on human MM cell lines. 57 unique and diverse BCMA specific scFvs were identified containing light and heavy chain CDR's each covering 6 subfamilies, with HCDR3 length ranges from 5-18 amino acids. 17 scFvs met stringent specificity criteria, and a diverse set was cloned into CAR vectors with either a CD28 or a 4-1BB co-stimulatory domain. Donor T cells transduced with BCMA targeted CAR vectors that conveyed particularly desirable properties over multiple in vitro assays, including: cytotoxicity on human MM cell lines at low E:T ratios (&gt;90% lysis, 1:1, 16h), robust proliferation after repeat antigen stimulation (up to 700 fold, stimulation q3-4d for 14d), and active cytokine profiling, were selected for in vivo studies using a marrow predominant human MM cell line model in NSG mice. A single IV injection of CAR T cells, either early (4d) or late (21d) after MM engraftment was evaluated. In both cases survival was increased when treated with BCMA targeted CAR T cells vs CD19 targeted CAR T cells (median OS at 60d NR vs 35d p&lt;0.05). Tumor and CAR T cells were imaged in vivo by taking advantage of luciferase constructs with different substrates. Results show rapid tumor clearance, peak (&gt;10,000 fold) CAR T expansion at day 6, followed by contraction of CAR T cells after MM clearance, confirming the efficacy of the anti-BCMA scFv/4-1BB containing construct. Co-culture with primary cells from a range of normal tissues did not activate CAR T cells as noted by a lack of IFN release. Co-culture of 293 cells expressing this scFv with those expressing a library of other TNFRSF or Ig receptor members demonstrated specific binding to BCMA. GLP toxicity studies in mice showed no unexpected adverse events. We generated a retroviral construct for clinical use including a truncated epithelial growth factor receptor (EGFRt) elimination gene: EGFRt/hBCMA-41BBz. Clinical investigation of this construct is underway in a dose escalation, single institution trial. Enrollment is completed on 2/4 planned dose levels (DL). On DL1 pts received cyclophosphamide conditioning (3g/m2 x1) and 72x106 mean CAR+ T cells. On DL2 pts received lower dose cyclophosphamide/fludarabine (300/30 mg/m2 x3) and 137x106 mean CAR+ T cells. All pts screened for BCMA expression by IHC were eligible. High risk cytogenetics were present in 4/6 pts. Median prior lines of therapy was 7; all pts had IMiD, PI, high dose melphalan, and CD38 directed therapies. With a data cut off of 7/20/17, 6 pts are evaluable for safety. There were no DLT's. At DL1, grade 1 CRS, not requiring intervention, occurred in 1/3 pts. At DL2, grade 1/2 CRS occurred in 2/3 pts; both received IL6R directed Tocilizumab (Toci) with near immediate resolution. In these 2 pts time to onset of fever was a mean 2d, Tmax was 39.4-41.1 C, peak CRP was 25-27mg/dl, peak IL6 level pre and post Toci were 558-632 and 3375-9071 pg/ml, respectively. Additional serum cytokines increased &gt;10 fold from baseline in both pts include: IFNg, GM CSF, Fractalkine, IL5, IL8, and IP10. Increases in ferritin were limited, and there were no cases of hypofibrinogenemia. There were no grade 3-5 CRS and no neurotoxicities or cerebral edema. No pts received steroids or Cetuximab. Median time to count recovery after neutropenia was 10d (range 6-15d). Objective responses by IMWG criteria after a single dose of CAR T cells were observed across both DLs. At DL1, of 3 pts, responses were 1 VGPR, 1 SD, and 1 pt treated with baseline Mspike 0.46, thus not evaluable by IMWG criteria, had &gt;50% reduction in Mspike, and normalization of K/L ratio. At DL2, 2/2 pts had objective responses with 1 PR and 1 VGPR (baseline 95% marrow involvement); 1 pt is too early to evaluate. As we are employing a human CAR, the study was designed to allow for an optional second dose in pts that do not reach CR. We have treated 2 pts with a second dose, and longer follow up data is pending. Figure 1 Figure 1. Disclosures Smith: Juno Therapeutics: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: BCMA targeted CAR T cells, Research Funding. Almo: Cue Biopharma: Other: Founder, head of SABequity holder; Institute for Protein Innovation: Consultancy; AKIN GUMP STRAUSS HAUER & FELD LLP: Consultancy. Wang: Eureka Therapeutics Inc.: Employment, Equity Ownership. Xu: Eureka Therapeutics, Inc: Employment, Equity Ownership. Park: Amgen: Consultancy. Curran: Juno Therapeutics: Research Funding; Novartis: Consultancy. Dogan: Celgene: Consultancy; Peer Review Institute: Consultancy; Roche Pharmaceuticals: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liu: Eureka Therpeutics Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Brentjens: Juno Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1147-1147 ◽  
Author(s):  
Adam D. Cohen ◽  
Alfred L. Garfall ◽  
Edward A Stadtmauer ◽  
Simon Francis Lacey ◽  
Eric Lancaster ◽  
...  

Abstract Background : BCMA is expressed on MM cells, and CAR T cells targeting BCMA have pre-clinical anti-MM activity. CART-BCMA is an autologous T cell product engineered by lentiviral transduction to express a fully human BCMA-specific CAR with CD3ζ and 4-1BB signaling domains, and then expanded ex vivo using CD3/CD28 beads. Methods: In this ongoing, 3+3 dose-escalation study, relapsed/refractory MM patients (pts) receive CART-BCMA cells as split-dose infusions (10% on day 0, 30% on day 1, and 60% on day 2). Three cohorts are planned: 1) 1-5 x 108 CART cells alone; 2) cyclophosphamide (CTX) 1.5 g/m2 + 1-5 x 107 CART cells; and 3) CTX 1.5 g/m2 + 1-5 x 108 CART cells. Pts need serum creatinine (Cr) <2.5 mg/dL or Cr clearance≥30 ml/min, and adequate hepatic, cardiac, and pulmonary function. BCMA expression on MM cells is analyzed by flow cytometry, though no pre-specified level is required for eligibility. CART-BCMA frequency and activation status are assessed in blood and marrow by flow cytometry. Levels of CAR-transduced cells are also measured by qPCR using a transgene-specific primer/probe pair. Soluble BCMA, BAFF and APRIL levels in serum are assessed by ELISA. Bioactivity of the infusion product and CART-related cytokine release syndrome are analyzed by Luminex. Responses are assessed by IMWG criteria. Results: To date, 11 pts have been screened, and 6 treated in cohort 1. Reasons for not receiving treatment were screen fail (n=2), rapid MM progression/renal failure (n=2), and pt/MD choice (n=1). The 6 treated pts were all IMID/PI-refractory with high risk cytogenetics and median 9 lines of therapy (Table). All expressed BCMA on MM cells, and achieved the minimum target dose of 1x108 CART-BCMA cells. All but 2 received 100% of planned dose, with 2 (pts 01and 03) receiving 40% (3rd infusions held for fever). Cytokine release syndrome (CRS) occurred in 5 patients: 2 grade 3 requiring tocilizumab (pts 01 and 03), 1 grade 2, and 2 grade 1. High-grade CRS was associated with elevated levels of IL-6, IFNg, MCP1, MIG, IL2Ra, and IL-10, as seen in our acute lymphoblastic leukemia CTL019 trial (Teachey et al, 2016). There was 1 DLT: grade 4 PRES (posterior reversible encephalopathy syndrome) in pt 03, with severe delirium, recurrent seizures, obtundation, and cerebral edema on MRI. This resolved after anti-epileptics, high-dose methylprednisolone and cyclophosphamide, without long-term neurologic sequelae. Other grade 3/4 toxicities to date include hypophosphatemia (n=3 pts), hypocalcemia (n=2), and anemia, neutropenia, lymphopenia, thrombocytopenia, hypofibrinogenemia, fatigue, pneumonia, UTI, elevated Alk phos and AST, hypokalemia, hypertension, and pleural effusion (n=1 each). CART-BCMA cells were detected in blood and marrow by CAR-specific PCR in all 6 pts, and in 4/6 by flow cytometry, with 2 pts, 01 and 03, having massive CART expansion peaking at 90% and 76% of peripheral CD3+ T cells, respectively. CART-BCMA cells during peak expansion were predominantly CD8+ and highly activated. Pt 01 has ongoing CART-BCMA persistence, with ongoing stringent CR at 7 months and MRD-negative bone marrow by flow cytometry. Pt 03, who had pleural and possible dural MM involvement, had CART-BCMA cells found in pleural fluid and CSF, and achieved VGPR (IF+ only) with resolution of extramedullary disease on PET/CT scan. She progressed at 5 months, associated with significant reduction of CART-BCMA cells and loss of BCMA expression on her MM cells by flow cytometry, suggestive of antigen escape. Two pts (02, 11) had modest CART-BCMA expansion, with 1 minimal response (MR) lasting 2 months, and 1 ongoing MR 1 month post-infusion. Two pts (09, 10) had minimal expansion and no response. Soluble BCMA levels, which were elevated in all pts at baseline, declined in parallel with CART-BCMA expansion and correlated with depth of response, with an accompanying increase in previously suppressed BAFF and APRIL levels in serum. Conclusions: CART-BCMA cells can be manufactured from heavily-pretreated MM pts, and demonstrate promising in vivo expansion and clinical activity, even without lymphodepleting conditioning. Depth of response correlates with degree of CART-BCMA expansion and CRS. Toxicities to date include CRS and in 1 pt, severe reversible neurotoxicity, as described in other CAR T cell studies. Expanded accrual in cohort 1, as well as in cohorts with CTX conditioning, is ongoing, with updated data to be presented at the meeting. Table Table. Disclosures Cohen: Bristol-Meyers Squibb: Consultancy, Research Funding; Janssen: Consultancy. Garfall:Bioinvent: Research Funding; Novartis: Consultancy, Research Funding; Medimmune: Consultancy. Stadtmauer:Novartis: Consultancy; Takada: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Teva: Consultancy; Janssen: Consultancy. Lacey:Novartis: Research Funding. Lancaster:Janssen: Consultancy; Medimmune, Inc.: Consultancy; Grifols, Inc.: Other: Teaching courses. Vogl:Millennium: Consultancy, Research Funding; Celgene: Consultancy; Karyopharm: Consultancy; Teva: Consultancy; Acetylon: Research Funding; Glaxo Smith Kline: Research Funding; Calithera: Research Funding; Constellation: Research Funding. Ambrose:Novartis: Research Funding. Plesa:Novartis: Patents & Royalties, Research Funding. Kulikovskaya:Novartis: Research Funding. Weiss:Prothena: Other: Travel, accommodations, Research Funding; Novartis: Consultancy; GlaxoSmithKline: Consultancy; Janssen: Consultancy, Other: Travel, accommodations, Research Funding; Millennium: Consultancy, Other: Travel, accommodations. Richardson:Novartis: Employment, Patents & Royalties, Research Funding. Isaacs:Novartis: Employment. Melenhorst:Novartis: Patents & Royalties, Research Funding. Levine:Novartis: Patents & Royalties, Research Funding. June:Novartis: Honoraria, Patents & Royalties: Immunology, Research Funding; University of Pennsylvania: Patents & Royalties; Tmunity: Equity Ownership, Other: Founder, stockholder ; Johnson & Johnson: Research Funding; Celldex: Consultancy, Equity Ownership; Immune Design: Consultancy, Equity Ownership; Pfizer: Honoraria. Milone:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 488-488 ◽  
Author(s):  
Nina Shah ◽  
Melissa Alsina ◽  
David S Siegel ◽  
Sundar Jagannath ◽  
Deepu Madduri ◽  
...  

Abstract Introduction: Immunomodulatory chimeric antigen receptor (CAR) T cell therapy directed against B-cell maturation antigen (BCMA) has shown promising results for the treatment of relapsed refractory multiple myeloma (RRMM) in several phase 1 clinical studies in patients with advanced disease. Persistence of CAR T cells post infusion may be one determinant of duration of response. bb21217 is a next-generation anti-BCMA CAR T cell therapy based on investigational therapy bb2121 (Friedman 2018, Hum Gene Ther 29:585). It uses the same scFv, 4-1BB costimulatory motif and CD3-zeta T cell activation domain as bb2121 with the addition of phosphoinositide 3 kinase inhibitor bb007 during ex vivo culture to enrich the drug product for T cells displaying a memory-like phenotype. Evidence suggests that CAR T cells with this phenotype may be more persistent and more potent than unselected CAR T cells. CRB-402 is a first-in-human clinical study of bb21217 in patients with RRMM designed to assess the safety, pharmacokinetics, efficacy and duration of effect of bb21217. Methods: CRB-402 (NCT03274219) is an ongoing, multi-center phase 1 dose escalation trial of bb21217 in approximately 50 patients with RRMM who have received ≥ 3 prior regimens, including a proteasome inhibitor and an immuno-modulatory agent, or are double-refractory. During dose escalation, enrollment is restricted to patients with ≥ 50% BCMA expression by IHC on malignant plasma cells. Peripheral blood mononuclear cells are collected via leukapheresis and sent to a central facility for transduction, expansion and release testing prior to being returned to the site for infusion. Patients undergo lymphodepletion with fludarabine (30 mg/m2) and cyclophosphamide (300 mg/m2) daily for 3 days, then receive bb21217 as a single infusion. Planned dose levels are 150, 450, 800, and 1,200 x 106 CAR+ T cells. The primary outcome measure is incidence of adverse events (AEs), including dose-limiting toxicities (DLTs). Additional outcome measures are quality and duration of clinical response assessed according to the IMWG Uniform Response Criteria for MM, evaluation of minimal residual disease (MRD), progression-free and overall survival, and quantification of CAR+ cells in blood. Results: Asof June 15, 2018, 8 patients (median age 64 [min;max 54 to 70]) have received bb21217. All patients to date received a dose of 150 x 106 CAR+ T cells. Four had high tumor burden, defined as ≥ 50% bone marrow plasma cells pre-infusion. Patients had a median of 9 (min;max 4 to 17) prior lines of therapy and 7/8 had prior autologous stem cell transplant; 50% had high-risk cytogenetics. Four of 8 (50%) had previously received Bort/Len/Car/Pom/Dara. Median follow-up after bb21217 infusion was 16 weeks (2 to 27 weeks) and 7 patients were evaluable for initial (1-month) clinical response. As of data cut-off, 5 of 8 patients developed cytokine release syndrome (CRS; 1 Grade 1, 3 Grade 2, 1 Grade 3) and responded to supportive care or tocilizumab. This included 1 patient with high tumor burden who experienced DLTs consisting of grade 3 CRS and grade 4 encephalopathy with signs of posterior reversible encephalopathy syndrome on MRI. This patient received tocilizumab, corticosteroids and cyclophosphamide, improved neurologically and achieved a sCR. Following this event, the dose escalation cohort was divided into two groups based on tumor burden and dosing continued at 150x106 CAR+ T cells. No deaths occurred. With 1 to 6 months since treatment, 6 of 7 patients had demonstrated clinical response per IMWG criteria: currently 1 sCR, 3 VGPR, 2 PR. MRD negative results at 10-5 nucleated cells were obtained by next-generation sequencing in 3 of 3 evaluable responders. Robust CAR+ T cell expansion during the first 30 days was observed in 7 of 7 evaluable patients. Two of 2 patients evaluable at 6 months had detectable CAR vector copies. Conclusions: Early efficacy results with bb21217 CAR T therapy in RRMM at a dose of 150 x 106 CAR+ T cells are encouraging, with 6 of 7 patients demonstrating clinical responses. The adverse events observed to date are consistent with known toxicities of CAR T therapies. CAR+ T cells were measurable at 6 months post treatment in both evaluable patients. Enrollment in the study is ongoing; longer follow-up and data in more patients will establish whether treatment with bb21217 results in sustained CAR+ T cell persistence and responses. Disclosures Shah: Kite: Consultancy; Indapta Therapeutics: Consultancy; University of California San Francisco: Employment; Nekktar: Consultancy; Teneobio: Consultancy; Sanofi: Consultancy; Janssen: Research Funding; Indapta Therapeutics: Equity Ownership; Amgen: Consultancy; Bluebird: Research Funding; Celgene: Research Funding; Bristol Myers Squibb: Consultancy; Takeda: Consultancy; Sutro Biopharma: Research Funding; Nkarta: Consultancy. Siegel:Takeda: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau; Karyopharm: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; Merck: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau. Jagannath:Multiple Myeloma Research Foundation: Speakers Bureau; Merck: Consultancy; Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Celgene: Consultancy; Medicom: Speakers Bureau. Kaufman:Karyopharm: Other: data monitoring committee; BMS: Consultancy; Janssen: Consultancy; Abbvie: Consultancy; Roche: Consultancy. Turka:bluebird bio, Inc: Employment, Equity Ownership. Lam:bluebird bio, Inc: Employment, Equity Ownership. Massaro:bluebird bio, Inc: Employment, Equity Ownership. Hege:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties: multiple; Mersana: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; SITC: Membership on an entity's Board of Directors or advisory committees; Arcus Biosicences: Membership on an entity's Board of Directors or advisory committees. Petrocca:bluebird bio, Inc: Employment, Equity Ownership. Berdeja:Glenmark: Research Funding; Novartis: Research Funding; Genentech: Research Funding; Janssen: Research Funding; Bristol-Myers Squibb: Research Funding; Bluebird: Research Funding; Amgen: Research Funding; Celgene: Research Funding; Poseida Therapeutics, Inc.: Research Funding; Takeda: Research Funding; Teva: Research Funding; Sanofi: Research Funding. Raje:AstraZeneca: Research Funding; Takeda: Consultancy; Merck: Consultancy; Janssen: Consultancy; Celgene: Consultancy; BMS: Consultancy; Amgen Inc.: Consultancy; Research to Practice: Honoraria; Medscape: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3184-3184 ◽  
Author(s):  
Caitlin L. Costello ◽  
Tara K. Gregory ◽  
Syed Abbas Ali ◽  
Jesus G. Berdeja ◽  
Krina K. Patel ◽  
...  

P-BCMA-101 is a novel chimeric antigen receptor (CAR)-T cell product targeting B Cell Maturation Antigen (BCMA). P-BCMA-101 is produced using the piggyBac® (PB) DNA Modification System instead of the viral vector that is used with most CAR-T cells, requiring only plasmid DNA and mRNA. This makes it less costly and produces cells with a high percentage of the favorable T stem cell memory phenotype (TSCM). The higher cargo capacity of PB permits the incorporation of multiple genes in addition to CAR(s), including a safety switch allowing for rapid CAR-T cell elimination with a small molecule drug infusion in patients if desired, and a selection gene allowing for enrichment of CAR+ cells. Rather than using a traditional antibody-based binder, P-BCMA-101 has a Centyrin™ fused to a CD3ζ/4-1BB signaling domain. Centyrins are fully human proteins with high specificity and a large range of binding affinities, but are smaller, more stable and potentially less immunogenic than traditional scFv. Cumulatively, these features are predicted to result in a greater therapeutic index. A Phase 1, 3+3 dose escalation from 0.75 to 15 x 106 P-BCMA-101 CAR-T cells/kg (RP2D 6-15 x 106 cells/kg) was conducted in patients with r/r MM (Blood 2018 132:1012) demonstrating excellent efficacy and safety of P-BCMA-101, including notably low rates and grades of CRS and neurotoxicity (maximum Grade 2 without necessitating ICU admission, safety switch activation or other aggressive measures). These results supported FDA RMAT designation and initiation of a pivotal Phase 2 study. A Phase 2 pivotal portion of this study has recently been designed and initiated (PRIME; NCT03288493) in r/r MM patients who have received at least 3 prior lines of therapy. Their therapy must have contained a proteasome inhibitor, an IMiD, and CD38 targeted therapy with at least 2 of the prior lines in the form of triplet combinations. They must also have undergone ≥2 cycles of each line unless PD was the best response, refractory to the most recent line of therapy, and undergone autologous stem cell transplant or not be a candidate. Patients are required to be >=18 years old, have measurable disease by International Myeloma Working Group criteria (IMWG; Kumar 2016), adequate vital organ function and lack significant autoimmune, CNS and infectious diseases. No pre-specified level of BCMA expression is required, as this has not been demonstrated to correlate with clinical outcomes for P-BCMA-101 and other BCMA-targeted CAR-T products. Interestingly, unlike most CAR-T products patients may receive P-BCMA-101 after prior CAR-T cells or BCMA targeted agents, and may be multiply infused with P-BCMA-101. Patients are apheresed to harvest T cells, P-BCMA-101 is then manufactured and administered to patients as a single intravenous (IV) dose (6-15 x 106 P-BCMA-101 CAR-T cells/kg) after a standard 3-day cyclophosphamide (300 mg/m2/day) / fludarabine (30 mg/m2/day) conditioning regimen. One hundred patients are planned to be treated with P-BCMA-101. Uniquely, given the safety profile demonstrated during Phase 1, no hospital admission is required and patients may be administered P-BCMA-101 in an outpatient setting. The primary endpoints are safety and response rate by IMWG criteria. With a 100-subject sample, the Phase 2 part of the trial will have 90% power to detect a 15-percentage point improvement over a 30% response rate (based on that of the recently approved anti-CD38 antibody daratumumab), using an exact test for a binomial proportion with a 1-sided 0.05 significance level. Multiple biomarkers are being assessed including BCMA and cytokine levels, CAR-T cell kinetics, immunogenicity, T cell receptor diversity, CAR-T cell and patient gene expression (e.g. Nanostring) and others. Overall, the PRIME study is the first pivotal study of the unique P-BCMA-101 CAR-T product, and utilizes a number of novel design features. Studies are being initiated in combination with approved therapeutics and earlier lines of therapy with the intent of conducting Phase 3 trials. Funding by Poseida Therapeutics and the California Institute for Regenerative Medicine (CIRM). Disclosures Costello: Takeda: Honoraria, Research Funding; Janssen: Research Funding; Celgene: Consultancy, Honoraria, Research Funding. Gregory:Poseida: Research Funding; Celgene: Speakers Bureau; Takeda: Speakers Bureau; Amgen: Speakers Bureau. Ali:Celgene: Research Funding; Poseida: Research Funding. Berdeja:Amgen Inc, BioClinica, Celgene Corporation, CRISPR Therapeutics, Bristol-Myers Squibb Company, Janssen Biotech Inc, Karyopharm Therapeutics, Kite Pharma Inc, Prothena, Servier, Takeda Oncology: Consultancy; AbbVie Inc, Amgen Inc, Acetylon Pharmaceuticals Inc, Bluebird Bio, Bristol-Myers Squibb Company, Celgene Corporation, Constellation Pharma, Curis Inc, Genentech, Glenmark Pharmaceuticals, Janssen Biotech Inc, Kesios Therapeutics, Lilly, Novartis, Poseida: Research Funding; Poseida: Research Funding. Patel:Oncopeptides, Nektar, Precision Biosciences, BMS: Consultancy; Takeda, Celgene, Janssen: Consultancy, Research Funding; Poseida Therapeutics, Cellectis, Abbvie: Research Funding. Shah:University of California, San Francisco: Employment; Genentech, Seattle Genetics, Oncopeptides, Karoypharm, Surface Oncology, Precision biosciences GSK, Nektar, Amgen, Indapta Therapeutics, Sanofi: Membership on an entity's Board of Directors or advisory committees; Indapta Therapeutics: Equity Ownership; Celgene, Janssen, Bluebird Bio, Sutro Biopharma: Research Funding; Poseida: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Nkarta: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite: Consultancy, Membership on an entity's Board of Directors or advisory committees; Teneobio: Consultancy, Membership on an entity's Board of Directors or advisory committees. Ostertag:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Martin:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Ghoddusi:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Shedlock:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Spear:Poseida Therapeutics, Inc.: Employment, Equity Ownership. Orlowski:Poseida Therapeutics, Inc.: Research Funding. Cohen:Poseida Therapeutics, Inc.: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2803-2803 ◽  
Author(s):  
Bijal Shah ◽  
Van Huynh ◽  
Leonard S. Sender ◽  
Daniel W. Lee ◽  
Januario E. Castro ◽  
...  

Abstract Background: Acute lymphoblastic leukemia (ALL) exhibits a bimodal age distribution with 60% of cases occurring in children and adolescents (<20 y) and 25% in older adults (>45 y; Howlader SEER Cancer Statistics 2015). Most adults and 15-20% of children will relapse following initial therapy with subsequent poor outcomes. (Bassan, JCO 2012; Locatelli, Blood 2012). Promising results have been observed in studies of anti-CD19 CAR T cells in patients with B cell malignancies, including those treated with KTE-C19, a CD28/CD3ζ anti-CD19 CAR T cell studied in the multicenter ZUMA-1 trial (Neelapu ASCO 2016). However, studies of anti-CD19 CAR T cell therapy in R/R ALL have also observed high incidences of severe CRS in patients with high leukemic burden (Lee, Lancet 2015; Maude NEJM 2014). We present a preliminary analysis of the phase 1 portions of ZUMA-3 and ZUMA-4 which to date have enrolled adult and pediatric patients, respectively with high leukemic burden (M3 marrow). Methods: The primary objective of phase 1 of these multicenter trials is to evaluate the safety of KTE-C19. Eligible patients with R/R ALL are aged ≥18 y (ZUMA-3) or 2-21 y (ZUMA-4) with ≥25% marrow blasts, and adequate renal, hepatic, and cardiac function. Patients are required to have an Eastern Cooperative Oncology Group performance score 0-1 (ZUMA-3) or a Lansky or Karnofsky performance status of >80% (ZUMA-4). Patients with Ph+ ALL and low-burden central nervous system disease are eligible. Patients with Burkitt lymphoma or chronic myeloid leukemia in blast crisis, extramedullary disease only, active graft-versus-host disease, or clinically significant infection are not eligible. KTE-C19 is administered at a target dose of either 1 or 2 × 106 anti-CD19 CAR T cells/kg after low-dose conditioning with fludarabine (25 mg/m2/day for 3 days) and cyclophosphamide (900 mg/m2/day [CyFlu]; Wayne ASCO 2016; Shah ESMO 2016). Results: As of July 8, 2016, 6 patients have enrolled and 5 patients (3 adult and 2 pediatric) have been treated with KTE-C19. KTE-C19 was successfully manufactured in a centralized, streamlined 6-8-day process for 5 patients with approximately a 2-week turnaround time from the time of apheresis to delivery of KTE-C19 to site for patient infusion (Choi, ASGCT 2016). In one 2-year-old patient with peripheral white blood cells >150,000/μL and >99% leukemic blasts in the apheresis collection, KTE-C19 could not be manufactured. All 5 treated patients had high burden disease with a median 85% of marrow blasts (range, 48%-100%) at screening. All 5 patients received bridging chemotherapy prior to dosing with KTE-C19. No patient experienced a dose-limiting toxicity. Cytokine release syndrome (CRS) was reported in all adult (grade 1, n=1; grade 2, n=2) and pediatric (grade 2, n=2) patients; neurotoxicity (NT) was reported in adults only (grade 3, n=2; grade 4, n=1). CRS and NT were successfully managed to resolution with either tocilizumab, corticosteroids, and/or siltuximab in addition to other supportive care for all 5 patients. MRD- remission has been observed in all 5 patients who received KTE-C19 by day 28, with some remissions occurring as early as day 7. Four of 5 patients have had a CR/CR with partial hematologic recovery to date, and 1 of 5 patients with MRD- remission was showing recovering counts. CAR T cells expanded in blood within 2 weeks after infusion and were also detected in bone marrow and/or cerebrospinal fluid. Additional patients and clinical and correlative biomarker data will be presented. Conclusions: The administered dose of KTE-C19 after low-dose CyFlu conditioning has been tolerable and to date appears safe for further analysis in adult and pediatric patients with high leukemic burden R/R ALL. Initial results demonstrate promising efficacy, and the central manufacturing process is deemed feasible. The phase 1 portions of ZUMA-3 and ZUMA-4 are ongoing with planned expansion to phase 2. Clinical trial information: NCT02614066 (ZUMA-3); NCT02625480 (ZUMA-4). Disclosures Shah: Pfizer: Consultancy, Speakers Bureau; Bayer: Honoraria, Speakers Bureau; Plexus Communications: Honoraria; Rosetta Genomics: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Baxalta: Honoraria, Speakers Bureau. Lee:Juno: Honoraria. Wierda:Novartis: Research Funding; Abbvie: Research Funding; Acerta: Research Funding; Gilead: Research Funding; Genentech: Research Funding. Schiller:Incyte Corporation: Research Funding. Gökbuget:Pfizer: Honoraria, Research Funding; Amgen: Honoraria, Research Funding. Sabatino:Kite: Employment, Equity Ownership. Bot:Kite Pharma: Employment, Equity Ownership. Rossi:Kite Pharma: Employment, Equity Ownership. Jiang:Kite Pharma: Employment, Equity Ownership. Navale:Kite Pharma: Employment, Equity Ownership. Stout:Kite Pharma: Employment, Equity Ownership. Aycock:Kite Pharma: Employment, Equity Ownership. Wiezorek:Kite Pharma: Employment, Equity Ownership. Jain:Kite Pharma: Employment, Equity Ownership. Wayne:Spectrum Pharmaceuticals: Honoraria, Other: Travel Support, Research Funding; Kite Pharma: Honoraria, Other: Travel support, Research Funding; Pfizer: Consultancy, Honoraria, Other: Travel Support; Medimmune: Honoraria, Other: Travel Support, Research Funding; NIH: Patents & Royalties.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 67-67 ◽  
Author(s):  
Stephan A Grupp ◽  
Noelle V. Frey ◽  
Richard Aplenc ◽  
David M Barrett ◽  
Anne Chew ◽  
...  

Abstract Background CARs combine a single chain variable fragment (scFv) of an antibody with intracellular signaling domains into a single chimeric protein. We previously reported on CTL019 cells expressing a CAR with intracellular activation plus costimulatory domains. Infusion of these cells results in 100 to 100,000x in vivo proliferation, durable anti-tumor activity, and prolonged persistence in pts with B cell tumors, including 1 sustained CR in a patient with ALL (Grupp, et al. NEJM 2013). We now report on outcomes and longer follow up from our pilot studies treating 20 pts (16 children and 4 adults) with relapsed, refractory ALL. Methods T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3ζ, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into pts with relapsed or refractory CD19+ ALL. 17/20 pts received lymphodepleting chemotherapy the week prior to CTL019 infusion. The targeted T cell dose range was 107 to 108 cells/kg with a transduction efficiency (TE) of 11-45%. On the adult protocol, the target dose was 5 x 109 total cells split over 3 days with a TE of 6-31%. 11 pts had relapsed ALL after a prior allogeneic SCT. T cells were collected from the pt, regardless of prior SCT status, and not from allo donors. All pts s/p allo SCT had to be 6 mos s/p SCT with no GVHD or GVHD treatment. Results 16 children median age 9.5 y (5-22y) and 4 adults median age 50y (26-60y) with CD19+ ALL were treated. One child had T cell ALL aberrantly expressing CD19. 14/16 pediatric pts had active disease or +MRD after chemotherapy on the day prior to CTL019 cell infusion, while 2 were MRD(-). 3 of 4 adults had active disease prior to lymphodepleting chemotherapy, while 1 was in morphologic CR. Lymphodepleting chemotherapy varied with most receiving a Cytoxan-containing regimen the week prior to CTL019. A median of 3.7x106 CTL019 cells/kg (0.7-18x106/kg) were infused over 1-3 days. There were no infusional toxicities >grade 2, although 5 pts developed fevers within 24 hrs of infusion and did not receive planned subsequent infusions of CTL019 cells. 14 patients (82%) achieved a CR, including the patient with CD19+ T ALL, 3 did not respond, and 3 are pending evaluation. 11/17 evaluable pts have ongoing BM CR with median follow up 2.6 mo (1.2-15 mo). Three patients with a CR at 1 month have subsequently relapsed, 1 with CD19(-) disease. Median follow-up as of August 1, 2013 was 2.6 mo (1-15 mo) for all pts. All responding pts developed some degree of delayed cytokine release syndrome (CRS), concurrent with peak T cell expansion, manifested by fever, with variable degrees of myalgias, nausea, anorexia. Some experienced transient hypotension and hypoxia. Detailed cytokine analysis showed marked increases from baseline values of IL6 and IFNγ (both up to 1000x), and IL2R, with mild or no significant elevation in systemic levels of TNFα or IL2. Treatment for CRS was required for hemodynamic or respiratory instability in 7/20 patients and was rapidly reversed in all cases with the IL6-receptor antagonist tocilizumab (7 pts), together with corticosteroids in 4 pts. Although T cells collected from the 11 pts who had relapsed after allo SCT were generally 100% of donor origin, no GVHD has been seen. Persistence of CTL019 cells detected by flow cytometry and/or QPCR in pts with ongoing responses continued for 1-15 months after infusion, resulting in complete B cell aplasia during the period of CTL019 persistence. Pts have been treated with IVIg without any unusual infectious complications. One child who entered a CR subsequently developed MDS with a new trisomy 8 in ALL remission and has gone to SCT, and 1 child developed a single leukemia cutis lesion at 6 mo, still BM MRD(-). Conclusions CTL019 cells are T cells genetically engineered to express an anti-CD19 scFv coupled to CD3ζ signaling and 4-1BB costimulatory domains. These cells can undergo robust in-vivo expansion and can persist for 15 mo or longer in pts with relapsed ALL. CTL019 therapy is associated with a significant CRS that responds rapidly to IL-6-targeted anti-cytokine treatment. This approach has promise as a salvage therapy for patients who relapse after allo-SCT, and collection of tolerized cells from the recipient appears to have a low risk of GVHD. CTL019 cells can induce potent and durable responses for patients with relapsed/refractory ALL. Multicenter trials are being developed to test this therapy for ALL in the phase 2 setting. Disclosures: Grupp: Novartis: Research Funding. Chew:Novartis: Patents & Royalties. Levine:Novartis: cell and gene therapy IP, cell and gene therapy IP Patents & Royalties. Litchman:Novartis Phamaceuticals: Employment, Equity Ownership. Rheingold:Novartis: Research Funding. Shen:Novartis Pharmaceuticals: Employment, Equity Ownership. Wood:Novartis Pharmaceuticals: Employment, Equity Ownership. June:Novartis: Patents & Royalties, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5583-5583 ◽  
Author(s):  
Jeffrey P. Sharman ◽  
Gilles A. Salles ◽  
Wojciech Jurczak ◽  
Jeffrey Jones ◽  
Carolyn J. Owen ◽  
...  

Abstract Introduction: Idelalisib (IDELA) is a targeted PI3Kd inhibitor approved as monotherapy in relapsed follicular lymphoma and in combination with rituximab in relapsed chronic lymphocytic leukemia (CLL). Increased rates of adverse events (AEs) were recently observed in the IDELA vs placebo arms of randomized controlled trials (RCT) evaluating IDELA added to standard therapies in front-line CLL and early-line indolent non-Hodgkin lymphoma (iNHL). AEs leading to death were mainly infectious and included pneumocystis jirovecii pneumonia (PJP) and cytomegalovirus (CMV). This analysis across trials in the relapsed population evaluated whether quantitative changes in lymphocyte subsets may have contributed to these AEs. Methods: Peripheral blood immunophenotypic data available for analysis from patients (pts) (n = 1,480) treated in 5 IDELA RCTs were analyzed. Three studies (n = 787) included pts with relapsed CLL (NCT01569295: IDELA + bendamustine-rituximab [BR] vs placebo + BR; NCT01539512: IDELA + R vs placebo + R and NCT0165902: IDELA + ofatumumab [O] vs placebo + O) and 2 studies (n = 693) included R/R iNHL pts (NCT01732913: IDELA + R vs placebo + R and NCT01732926: IDELA +BR vs placebo + BR). Absolute numbers of T (CD4+ and CD8+), B (CD19+) and NK (CD16+/CD56+) cells were analyzed longitudinally in both IDELA and placebo pts across the 5 studies. Lymphocyte subsets were analyzed separately in those who died and then correlated with specific grade ≥3 AEs including infections, febrile neutropenia, and respiratory (acute respiratory failure, pneumonitis) events. Analysis was conducted within individual study and for all studies combined. Of note, samples were collected more frequently during the first 6 months (during combination therapy) and collection times varied among the 5 studies. Results: There was no specific trend noted with the CD8+ T-cells between treatment groups across the studies. Generally, NK-cells were decreased to a similar degree in both IDELA and placebo pts at weeks 10 to 12 with recovery starting around week 24. There were no differences in median NK- and CD8+ T-cell counts between pts with grade ≥3 AEs and no AEs within either group. In both BR trials, CD4+ T-cells nadir to <200 cells/µl occurred at week 22 in both groups. Recovery of CD4 to ≥200 cells/µL occurred at week 30 in CLL pts and at week 72 in iNHL pts. Median CD4+ T-cells in pts on the BR trials were lower in groups both with and without AEs, compared with non-BR trials (Table 1). There were a total of 31 cases of PJP (13 in the BR trials) and 32 cases of CMV infection (28 in the BR trials). Analysis of PJP and CMV pts with available immunophenotypic data (n = 46) revealed that 33 pts had CD4 <200 cells/µL; 31 of these were treated with IDELA plus combination therapy (Figure 1). Finally, while there were more grade ≥3 AEs within IDELA arms, these did not occur at any specific CD4 level and, in fact, grade ≥3 AEs were noted even in pts with CD4 >900 cells/µL. Conclusion: Within 5 RCTs evaluating IDELA vs placebo in combination with an anti-CD20 mAb or BR in R/R CLL or iNHL, there was no correlation between grade ≥3 AEs and NK- or CD8+ T-cell counts. Median CD4+ T-cells in pts on the BR trials were lower in both groups in those with and without AEs, compared with non-BR trials. In addition, pts with PJP and CMV infections were noted to have CD4+ T-cells <200 cells/ µL, and this was more common in IDELA-treated patients, especially when combined with BR, suggesting that the lymphosuppressive effect of IDELA may augment the myelosuppressive effect of bendamustine. While this current study involves the quantitative analysis of various immune cell subsets, it may be the qualitative function of these cells that contributed to infections. Assays evaluating the qualitative function of these cells are being investigated. All IDELA trials have been amended to include PJP prophylaxis and CMV monitoring. Figure 1 Figure 1. Incidence of PJP and CMV Infections and Correlation with CD4 Count. Disclosures Sharman: Gilead Sciences, Inc.: Honoraria, Research Funding. Salles:Mundipharma: Honoraria; Amgen: Consultancy, Honoraria; Gilead: Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Roche/Genentech: Consultancy, Honoraria, Research Funding. Jurczak:Celltrion, Inc: Research Funding; Janssen: Research Funding; Gilead Sciences: Research Funding; Acerta: Research Funding; Bayer: Research Funding. Jones:AbbVie: Consultancy, Honoraria, Research Funding; Genentech: Consultancy, Honoraria, Research Funding; Pharmacyclics: Consultancy, Honoraria, Research Funding; Gilead Sciences: Consultancy, Research Funding; PCYC: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Owen:Janssen: Honoraria; Gilead: Honoraria, Research Funding; Pharmacyclics: Research Funding; Celgene: Honoraria, Research Funding; Abbvie: Honoraria; Lundbeck: Honoraria, Research Funding; Novartis: Honoraria; Roche: Honoraria, Research Funding. Munugalavadla:Gilead Sciences: Employment, Equity Ownership. Dreiling:Gilead Sciences: Employment, Equity Ownership. Xiao:Gilead Sciences: Employment, Equity Ownership. Rao:Gilead Sciences: Employment, Equity Ownership. Flinn:Janssen: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Gilead Sciences: Research Funding; ARIAD: Research Funding; RainTree Oncology Services: Equity Ownership. O'Brien:Pharmacyclics, LLC, an AbbVie Company: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document