The Synergistic Effect of Melphalan and XPO1 Inhibition in Pre-Clinical Models of Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5662-5662 ◽  
Author(s):  
Yan Cui ◽  
Joel G Turner ◽  
Jana L Dawson ◽  
Juan A Gomez ◽  
Kenneth H. Shain ◽  
...  

Abstract Introduction:Multiple myeloma (MM) is an incurable cancer of plasma cells. It accounts for approximately 10% of all hematologic malignancies. In the US, it is estimated that there will be approximately 30,330 new cases and 12,650 deaths in 2016. In the past decade, responses/survivals have been significantly increased by newer therapies. However, almost all of the patients will eventually die from multi-drug resistant disease. Materials and Methods:Weused XPO1 inhibitors (XPO1i) selinexor (300nM) or KPT-8602 (300nM) +/- melphalan (15 μM) to treat human MM parental RPMI8226 and U266 cells, and melphalan resistant LR5 and LR6 cell lines for 20 hours and then assayed for apoptosis and viability by flow cytometry. DNA damage was assayed by the comet assay and phospho-H2AX protein expression in H929 human myeloma cells. p53, NFkB, IKKα, FANCF, and FANCL were assayed by Western blot in H929 MM cells. We also treated cells from patients with newly diagnosed or relapsed/refractory MM with the XPO1i (300nM)/ melphalan (10μM) combination and assayed for apoptosis. In addition, selinexor/melphalan treated NOD/SCID-gamma mice with U226 MM tumors were assayed for tumor growth, survival, and toxicity. Results:Cell viability of all tested MM cell lines was decreased synergistically and apoptosis increased by XPO1i/melphalan treatment (selinexor/melphalan, P = 2.2x10E-6 to 0.0032, KPT-8602/ melphalan, P = 1.2X10E-7 to 0.0031). Comet assays showed that the XPO1i/ melphalan drug combination increased DNA damage more than single agent melphalan or XPO1i alone. Phospho-H2AX expression also was increased (selinexor/ melphalan, P = 0.005 and KPT-8602/melphalan, P = 0.001). Western blot analysis showed that XPO1i treatment can increase p53 and decrease NFkB, IKKα, FANCF, and FANCL in MM cells. Apoptosis assays showed that both melphalan-resistant and parental MM cell lines were sensitized to melphalan by XPO1i. In addition, CD138+/light chain+ MM cells from newly diagnosed and relapsed/refractory MM patients were sensitized (20-fold and 5 to10-fold respectively) by XPO1i to melphalan. XPO1i/melphalan combination treatment demonstrated a strong synergistic anti-tumor effect when compared to single-agent melphalan (selinexor, P = 0.0024 and KPT-8602, P = 0.0030) in NOD/SCID-gamma mice challenged with U266 MM tumors. XPO1i/ melphalan treated mice had increased survival and no significant toxicity. Conclusions:XPO1i's can improve the response of human MM cell lines and patient MM cells to melphalan both in vitro and ex vivo. The mechanism of this synergy reversing melphalan resistance may be due to increased nuclear p53, in combination with decreased NFkB and IKKα, and decreased DNA repair proteins FANCL and FANCF of the Fanconi Anemia/BRCA pathway. Our preliminary data suggest that the synergistic cell kill may be because XPO1i's increase melphalan-induced DNA damage and block the repair of the DNA damage. Thus using combination therapies of XPO1i, especially the clinical compounds selinexor and KPT-8602 +/- melphalan may have potential to improve the treatment outcomes of MM. Based on these promising pre-clinical data, we designed a phase 1/2 clinical trial evaluating the combination of selinexor and high-dose melphalan as a conditioning regimen for autologous hematopoietic cell transplantation in patients with multiple myeloma (NCT02780609). Disclosures Shain: Novartis: Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Signal Genetics: Research Funding; Takeda/Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen/Onyx: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Baloglu:Karyopharm Therapeutics Inc: Employment, Other: stockholder. Nishihori:Signal Genetics: Research Funding; Novartis: Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 839-839 ◽  
Author(s):  
Jennifer Kimberly Lue ◽  
Sathyen A Prabhu ◽  
Yuxuan Liu ◽  
Owen A. O'Connor ◽  
Jennifer E Amengual

Abstract EZH2 is critical in a process known as the Germinal Center (GC) reaction during which B-cells undergo somatic hypermutation and isotype switching in order to develop a large antibody repertoire. EZH2 is a histone methyltransferase serving as the catalytic subunit of the Polycomb Repression Complex 2 (PRC2), which is responsible for tri-methylation of histone 3 lysine 27 (H3K27), a mark of transcriptional repression. EZH2 recruits HDAC1/2 and DNMTs through its cofactor EED to further inhibit transcription. Mutations in EZH2 are found in 7-12% of FL and 22% of GC-DLBCL. EZH2 overexpression secondary to MYC and miRNA dysfunction has also been described. EZH2 also plays a role in T-cell differentiation and has been found in various T-cell malignancies. Histone acetyltransferases (HAT), notably CBP and p300, have also been implicated in B- and T-cell lymphomas and are mutated/deleted in 39% of GC-DLBCL and 41% of FL. Given the presence of EZH2 and HAT dysregulation in lymphoma, we evaluated the potential synergy of EZH2 and HDAC inhibitors co-treatment. Single agent activity for GSK126, an EZH2 inhibitor, and romidepsin, a pan-HDAC inhibitor, was established in a panel of lymphoma cell lines (GC-DLBCL, Non-GC DLBCL, MCL and T-Cell lymphoma, n=21). Cell lines with known EZH2 dysregulation (GC-DLBCL and ATLL) were more sensitive to EZH2 inhibitors as exhibited by lower half maximal effective concentration (EC50) after 6 day exposure (EC50 0.01-16 µM). There was no association between HAT mutation/deletion and romidepsin sensitivity. A panel of lymphoma cell lines was treated for 72 hr with GSK126 and romidepsin using concentrations represented by their EC30-50 (0.5-4.0 µM), and EC20-40 (1.0-4.0 nM), respectively. Synergy was assessed by Excess over Bliss (EOB), where EOB > 10 represents synergy. Simultaneous exposure to GSK126 and romidepsin in GC-DLBCL cell lines demonstrated potent synergy as represented by EOB > 30. Synergy was also present in ATLL cell lines (EOB 28), which are known to have EZH2 dysregulation, as well as non-GC DLBCL cell lines (EOB 47). Although these cell lines do not have EZH2 mutations, some possess relative EZH2 over-expression compared to other lymphomas. Evaluation of drug schedule using GSK126 pretreatment prior to romidepsin exposure did not impact synergy. Compared to single agent activity, the combination of GSK126 (2 µM) and romidepsin (1-4 nM) led to a more pronounced decrease in H3K27 tri-, di-, and mono-methylation and increased acetylation in 4 GC-DLBCL cell lines (OCI-LY7, Pfeiffer, SU-DHL-6, SU-DHL-10) at 24 or 48 hrs. The impact of the combination on the function of the PRC2 complex was assessed via co-immunoprecipation in these cell lines. The combination demonstrated dissociation of the PRC2 complex (EZH2, SUZ12, EED, and RbAp46/48) as compared to single agent exposure. Treatment with the combination also induced dissociation of HDAC2 and DNMT3L. In addition, we observed decreased protein expression of PRC2 complex members and increased p21/CDKN1A, which was more notable in the combination treatment as compared to single agent. This may be due to the removal of HDACs from the p21 transcriptional start site through the disruption of the PRC2 complex and direct inhibition of HDACs, thus leading to increase expression of p21. The combination also led to decreased nuclear localization of EZH2 and its cofactors. Apoptosis was confirmed by caspase 3 and PARP cleavage, and was more potently cleaved after exposure to the combination. Based on the findingthat HDAC2 dissociated from PRC2 complex after treatment with GSK126 and romidepsin, a selective HDAC1/2 inhibitor, ACY-957 (Acetylon Pharmaceuticals), was combined with GSK126 which demonstrated potent synergy in 4 GC-DLBCL cell lines (EOB 37). This data suggests that concomitant inhibition of EZH2 and HDAC is highly synergistic and leads to the dissociation of PRC2 complex. By releasing transcriptional inhibition key tumor suppressors and cell cycle regulators may be re-expressed. Potency of this epigenetic combination may be predicted by gene expression signatures for which RNA-seq libraries are currently in production. Reversing transcriptional inhibition using a combination of EZH2 inhibitors and HDAC inhibitors may lead to a potent treatment option for lymphomas dependent upon EZH2 and HAT activity. Figure 1 Figure 1. Disclosures O'Connor: Seattle Genetics: Research Funding; Spectrum: Research Funding; Seattle Genetics: Research Funding; Spectrum: Research Funding; Mundipharma: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Research Funding; Mundipharma: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Research Funding; Bristol Myers Squibb: Research Funding; Bristol Myers Squibb: Research Funding; Celgene: Research Funding; Celgene: Research Funding. Amengual:Acetylon Pharmaceuticals: Research Funding; Bristol-Myers Squibb: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2270-2270
Author(s):  
Nina Nguyen ◽  
Sana Chaudhry ◽  
Tulasigeri M Totiger ◽  
Skye Montoya ◽  
Jumana Afaghani ◽  
...  

Abstract Translocation t(11;14) multiple myeloma (MM) is sensitive to the apoptosis-inducing drug venetoclax, yet the drug lacks FDA approval in MM. Selinexor is an inhibitor of nuclear export that is approved in relapsed/refractory MM. Here, we report that in patients with t(11;14) MM, the combined administration of venetoclax and selinexor was safe and resulted in clinically meaningful responses. This prompted preclinical studies to investigate synergism and molecular mechanisms of action. The combination was synergistic in t(11;14) MM cell lines and caused decreased levels of Cyclin D1 when given in combination as compared to single agents. A 58-year-old African American man and an 81-year-old Caucasian woman with relapsed, refractory t(11;14) MM with CCND1-IGH fusion confirmed by FISH and progression of disease after multiple lines of therapy were treated with venetoclax based on previous data showing efficacy of venetoclax in t(11;14) MM. Both patients responded initially to venetoclax, however, developed resistance and progressive disease. The addition of selinexor recaptured responses (VGPR and MR, respectively) suggesting a beneficial effect of the combination over single agent venetoclax. The treatment course of the 58-year-old man is shown in Figure A and free kappa light chain response in Figure B. Based on these observations, we hypothesized that selinexor with venetoclax was synergistic in patients bearing the t(11;14) translocation. We therefore studied the combination in MM cell lines with (U266-B1, KMS-12-BM, SK-MM2), and without (RPMI-8226, LP-1, OPM-2) t(11;14) translocations. We performed cell viability assays in increasing concentrations of selinexor, venetoclax, and a combination of the two drugs at 72 hours. Synergy was analyzed via the Bliss independence model using Synergy Finder software as well as via the Chou-Talalay method by using CompuSyn software. Average Bliss model synergy scores were -0.5 in non-t(11;14) and 10.2 in t(11;14) MM cells (>10 indicates synergistic effects and <-10 indicates antagonistic drug effects). Combination index (CI) values <1 are synergistic, CI=1 are additive, and >1 are antagonistic. Cell lines that possessed t(11;14) were more sensitive to the drug combination and showed enhanced synergy in those cell lines bearing the CCND1-IGH translocation (Figure C). To better understand molecular mechanisms underlying the observed synergistic effect, we performed western blot analysis in these six cell lines, treating with selinexor (200nM), venetoclax (1μM), the combination, or DMSO control for 24 hours. We measured protein expression with antibodies against Cyclin D1, which is overexpressed in t(11;14) and a cargo of XPO1. Additionally, we measured levels of XPO1, p53, MCL-1, and p65, which we have previously shown to be altered by selinexor treatment (Figure D). We confirmed Cyclin D1 overexpression in t(11;14) cells lines but not in non-t(11;14) cells. Cyclin D1 levels decreased with selinexor, and the reduction was enhanced by adding venetoclax. Similarly, XPO1 levels decreased to a further degree in t(11;14) cell lines with the combination when compared to either drug alone. There was no difference in XPO1 reduction with the treatment combination in non-t(11;14) cell lines. P53 levels increased as a result of selinexor and combination treatment, and the combination also caused decreased levels of p65 in cell lines with and without t(11;14). Venetoclax upregulated MCL-1, but this was mitigated with the addition of selinexor. These effects were statistically more significant in t(11;14) cell lines (Figure E). The combination of selinexor and venetoclax has shown preclinical synergy in other cancer types and is in Phase 1b clinical trials for relapsed, refractory non-Hodgkin lymphoma or acute myeloid leukemia (NCT03955783; NCT04607772). To our knowledge, this is the first report of patients with MM treated with the combination of selinexor and venetoclax. The mechanism behind the preferential synergy in t(11;14) MM is still under investigation; however, the result of our studies suggests a role for Cyclin D1, which is a cargo protein of XPO1. Additionally, while the effect of venetoclax on Cyclin D1 is not well defined, prior studies suggest the interplay between Cyclin D1, BCL2, and other anti- and pro-apoptotic proteins as having a role in oncogenesis. Based on our results, further clinical evaluation of this combination in MM is planned. Figure 1 Figure 1. Disclosures Bradley: AbbVie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees. Maura: OncLive: Honoraria; Medscape: Consultancy, Honoraria. Kazandjian: Arcellx: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees. Landgren: Janssen: Other: IDMC; Takeda: Other: IDMC; Celgene: Research Funding; Amgen: Honoraria; Janssen: Honoraria; Janssen: Research Funding; Amgen: Research Funding; GSK: Honoraria. OffLabel Disclosure: Venetoclax for myeloma is not yet FDA approved, but is used at clinician's discretion in patients who possess t(11;14) based upon the previous sub-group analysis of trials with venetoclax.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 76-76
Author(s):  
Ilaria Iacobucci ◽  
Federica Cattina ◽  
Silvia Pomella ◽  
Annalisa Lonetti ◽  
Enrico Derenzini ◽  
...  

Abstract Abstract 76 Checkpoint kinase 1 (Chk1) and 2 (Chk2) are serine/threonine kinases regulated by Ataxia-Telangiectasia and Rad3-related (ATR) kinases and involved in the DNA damage response and in the regulation of cell cycle progression at S-G2 phase. Deregulation of these pathways has been previously described in BCR-ABL positive cells and involved in chemoresistance. Based on the potential utility of DNA checkpoint inhibition in enhancing tumor cell death, in this study we aimed to investigate the preclinical activity of PF-0477736 (Pfizer), a potent and selective Chk1/2 inhibitor, in Ph+ ALL and to determine potential biomarkers of functional inhibition. We first examined Chk1 and Chk2 mRNA expression levels in 45 newly diagnosed Ph+ ALL patients, in their paired remission samples, in 14 relapsed cases and in 3 Ph+ cell lines (BV-173, SUPB-15 and K562) by Fluidigm Dynamic Array real-time qPCR assay (Fluidigm Corporation). Higher transcript levels of Chk1 but not Chk2 were found in newly diagnosed patients compared to remission samples (p = 0.0009 for Chk1 and p= 0.8183 for Chk2). Chk1 transcript levels were comparable between diagnosis and relapsed cases (p = 0.5728), suggesting that the ATR-Chk1 pathway is strongly activated in Bcr-Abl-positive cells. This was confirmed by phosphorylation of Chk1 Ser317 by western blotting analysis in Ph+ cell lines. We then evaluated the effect of PF-0477736 as single agent on cell viability using the Cell Proliferation Reagent WST-1 (Roche). BV-173, SUPB-15 and K562 cell lines were incubated with increasing concentration of PF-0477736 (0.005-2 μM) for 24, 48 and 72 hours. PF-0477736 inhibition of Chk1 resulted in dose and time-dependent cytotoxicity with IC50 at 24 hours of 0.1–0.5 μM, with BV-173 being the most sensitive, while K562 the most resistant. These results were confirmed in primary blasts cells from a Ph+ ALL patient with wild-type Bcr-Abl and from 3 cases harboring the T315I Bcr-Abl mutation found to be insensitive to the available TKIs (IC50 ranged from 0.1–0.5 μM at 48 hours). Consistent with the WST-1 results, Annexin V/Propidium Iodide staining analysis showed a significant increase of apoptosis at 24 and 48 hours in both cell lines and primary cells. To test whether increased apoptosis resulted from Chk1 inhibition, we assessed the changes in phosphorylation of Cdc25c phosphatase, which is inactivated by Chk1 to prevent mitotic entry, and of γH2AX, which is increased in response to DNA damage. Western blot analysis showed that PF-0477736 decreases the inhibitory phosphorylation of Cdc25c Ser216 and increases levels of γH2AX. Since multiple studies reported a higher activity of PF-0477736 against p53-defective cancer cells, we performed a mutational screening by amplification and subsequent sequencing of all coding exons of p53. All cell lines except for K562 and primary leukemia cells lacked mutations in the p53 gene, demonstrating that in Ph+ ALL PF-0477736 is highly effective also on p53 wild-type tumor cells. Finally, in order to elucidate the mechanisms of action of PF-0477736 and to determine biomarkers of response, gene expression profiling analysis (Affymetrix GeneChip Human Gene 1.0 ST) was performed on 3 treated Ph+ cell lines and their untreated counterparts. Consistent with a specific Chk1-mechanism of action, treatment resulted in differential expression (p < 0.05) of 211 genes including those involved in apoptosis and cell cycle (CEBPB, CUL1, Histone H1-H2A, 2B family clusters, Histone H4, DHX15, SNCB, FOS) and DNA damage, such as DNA-damage-inducible transcript 3 (DDIT3) and growth-arrest and DNA damage-inducible proteins GADD34 and GADD45a, suggesting that PF-0477736 contributes to a checkpoint abrogation and to an activation of DNA damage response in Ph+ ALL cells. In conclusion, for the first time we demonstrate in a large cohort of Ph+ ALL patients an over-expression of Chk1, providing a strong rational for its inhibition. In vitro treatment of Ph+ ALL cells with PF-0477736 alone resulted in reduction of inhibitory phosphorylation of Cdc25c, inhibition of proliferation and induction of biomarkers of DNA damage and apoptosis, suggesting that single-agent Chk1/2 inhibition may be an effective treatment strategy for Ph+ ALL. Supported by European LeukemiaNet, AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2006, PRIN 2009, PIO program, Programma Ricerca Regione-Università 2007–2009. PF-0477736 provided by Pfizer. Disclosures: Baccarani: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees. Martinelli:Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Pfizer: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Roberto Mina ◽  
Alessandra Larocca ◽  
Paolo Corradini ◽  
Nicola Cascavilla ◽  
Anna Marina Liberati ◽  
...  

INTRODUCTION. The proteasome inhibitor (PI) Ixazomib, approved for the treatment of relapsed/refractory multiple myeloma (MM), represents an appealing option for the management of elderly patients, due to its oral administration and the lack of peripheral neuropathy. We previously presented preliminary results of the phase II EMN10-Unito study investigating Ixazomib in combination with dexamethasone (Id), Cyclophosphamide-dexamethasone (ICd), Thalidomide-dexamethasone (ITd) or Bendamustine-dexamethasone (IBd) as induction therapy followed by single-agent Ixazomib maintenance in transplant-ineligible newly diagnosed (ND) MM patients. Here we present updated results of the study with a longer follow-up. METHODS. Transplant-ineligible NDMM patients ≥65 years were enrolled. Treatment consisted of 9 28-day induction cycles of Ixazomib 4 mg on days 1,8,15 and dexamethasone 40 mg on days 1,8,15,22 or Id plus either Cyclophosphamide 300 mg/m2 orally on days 1,8,15 or Thalidomide 100 mg/day or Bendamustine 75 mg/m2 iv on days 1,8; followed by Ixazomib maintenance (4 mg on days 1,8,15) for up to 2 years. The primary endpoint was the selection of the most effective induction regimen considering a 2-year progression-free survival (PFS) ≥65% as satisfactory; secondary endpoints were very good partial response (VGPR), PFS2, overall survival (OS) and adverse events (AEs) during induction and maintenance. RESULTS. 171 patients (Id 41, ICd 59, ITd 60 and IBd 11) with a median age of 74 years were enrolled and started treatment. Two of the four investigational arms were prematurely closed due to low-enrollment (IBd arm, 11 patients enrolled) and high risk of inefficacy (Id, 41 patients enrolled). Median follow-up was 27 months. After the induction phase, ICd and ITd resulted in higher ≥ PR (75%-84% vs. 57%; p&lt;0.05) and VGPR (46%-48% vs 24%; p&lt;0.05) rates as compared to Id. The median PFS was 10.3 months with Id, 17.9 with ICd, 12.3 with ITd, and 13.8 with IBd, with a 2-year PFS probability of 31%, 39%, 27% and 40%, respectively. Median OS was not reached in either arm, without significant differences in the 2-year OS across arms (Id: 85%; ICd: 75%; ITd: 78%; IBd: 89%). Grade 3-4 non-hematological AEs were more frequent in the ITd arm (45%) as compared to the Id (17%), ICd (17%) and IBd (36%) arms, as well as the risk of treatment discontinuation due to AEs: ITd 17% vs Id 10%, ICd 12%, IBd 9%. Overall, 102 patients (60%) completed the induction phase and proceeded to ixazomib maintenance (median follow-up from start of maintenance: 18 months). The best response during maintenance was PR in 26%, VGPR in 29%, and complete response (CR) in 26% of patients; 18% of patients improved the response obtained during induction by at least one IMWG category. The median PFS from start of maintenance was 15 months. The median duration of maintenance was 12 months. All grades AEs occurred in 39% of patients during maintenance, while grade 3-4 AEs occurred in 10% of patients. Grade 1-2 peripheral neuropathy (PN) was reported in 15% of patients, without grade 3-4 events. Overall, 15% required at least one dose reduction of ixazomib and 12% discontinued ixazomib maintenance due to AEs. CONCLUSIONS. Safety and efficacy data suggest that Id combined with cyclophosphamide was the most promising induction strategy compared to the other investigated combinations. Continuous treatment with single-agent Ixazomib confirmed its efficacy and tolerability in elderly NDMM patients. Disclosures Mina: Amgen: Honoraria; Celgene: Honoraria; Takeda: Honoraria; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Larocca:GSK: Honoraria; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria; Takeda: Membership on an entity's Board of Directors or advisory committees. Corradini:KiowaKirin: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Other: Travel and accommodations paid by for; Sanofi: Consultancy, Honoraria; Servier: Consultancy, Honoraria; Takeda: Consultancy, Honoraria, Other; BMS: Other; Kite: Consultancy, Honoraria; Gilead: Consultancy, Honoraria, Other: Travel and accommodations paid by for; Daiichi Sankyo: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria, Other: Travel and accommodations paid by for; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Other: Travel and accommodations paid by for; Incyte: Consultancy; Celgene: Consultancy, Honoraria, Other: Travel and accommodations paid by for; F. Hoffman-La Roche Ltd: Consultancy, Honoraria. Liberati:CELGENE: Honoraria; BIOPHARMA: Honoraria; ARCHIGEN: Honoraria; BEIGENE: Honoraria; BMS: Honoraria; AMGEN: Honoraria; FIBROGEN: Honoraria; INCYTE: Honoraria; VERASTEM: Honoraria, Research Funding; ROCHE: Honoraria, Research Funding; PFIZER: Honoraria, Research Funding; ONCOPEPTIDES AB: Honoraria, Research Funding; TAKEDA: Honoraria, Research Funding; MORPHOSYS: Honoraria, Research Funding; ONCONOVA: Honoraria, Research Funding; ABBVIE: Honoraria, Research Funding; NOVARTIS: Honoraria, Research Funding; KARYOPHARM: Honoraria, Research Funding; JANSSEN: Honoraria. Zambello:Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees. Belotti:Amgen: Membership on an entity's Board of Directors or advisory committees; Jannsen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Boccadoro:Sanofi: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; AbbVie: Honoraria; Mundipharma: Research Funding; GlaxoSmithKline: Membership on an entity's Board of Directors or advisory committees. Bringhen:Takeda: Consultancy; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. OffLabel Disclosure: The presentation includes discussion of off-label use of a drug or drugs for the treatment of multiple myeloma (including ixazomib, dexamethasone, cyclophosphamide, thalidomide and bendamustine).


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1835-1835 ◽  
Author(s):  
Katrina M Piedra ◽  
Hani Hassoun ◽  
Larry W. Buie ◽  
Sean M. Devlin ◽  
Jessica Flynn ◽  
...  

Introduction Immunomodulatory agents (IMiD's) are associated with an increased risk of venous thromboembolism (VTE), particularly when combined with high dose steroids. Studies evaluating the use of lenalidomide-bortezomib-dexamethasone (RVD) and carfilzomib-lenalidomide-dexamethasone (KRD) in the frontline setting for multiple myeloma (MM) have reported a 6% and 24% incidence of thrombosis, respectively, despite primary thrombotic prophylaxis with aspirin (ASA) (Richardson, et al. Blood. 2010; Korde, et al. JAMA Oncol 2015). Recent data, including the Hokusai VTE Cancer Trial, have suggested that safety and efficacy of direct oral anticoagulants (DOACs) are preserved in the setting of treatment of solid malignancy-associated thrombosis (Raskob, et al. N Engl J Med. 2018; Mantha, et al. J Thromb Thrombolysis. 2017). Despite this data, there is limited experience and use of DOACs in prevention of thromboses in the setting of hematologic malignancies, specifically MM. After careful review of literature, since early 2018, we changed our clinical practice and routinely placed newly diagnosed MM (NDMM) patients receiving KRD at Memorial Sloan Kettering Cancer Center (MSKCC) on concomitant rivaroxaban 10 mg once daily, regardless of VTE risk stratification. In the following abstract, we present VTE rates and safety data for newly diagnosed MM patients receiving RVD with ASA vs. KRD with ASA vs. KRD with rivaroxaban prophylaxis. Methods This was an IRB-approved, single-center, retrospective chart review study. All untreated patients with newly diagnosed MM, receiving at least one cycle of RVD or KRD between January 2015 and October 2018 were included. The period of observation included the time between the first day of therapy until 90 days after completion of induction therapy. Patients were identified by querying the pharmacy database for carfilzomib or bortezomib administration and outpatient medication review of thromboprophylaxis with rivaroxaban or ASA. VTE diagnoses were confirmed by ICD-10 codes and appropriate imaging studies (computed tomography and ultrasound). Descriptive statistics were performed. Results During the observation period, 241 patients were identified to have received RVD or KRD in the frontline (99 RVD with ASA; 97 KRD with ASA; 45 KRD with rivaroxaban). Baseline characteristics were well distributed among the three arms, with a median age of 60 (30-94) in the RVD ASA arm, 62 (33-77) in the KRD ASA arm, and 60 (24-79) in the KRD rivaroxaban arm. Patients had International Staging System (ISS) stage 3 disease in 13% (N=13), 9.3% (N=9), and 11% (N=5) of the RVD ASA, KRD ASA, and KRD rivaroxaban arms, respectively. Median weekly doses of dexamethasone were higher in both KRD arms, 40 mg (20-40) vs. 20 mg (10-40) in the RVD ASA arm. The average initial doses of lenalidomide were 22 mg in the RVD ASA arm compared to 25 mg in both the KRD ASA and KRD rivaroxaban arms. After querying the pharmacy database, no patients were identified to have a history or concomitant use of erythropoietin stimulating agent (ESA) use. Treatment-related VTE's occurred in 4 patients (4.0%) in the RVD ASA arm, 16 patients (16.5%) in the KRD ASA arm, and in 1 patient (2.2%) in the KRD rivaroxaban arm. Average time to VTE was 6.15 months (Range 5.42, 9.73) after treatment initiation in the RVD ASA group, while it was 2.61 months (Range 0.43, 5.06) in the KRD ASA group and 1.35 months in the KRD rivaroxaban group. Minor, grade 1 bleeding events per the Common Terminology Criteria for Adverse Events (CTCAE) were identified in 1 (1.1%) patient in the RVD ASA arm, 5 (5.2%) patients in the KRD ASA arm, and 1 (2.2%) patient in the KRD rivaroxaban arm. Conclusion More efficacious MM combination therapies have been found to increase the risk of VTE when using ASA prophylaxis, indicating better thromboprophylaxis is needed. We found patients receiving ASA prophylaxis with KRD were more likely to experience a VTE and these events occurred earlier compared to patients receiving ASA prophylaxis with RVD. Importantly, the rate of VTE was reduced to the same level as ASA prophylaxis with RVD when low-dose rivaroxaban 10 mg daily was used with KRD, and without necessarily increasing bleeding risk. Our retrospective data support the development of prospective clinical trials further investigating DOAC use in thromboprophylaxis for NDMM patients receiving carfilzomib-based treatments. Figure Disclosures Hassoun: Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Lesokhin:BMS: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; GenMab: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Landgren:Theradex: Other: IDMC; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Other: IDMC; Sanofi: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: Off-label use of rivaroxaban for outpatient prophylaxis of venous thromboembolism (VTE) will be explicitly disclosed to the audience.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4396-4396
Author(s):  
Patrick Mellors ◽  
Moritz Binder ◽  
Rhett P. Ketterling ◽  
Patricia Griepp ◽  
Linda B Baughn ◽  
...  

Introduction: Abnormal metaphase cytogenetics are associated with inferior survival in newly diagnosed multiple myeloma (MM). These abnormalities are only detected in one third of cases due to the low proliferative rate of plasma cells. It is unknown if metaphase cytogenetics improve risk stratification when using contemporary prognostic models such as the revised international staging system (R-ISS), which incorporates interphase fluorescence in situ hybridization (FISH). Aims: The aims of this study were to 1) characterize the association between abnormalities on metaphase cytogenetics and overall survival (OS) in newly diagnosed MM treated with novel agents and 2) evaluate whether the addition of metaphase cytogenetics to R-ISS, age, and plasma cell labeling index (PCLI) improves model discrimination with respect to OS. Methods: We analyzed a retrospective cohort of 483 newly diagnosed MM patients treated with proteasome inhibitors (PI) and/or immunomodulators (IMID) who had metaphase cytogenetics performed prior to initiation of therapy. Abnormal metaphase cytogenetics were defined as MM specific abnormalities, while normal metaphase cytogenetics included constitutional cytogenetic variants, age-related Y chromosome loss, and normal metaphase karyotypes. Multivariable adjusted proportional hazards regression models were fit for the association between known prognostic factors and OS. Covariates associated with inferior OS on multivariable analysis included R-ISS stage, age ≥ 70, PCLI ≥ 2, and abnormal metaphase cytogenetics. We devised a risk scoring system weighted by their respective hazard ratios (R-ISS II +1, R-ISS III + 2, age ≥ 70 +2, PCLI ≥ 2 +1, metaphase cytogenetic abnormalities + 1). Low (LR), intermediate (IR), and high risk (HR) groups were established based on risk scores of 0-1, 2-3, and 4-5 in modeling without metaphase cytogenetics, and scores of 0-1, 2-3, and 4-6 in modeling incorporating metaphase cytogenetics, respectively. Survival estimates were calculated using the Kaplan-Meier method. Survival analysis was stratified by LR, IR, and HR groups in models 1) excluding metaphase cytogenetics 2) including metaphase cytogenetics and 3) including metaphase cytogenetics, with IR stratified by presence and absence of metaphase cytogenetic abnormalities. Survival estimates were compared between groups using the log-rank test. Harrell's C was used to compare the predictive power of risk modeling with and without metaphase cytogenetics. Results: Median age at diagnosis was 66 (31-95), 281 patients (58%) were men, median follow up was 5.5 years (0.04-14.4), and median OS was 6.4 years (95% CI 5.7-6.8). Ninety-seven patients (20%) were R-ISS stage I, 318 (66%) stage II, and 68 (14%) stage III. One-hundred and fourteen patients (24%) had high-risk abnormalities by FISH, and 115 (24%) had abnormal metaphase cytogenetics. Three-hundred and thirteen patients (65%) received an IMID, 119 (25%) a PI, 51 (10%) received IMID and PI, and 137 (28%) underwent upfront autologous hematopoietic stem cell transplantation (ASCT). On multivariable analysis, R-ISS (HR 1.59, 95% CI 1.29-1.97, p < 0.001), age ≥ 70 (HR 2.32, 95% CI 1.83-2.93, p < 0.001), PCLI ≥ 2, (HR 1.52, 95% CI 1.16-2.00, p=0.002) and abnormalities on metaphase cytogenetics (HR 1.35, 95% CI 1.05-1.75, p=0.019) were associated with inferior OS. IR and HR groups experienced significantly worse survival compared to LR groups in models excluding (Figure 1A) and including (Figure 1B) the effect of metaphase cytogenetics (p < 0.001 for all comparisons). However, the inclusion of metaphase cytogenetics did not improve discrimination. Likewise, subgroup analysis of IR patients by the presence or absence of metaphase cytogenetic abnormalities did not improve risk stratification (Figure 1C) (p < 0.001). The addition of metaphase cytogenetics to risk modeling with R-ISS stage, age ≥ 70, and PCLI ≥ 2 did not improve prognostic performance when evaluated by Harrell's C (c=0.636 without cytogenetics, c=0.642 with cytogenetics, absolute difference 0.005, 95% CI 0.002-0.012, p=0.142). Conclusions: Abnormalities on metaphase cytogenetics at diagnosis are associated with inferior OS in MM when accounting for the effects of R-ISS, age, and PCLI. However, the addition of metaphase cytogenetics to prognostic modeling incorporating these covariates did not significantly improve risk stratification. Disclosures Lacy: Celgene: Research Funding. Dispenzieri:Akcea: Consultancy; Intellia: Consultancy; Alnylam: Research Funding; Celgene: Research Funding; Janssen: Consultancy; Pfizer: Research Funding; Takeda: Research Funding. Kapoor:Celgene: Honoraria; Sanofi: Consultancy, Research Funding; Janssen: Research Funding; Cellectar: Consultancy; Takeda: Honoraria, Research Funding; Amgen: Research Funding; Glaxo Smith Kline: Research Funding. Leung:Prothena: Membership on an entity's Board of Directors or advisory committees; Takeda: Research Funding; Omeros: Research Funding; Aduro: Membership on an entity's Board of Directors or advisory committees. Kumar:Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Takeda: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1729-1729
Author(s):  
Melissa G Ooi ◽  
Robert O'Connor ◽  
Jana Jakubikova ◽  
Justine Meiller ◽  
Steffen Klippel ◽  
...  

Abstract Abstract 1729 Poster Board I-755 Background Multidrug transporters are energy-dependent transmembrane proteins which can efflux a broad range of anticancer drugs and thereby play a role in resistance to the actions of substrate agents. Classically, three transporters, p-glycoprotein (Pgp; MDR-1; ABCB1), multidrug resistant protein-1 (MRP-1; ABCC1) and breast cancer resistance protein (BCRP; MXR; ABCG2), have been found to have the broadest substrate specificity and a strong correlation with drug resistance in vitro and in vivo in many models and forms of cancer. We have sought to characterize the interaction of bortezomib with these transporters and thereby explore the potential for these agents to play a role in resistance. Bortezomib is a novel proteosome inhibitor with significant activity in multiple myeloma, although subsets of patients remain refractory to the activity of the drug. Hence, better characterization of the interactions of this drug with classical resistance mechanisms may identify improved treatment applications. Methods and Results We investigated the role of these transporters by using isogenic cell line models which are resistant due to overexpression of a particular transporter: DLKP lung cancer cell line that overexpresses MRP-1; DLKP-A which overexpresses Pgp; and DLKP-SQ-Mitox which overexpresses BCRP. DLKP-A cells exhibited a 4.6-fold decrease in responsiveness to bortezomib compared to parental DLKP cells. In DLKP-SQ-Mitox, bortezomib-induced cytotoxicity was comparable to DLKP. When bortezomib was combined with elacridar, a Pgp and BCRP inhibitor, significant synergy was evident in DLKP-A (100% viable cells with single agent treatment versus 11% with the combination), but not DLKP-SQ-Mitox. Sulindac, an MRP-1 inhibitor, combined with bortezomib failed to produce any synergy in MRP-1 positive DLKP cells. Conversely, combination assays of Pgp substrate cytotoxics such as doxorubicin with Bortezomib were largely additive in nature. This indicates that bortezomib has little, if any, direct Pgp inhibitory activity, as combinations of a traditional Pgp inhibitor (such as elacridar) and doxorubicin would show marked synergy rather than just an additive effect in Pgp positive cells. To further characterize the extent of this interaction with Pgp, we conducted cytotoxicity assays in cell lines with varying levels of Pgp overexpression. NCI/Adr-res (ovarian cancer, high Pgp overexpression), RPMI-Dox40 (multiple myeloma, moderate Pgp overexpression) and A549-taxol (lung cancer, low Pgp overexpression). The combination of bortezomib and elacridar that produced the most synergy was in cell lines expressing moderate to high levels of Pgp expression. Cell lines with lower Pgp expression produced an additive cytotoxicity. We next examined whether bortezomib had any direct effect on Pgp expression. In RPMI-Dox40 cells, Pgp expression is reduced in a time-dependent manner with bortezomib treatment. Conclusions Our studies therefore show that bortezomib is a substrate for Pgp but not the other drug efflux pumps. In tumor cells expressing high levels of Pgp, the efficacy of bortezomib is synergistically enhanced by combinations with a Pgp inhibitor, while bortezomib treatment itself can reduce the expression of Pgp. This study suggests that in the subset of patients with advanced multiple myeloma or solid tumors which express high levels of Pgp, inhibition of its function could contribute to enhanced responsiveness to bortezomib. Disclosures Richardson: millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; celgene: Membership on an entity's Board of Directors or advisory committees, speakers bureau up to 7/1/09; MLNM: speakers bureau up to 7/1/09. Mitsiades:Millennium Pharmaceuticals : Consultancy, Honoraria; Novartis Pharmaceuticals : Consultancy, Honoraria; Bristol-Myers Squibb : Consultancy, Honoraria; Merck &Co: Consultancy, Honoraria; Kosan Pharmaceuticals : Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; PharmaMar: licensing royalties ; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono : Research Funding; Sunesis Pharmaceuticals: Research Funding. Anderson:Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; Biotest AG: Consultancy, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1827-1827 ◽  
Author(s):  
Andrzej Jakubowiak ◽  
Luhua Wang ◽  
Robert Z Orlowski ◽  
Sundar Jagannath ◽  
David Siegel ◽  
...  

Abstract Abstract 1827 Poster Board I-853 Background It is now well established that cytogenetic abnormalities can affect the responses to therapies in multiple myeloma (MM) patients. Bortezomib, used alone or in combination with other agents, has been shown to overcome the adverse impact of several common unfavorable cytogenetic features. More recently, responses with lenalidomide and dexamethasone have been reported in patients with some types of unfavorable cytogenetics. Carfilzomib (CFZ) is a novel proteasome inhibitor that has demonstrated single agent activity in relapsed and/or refractory MM patients. The objective of this analysis was to provide the first preliminary information on the influence of cytogenetics in patients (pts) with relapsed and/or refractory MM treated with CFZ. Methods We evaluated 79 pts treated on two single agent CFZ studies (PX-171-003 and PX-171-004) in relapsed and/or refractory myeloma in which metaphase cytogenetics and/or FISH analysis for del 13q, t(4:14), and t(14;16) chromosomal abnormalities were available. Metaphase cytogenetics was conducted for all pts in the analysis; fluorescence in situ hybridization (FISH) results were available for 28 of the 79 pts. Twenty-one pts with relapsed and refratory MM (PX-171-003) and 58 pts with relapsed or refractory MM (PX-171-004) received CFZ at 20 mg/m2 IV on days 1, 2, 8, 9, 15, and 16 in a 28-day cycle for up to 12 cycles. For this analysis, responders were defined as pts who achieved at least a Minor Response (MR) [MR + Partial Response (PR) + Very Good Partial Response (VGPR) + Complete Response (CR)] by IMWG and EBMT criteria. Results The median age of analysed pts was 63 yrs and 100% of pts were relapsed, with 70% refractory to their last therapy. Analysis of their histories demonstrated prior thalidomide treatment in 75% of pts, prior lenalidomide treatment in 57%, prior bortezomib treatment in 55%, and prior stem cell transplantation in 84%. The response rate (≥MR) for the entire group of patients was 40.5%. Twenty three of 79 pts had at least one of the abnormalities. The presence of del 13q, t(4;14), or t(14;16) did not significantly change the response rates, with 43.5% of pts with one or more abnormalities responding compared to 39.3% with none. The median time to progression (TTP) for all patients in this analysis was 203 days. The TTP for pts with one or more of the abnormalities was 195 days and was not significantly different from the TTP of 208 days for pts with none of the abnormalities (Figure; P > 0.05). Conclusion In this preliminary analysis, CFZ showed comparable activity in relapsed and relapsed/refractory MM with del 13q and/or t(4:14), and/or t(14;16) versus none of these abnormalities, with ≥MR in 43.5% vs. 39.3% of patients, and a TTP of 195 vs. 208 days, respectively. Updated efficacy data and TTP data will be presented at the meeting. Disclosures Jakubowiak: Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Centocor Ortho Biotech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Exelixis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers-Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Wang:Proteolix, Inc.: Research Funding. Jagannath:Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Siegel:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Stewart:Takeda-Millenium, Celgene, Novartis, Amgen: Consultancy; Takeda, Millenium: Research Funding; Genzyme, Celgene, Millenium, Proteolix: Honoraria. Kukreti:Celgene: Honoraria. Lonial:Celgene: Consultancy; Millennium: Consultancy, Research Funding; BMS: Consultancy; Novartis: Consultancy; Gloucester: Research Funding. McDonagh:Proteolix: Research Funding. Vallone:Proteolix, Inc.: Employment. Kauffman:Proteolix, Inc.: Employment. Vij:Proteolix: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2999-2999 ◽  
Author(s):  
Samantha Pozzi ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
Doris M Nabikejje ◽  
Kishan Patel ◽  
...  

Abstract Abstract 2999 Multiple myeloma (MM) is a treatable but incurable hematological malignancy and novel targeted therapies are under investigation. MM is characterized by dysregulation of the cell cycle, consequent to the overexpression of cyclins and their related kinases, the cyclins dependent kinases (CDK), a group of Ser/Thr proteine kinases. CDKs represent a promising therapeutic target, and inhibitors have been developed for anticancer treatment. We have previously studied seliciclib in the context of MM. CYC065, a second generation CDK inhibitor is the more potent derivative of seliciclib. It is mainly active on CDK 2, 5 and 9, involved in progression of the cell cycle and protein transcription. It has already shown promising results in preclinical studies in breast cancer and acute leukemia. We tested CYC065 in in vitro experiments in MM. Our preliminary data in 7 MM cell lines showed cytotoxicity of CYC065, both in MM cell lines sensitive as well as resistant to conventional chemotherapy, with an IC50 ranging between 0.06 and 2μ M, at 24 and 48h. Tritiated thymidine uptake assay confirmed the antiproliferative effects of CYC065 in MM, and its ability to overcome the growth advantage conferred by co-culture with bone marrow stromal cells derived from MM patients, and cytokines like interleukin 6 (10ng/ml) and insulin like growth factor-1 (50ng/ml). The anti-proliferative effect was evident both at 24 and 48h, starting at concentrations as low as 0.015μ M. The AnnexinV/PI assay in the MM1.s cell line confirmed CYC065's ability to induce apoptosis in a time dependent manner starting at 9 hours of treatment, at a concentration of 0.125 μ M, inducing 82% of apoptosis after 48h of exposure. Cell cycle analysis in the same MM1.s cell line showed an increase of subG1 phase, starting at 9 hours of treatment, at 0.125 μ M of CYC065. Preliminary results of western blot analysis confirmed the apoptotic effect of CYC065 in the MM1s cell line, highlighted by the cleavage of caspase 3, 8, 9 and PARP. The compound was tested in primary CD138+ cells isolated from three refractory MM patients, confirming its efficacy at 0.125 μ M, both at 24 and 48h. Comparative analysis in PBMCs from normal donors, for the evaluation of the drug toxicity is ongoing and will be presented. In conclusion our preliminary data confirm the efficacy of CYC065 in MM cell lines and primary MM cells, at nanomolar concentrations. Ongoing mechanistic and in vivo studies will delineate its role in the now increasing spectrum of CDK inhibitors in MM and better define its potential for clinical development in MM. Disclosures: Green: Cyclacel: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Acetylon: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5032-5032
Author(s):  
Brian G. M. Durie ◽  
Jatin J. Shah ◽  
Rafat Abonour ◽  
Cristina Gasperetto ◽  
Jayesh Mehta ◽  
...  

Abstract Abstract 5032 Background: In the past decade, with the availability of novel therapies, the paradigm for myeloma management has changed. In 2010 it is especially important to understand baseline features and initial treatment decisions. The goal of the Connect MM® registry is to characterize patients with newly diagnosed active myeloma from 200 US sites. Approximately 80% of the patient population will be enrolled from community-based practices and 20% from academic centers. An electronic case report form was developed to collect clinical data, physician choices, patient health-related quality of life (HRQoL) and response, as well as data on survival end points. This is a prospective, observational, longitudinal study with a target accrual of 1,500 patients in 3 years, with a 5 year follow-up from the time of informed consent. There are no mandated treatments or clinical assessments. However, there are data collection requirements for diagnosis and disease monitoring. Results: Since late 2009, 340 patients from 135 sites have been accrued and were included in this interim analysis. Current study demographics include: 60% male, 83% white, and 14% black, with a median age of 67 years. Thus far, 97% have been enrolled from community-based practices. All patients met study enrollment criteria and had active myeloma at entry; prior monoclonal gammopathy of unknown significance (MGUS) was reported in 13% and smoldering MM in 8%. International Staging System (ISS) staging for evaluable patients were 26.3%, 36.4%, 37.3% for stages I, II, and III, respectively. Durie-Salmon Stage (A or B) were 13%, 35%, 52% for stages I, II, and III, respectively. Staging procedures included 82% skeletal survey; 44% computed tomography (CT); 40% magnetic resonance imaging (MRI); 7% positron emission tomography (PET); 2% PET/CT; and 4% had no imaging. International Myeloma Working Group (IMWG) CRAB criteria were assessed in all enrolled patients; 9% had hypercalcemia, 18% renal insufficiency, 36% anemia, and 66% had bone lesions. Median values were: calcium 9.5 mg/dL; serum creatinine 1.1 mg/dL; hemoglobin 10.9 gm/dL. Only 9% of patients had 3 or 4 CRAB features, while 49% had only 1 feature and 26% were asymptomatic (ECOG=0). The incidence of baseline peripheral neuropathy was 6%. Initial pain led to radiation therapy for 10% of patients, with 16% having vertebroplasty or kyphoplasty. Cytogenetic studies were performed at baseline in 64% of patients and fluorescence in situ hybridization (FISH) studies in 54%. Cytogenetics and FISH were normal in 27% of patients, while in 20% both were abnormal in patients who had both performed. FISH was abnormal with normal cytogenetics in 41% and only 2% had normal FISH but abnormal cytogenetics. The most common FISH abnormalities were: 13 q- (31%), 17 p- (28%), t(4; 14) (16%). Freelite® testing was performed in 56% of patients with an abnormal ratio in 94% [rFLC]. Of evaluable patients receiving frontline therapy 98% of patients received a novel agent and only 3 patients (1.4% of treated patients) received melphalan/prednisone. Two drug combinations were used in 53%, 3 drugs in 26%, 4 drugs in 1.3%, and single agents were used in 21% of the patients. The most common regimens were: bortezomib+dexamethasone (28%), lenalidomide+dexamethasone (20%), and bortezomib+lenalidomide+ dexamethasone (15%). Conclusion: These baseline features and treatment choices characterize myeloma patients primarily in community-based practices in the US in 2010. As academic centers enroll more patients, we will be able to further characterize that population. Of particular note, 26% of patients were asymptomatic at baseline but had biochemical evidence of myeloma and met enrollment criteria; conversely 95% had an abnormal rFLC and 73% had abnormal chromosome results. The Connect MM® registry will provide data regarding patient features as they pertain to patterns in testing and treatment in the clinical practice setting, as well as response and survival outcomes. Disclosures: Durie: Celgene & Millennium: Consultancy. Off Label Use: Revlimid (lenalidomide) in combination with dexamethasone is indicated for the treatment of multiple myeloma patients who have received at least one prior therapy. Shah:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millennium: Research Funding; Novartis: Research Funding. Abonour:Celgene & Millennium: Honoraria. Gasperetto:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Speakers Bureau. Mehta:Celgene: Consultancy, Speakers Bureau; Takeda/Millennium: Speakers Bureau; Onyx: Research Funding. Pashos:Celgene Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Toomey:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees. Swern:Celgene: Employment. Street:Celgene: Employment. Sullivan:Celgene: Employment, Equity Ownership. Rifkin:Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Speakers Bureau; Amgen: Speakers Bureau; Cephalon: Speakers Bureau; Dendreon: Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document