scholarly journals Steroids and hematopoiesis. III. The response of granulocytic and erythroid colony-forming cells to steroids of different classes

Blood ◽  
1976 ◽  
Vol 48 (6) ◽  
pp. 855-864 ◽  
Author(s):  
JW Singer ◽  
JW Adamson

Selected androgenic and nonandrogenic steroids enhance in vitro granulocytic and erythroid colony formation by mouse marrow cells, but do so by influencing either different target cells or cells in different states of cell cycle. Etiocholanolone, a naturally occurring nonandrogenic testosterone metabolite, permits cells not in active cycle to respond to colony-stimulating factor or erythropoietin. Fluoxymesterone, a synthetic androgen, appears to enhance colony growth by increasing the responsiveness of target cells to tropic stimuli. The majority of cells responding to this androgen are in active DNA synthesis. Direct comparison, however, of etiocholanolone-dependent erythroid or granulocytic colony-forming cells demonstrates nonidentity of the target cells. Thus colony-forming units responding to different classes of steroids are in different states of cell cycle and are physically separable. The enhancement of the in vitro response of colony-forming cells to regulating hormones by steroids such as etiocholanolane suggests a mechanism by which such agents may be therapeutically effective in certain cases of marrow failure in man.

Blood ◽  
1976 ◽  
Vol 48 (6) ◽  
pp. 855-864 ◽  
Author(s):  
JW Singer ◽  
JW Adamson

Abstract Selected androgenic and nonandrogenic steroids enhance in vitro granulocytic and erythroid colony formation by mouse marrow cells, but do so by influencing either different target cells or cells in different states of cell cycle. Etiocholanolone, a naturally occurring nonandrogenic testosterone metabolite, permits cells not in active cycle to respond to colony-stimulating factor or erythropoietin. Fluoxymesterone, a synthetic androgen, appears to enhance colony growth by increasing the responsiveness of target cells to tropic stimuli. The majority of cells responding to this androgen are in active DNA synthesis. Direct comparison, however, of etiocholanolone-dependent erythroid or granulocytic colony-forming cells demonstrates nonidentity of the target cells. Thus colony-forming units responding to different classes of steroids are in different states of cell cycle and are physically separable. The enhancement of the in vitro response of colony-forming cells to regulating hormones by steroids such as etiocholanolane suggests a mechanism by which such agents may be therapeutically effective in certain cases of marrow failure in man.


Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 169-179 ◽  
Author(s):  
SA Burstein ◽  
JW Adamson ◽  
D Thorning ◽  
LA Harker

Abstract Characteristics of murine megakaryocytic colonies and their progenitor cells (CFU-m) were studied in vitro in agar gel. Colony growth required the presence of poke-weed-mitogen-stimulated spleen-conditioned medium. The number of colonies formed was linearly related to both the number of marrow cells plated and the amount of conditioned medium added. In addition, CFU-m were found in both the spleen and peripheral blood. Conditioned medium was also made without plasma, and this resulted in a cloning efficiency greater than that of conditioned medium prepared with plasma. The percentage of CFU-m in DNA synthesis was low (10%), as determined both in vivo and in vitro. Velocity sedimentation revealed that the majority of CFU-m sedimented at 4.3 mm/hr and had a tritiated thymidine (3H-TdR) suicide rate of 1.5 +/- 1.5%. A shoulder on the profile of CFU-m sedimented at approximately 6 mm/hr, with a suicide rate of 79 +/- 2%. Analysis of these data indicated that the majority of CFU-m were not in cycle or were in a long G1 period. The results suggest that CFU-m is a primitive progenitor, possibly closely related to murine splenic colony-forming units (CFU-s), analogous to erythroid bursts and granulocytic colony-forming units.


Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 169-179 ◽  
Author(s):  
SA Burstein ◽  
JW Adamson ◽  
D Thorning ◽  
LA Harker

Characteristics of murine megakaryocytic colonies and their progenitor cells (CFU-m) were studied in vitro in agar gel. Colony growth required the presence of poke-weed-mitogen-stimulated spleen-conditioned medium. The number of colonies formed was linearly related to both the number of marrow cells plated and the amount of conditioned medium added. In addition, CFU-m were found in both the spleen and peripheral blood. Conditioned medium was also made without plasma, and this resulted in a cloning efficiency greater than that of conditioned medium prepared with plasma. The percentage of CFU-m in DNA synthesis was low (10%), as determined both in vivo and in vitro. Velocity sedimentation revealed that the majority of CFU-m sedimented at 4.3 mm/hr and had a tritiated thymidine (3H-TdR) suicide rate of 1.5 +/- 1.5%. A shoulder on the profile of CFU-m sedimented at approximately 6 mm/hr, with a suicide rate of 79 +/- 2%. Analysis of these data indicated that the majority of CFU-m were not in cycle or were in a long G1 period. The results suggest that CFU-m is a primitive progenitor, possibly closely related to murine splenic colony-forming units (CFU-s), analogous to erythroid bursts and granulocytic colony-forming units.


Blood ◽  
1980 ◽  
Vol 56 (1) ◽  
pp. 74-79 ◽  
Author(s):  
GB Rossi ◽  
AR Migliaccio ◽  
G Migliaccio ◽  
F Lettieri ◽  
M Di Rosa ◽  
...  

Abstract Addition of prostaglandins of the E series (PGE1, PGE2) in methylcellulose cultures of murine marrow results in a dose-dependent inhibition of the cloning efficiency of both BFU-E and CFU-C. However, CFU-E growth is unaffected. The inhibitory action of PGE is progressively overcome by increasing amounts of colony-stimulating factor (CSF), and with some limitations, also of erythropoietin (Ep). Addition of PGF2 alpha' associated or not with indomethacin, does not exert any significant effect on these hemopoietic precursors. In an attempt to unvail the mechanism(s) underlying these phenomena, dibutyryl-cyclic AMP (db-cAMP), theophylline (an inhibitor of phosphodiesterase), or theophylline + PGE were plated at various concentrations. Both db-cAMP and theophylline induce an inhibitory influence on both BFU-E and CFU-C growth, which mimicks that by PGEs; additionally, theophylline potentiates the inhibitory action of PGE1. In all these studies, the CFU-E number was not significantly modified. PGE action on BFU-E proliferation is clearly species-dependent, since PGE1 addition to human marrow methylcellulose cultures induces a significant enhancement of the number of both BFU-E and CFU-E derived colonies. This action was abolished upon removal of adherent cells, thus suggesting that PGE1 evokes a release of factor(s) enhancing human erythroid colony growth by adherent cells.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 738-741 ◽  
Author(s):  
MA Vadas ◽  
C Clarke ◽  
NA Nicola ◽  
AF Lopez

Abstract Purified human neutrophils from 48 individuals were tested for their capacity to kill antibody-coated target cells in vitro in the absence or presence of stimulating agents. The agents used to stimulate cytotoxic capacity were the monoclonal antibody (MAb) WEM-G1, colony- stimulating factor (CSF-alpha), or mononuclear cell supernatant (MNC- SN). There existed an heterogeneity among the neutrophils of different individuals in the capacity to kill target cells both in the unstimulated (“resting”) or the stimulated state. A positive correlation was found between the ability of neutrophils to kill in the “resting” state and their capacity to be stimulated by MAb WEM-G1, CSF- alpha, or MNC-SN. Furthermore, a strong positive correlation in the ability of neutrophils to be stimulated by the MAb WEM-G1 and either CSF-alpha (r = .76) or MNC-SN (r = .68), as well as between CSF-alpha and MNC-SN (r = .79) was demonstrated. No correlation was seen, however, between stimulation of neutrophil function in vitro and total blood leukocyte counts, neutrophil counts, monocyte counts, or intensity of binding of MAb WEM-G1. The observation that neutrophils respond to a similar extent to different types of stimulators, -such as cytokines (CSF-alpha and MNC-SN) and MAb, suggests that these two factors may be operating through a common mechanism and the degree of stimulation may reflect an intrinsic responsiveness of neutrophils that differs among individuals. Our results also suggest a potential clinical use of WEM-G1 in measuring neutrophil functional capacity in vitro and predicting the capacity to respond to CSF-like cytokines.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1956-1961 ◽  
Author(s):  
H Ema ◽  
T Suda ◽  
K Nagayoshi ◽  
Y Miura ◽  
CI Civin ◽  
...  

Abstract To study the relationship between hematopoietic factors and their responsive hematopoietic progenitors in the differentiation process, both purified factors and enriched progenitors are required. We isolated total CD34+ cells, CD34+,CD33+ cells, and CD34+,CD33- cells individually from normal human bone marrow cells by fluorescence- activated cell sorter (FACS), and examined the effects of granulocyte colony-stimulating factor (G-CSF), interleukin-3 (IL-3), and IL-5 on in vitro colony formation of these cells. CD34+,CD33+ cells formed granulocyte colonies in the presence of G-CSF. Both CD34+,CD33+ cells and CD34+,CD33- cells formed granulocyte/macrophage colonies in the presence of IL-3. Eosinophil (Eo) colonies were only formed by CD34+,CD33- cells in response to IL-3, but scarcely formed by CD34+ cells in the presence of IL-5. We performed the two-step cultures consisting of the primary liquid culture for 6 days and the secondary methylcellulose culture, and serially examined changes in phenotypes of ,he cells cultured in the primary culture. CD34-,CD33+ cells derived from CD34+,CD33+ cells by preincubation with G-CSF or IL-3 formed Eo colonies in the presence of IL-5 but not IL-3. CD34-,CD33+ cells derived from CD34+,CD33- cells by preincubation with IL-3 also formed Eo colonies by support of IL-5 as well as IL-3. Both CD34+ cells gradually lost the CD34 antigen by day 6 of incubation with G-CSF or IL- 3. Loss of this antigen was well-correlated with acquisition of susceptibility to IL-5. It was concluded that G-CSF supported the neutrophil differentiation of committed colony-forming cells, IL-3 supported that of both committed and multipotent colony-forming cells. G-CSF and IL-3 also supported the early stage of E. differentiation; IL- 5 supported the late stage of that.


Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 596-599 ◽  
Author(s):  
M Beran ◽  
M Hansson ◽  
R Kiessling

Abstract The effect of allogenic human natural killer (NK) cells on fresh leukemic cells from three patients was investigated. The low levels of leukemic target cell lysis in the conventional 51Cr-release assay contrasted with a pronounced inhibitory effect on the colony growth of the clonogeneic leukemic target cells (L-CFC). The ability of allogeneic lymphocytes to inhibit L-CFC increased if they were pretreated with interferon (IFN), which also increased their NK activity, monitored in parallel cytotoxicity assay, against K562. Furthermore, cell separation procedures, based on differences in density among nonadherent lymphocytes, revealed that only NK cell containing fractions were inhibitory. We have also compared the susceptibility to NK-mediated L-CFC inhibition of IFN pretreated leukemic target cells with that of nontreated target cells. As in the case of NK lysis in general, this pretreatment of target cells abolished the presumably NK-mediated L-CFC inhibition. In conclusion, these data provide the first indication that NK cells can inhibit the in vitro growth of fresh clonogenic leukemia cells from patients with nonlymphocytic leukemia. The identity of NK cells as effector is strongly suggested by Percoll separation and responsiveness to interferon; the final proof awaits more sophisticated purification of these cells.


Blood ◽  
1980 ◽  
Vol 56 (5) ◽  
pp. 859-865 ◽  
Author(s):  
A Hiraoka ◽  
M Yamagishi ◽  
T Ohkubo ◽  
Y Yoshida ◽  
H Uchino

Abstract In vitro colony-forming ability of untreated acute nonlymphocytic leukemia (ANLL) cells determined by the CFU-C assay with and without PHA presensitization, and also human Ia-like antigen of their surfaces were investigated. In vitro colony-forming ability of 32 ANLLs was classified into four types: (A) no colony growth: 16, (B) PHA-dependent colony growth: 9, (C) colony-stimulating factor (CSF) dependent colony growth: 5, and (D) CSF and PHA independent colony growth: 2. The pattern of 12 normal bone marrow cells corresponded to type C. Leukemic cells were Ia-positive in type A, negative or weakly positive in type B, and negative in type C. Colonies as seen in types B and C consisted mostly of monocytes-macrophages with myeloid cells at varyi stages of maturation up to metamyelocyte. Incubation of type A ANLL cells with anti-Ia-serum followed by PHA presensitization resulted in development of colonies in some analyzed cases with moderately positive Ia-like antigen. Correlation of in vitro colony-forming ability with the expression of human Ia-like antigen of ANLL cells indicated not only a hematologic heterogeneity of ANLL in differentiation and proliferation but also biologic significance of Ia-like antigen in reference to functional maturation of ANLL cells.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2693-2701 ◽  
Author(s):  
K Nakamura ◽  
T Takahashi ◽  
Y Sasaki ◽  
R Tsuyuoka ◽  
Y Okuno ◽  
...  

Although it is well established that the addition of 1,25- dihydroxyvitamin D3 (D3) to the culture of normal human granulocyte/macrophage progenitors induces monocyte/macrophage (Mo/M phi) colonies, the target cells of D3 in the Mo/M phi differentiation have not been identified. We examined whether neutrophilic promyelocytes are the target cells. As a source of the promyelocyte fraction, we used colonies after 5 days of culture (5-day colonies) of colony-forming unit-granulocyte. The culture contained granulocyte colony-stimulating factor (G-CSF) as the growth factor and generated only neutrophilic colonies. The promyelocytic nature of the 5-day colonies was confirmed morphologically, cytochemically, and ultrastructurally. After morphological evaluation on part of the individual colonies, they were transferred into new semisolid cultures with or without D3 (10(-7) mol/L) in the presence of G-CSF, then incubated for the subsequent 7 days. With D3, the colonies were loose, and all the constituent cells were morphologically small macrophages, which were positive for alpha-naphthyl butyrate (alpha NB) esterase, strongly positive for CD14 antigen, and plastic-adherent. While without D3, the colonies were rather compact, and all the constituent cells were morphologically mature neutrophils, which were positive for naphthol ASD-chloroacetate esterase and weakly positive for CD14 antigen. Secondary culture of the 8- or 10-day colonies with D3 induced a lower number of alpha NB-positive cells, in proportion to the percentage of promyelocytes at the time of transfer in each colony. Four days of secondary culture with D3 was sufficient to induce alpha NB-positive cells. G-CSF was not an essential factor to induce alpha NB- positive cells. These findings indicate that D3 differentiates normal human neutrophilic promyelocytes into the Mo/M phi lineage in vitro.


Sign in / Sign up

Export Citation Format

Share Document