scholarly journals The T-cell CD2 determinant mediates inhibition of erythropoiesis by the lymphokine cascade

Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 770-775 ◽  
Author(s):  
S Burdach ◽  
M Shatsky ◽  
B Wagenhorst ◽  
L Levitt

Abstract We examined the role of the T-cell antigen CD2 in the regulation of erythropoiesis by the lymphokine cascade. T-cell interleukin-2 (IL-2) receptors (p55) were induced via triggering of the antigen receptor- associated CD3 epitope. Before CD3 triggering T cells were preincubated with a CD2-blocking (Leu-5b) or isotype control antibody. T-cell pellets were employed during incubation to facilitate interaction between T-cell LFA-3 and CD2. CD2 blockade caused a 66% to 79% inhibition of p55 expression after three to six days of culture with IL- 2. Next we assessed the effect of CD2 blockade on IL-2. Next we assessed the effect of CD2 blockade on IL-2-induced inhibition of BFU-E in autologous cocultures containing CD3-triggered T cells. IL-2 caused a dose-dependent inhibition (52% to 92%) of BFU-E in the presence but not in the absence of CD3-triggered T cells. T-cell CD2 blockade prior to CD3 triggering caused a 65% to 87% abrogation of IL-2-induced inhibition of BFU-E at 10 to 10(2) U/mL IL-2. Preincubation of CD3- triggered T cells with isotype control antibody had no effect on IL-2- induced erythroid inhibition. Day 3 supernatants from CD3-triggered T cells or CD2-blocked, CD3-triggered T cells established in the presence of IL-2 were next assessed for modulation of BFU-E. CD3-triggered T- cell supernatants caused a 77% +/- 9% inhibition of BFU-E. Blockade of CD2 caused a 95% abrogation of T-cell-mediated BFU-E inhibition. In addition, CD2 blockade reduced interferon-gamma (IF gamma) release (84 to 128 U/mL) from CD3-triggered T cells by 81% at day 3 of culture. In control experiments, the addition of IF gamma-neutralizing monoclonal antibody to CD3-triggered T-cell supernatant established in the presence of IL-2 caused 75% abrogation of IL-2 inhibition of BFU-E. We conclude that blockade of the CD2 T-cell determinant induces down modulation of (a) T-cell p55 IL-2 receptor expression, (b) IL-2-induced inhibition of BFU-E, and (c) IL-2-induced marrow T-cell IF gamma release. These data suggest that the T-cell CD2 determinant can exert a regulatory effect on the control of erythropoiesis by the lymphokine cascade.

Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 770-775 ◽  
Author(s):  
S Burdach ◽  
M Shatsky ◽  
B Wagenhorst ◽  
L Levitt

We examined the role of the T-cell antigen CD2 in the regulation of erythropoiesis by the lymphokine cascade. T-cell interleukin-2 (IL-2) receptors (p55) were induced via triggering of the antigen receptor- associated CD3 epitope. Before CD3 triggering T cells were preincubated with a CD2-blocking (Leu-5b) or isotype control antibody. T-cell pellets were employed during incubation to facilitate interaction between T-cell LFA-3 and CD2. CD2 blockade caused a 66% to 79% inhibition of p55 expression after three to six days of culture with IL- 2. Next we assessed the effect of CD2 blockade on IL-2. Next we assessed the effect of CD2 blockade on IL-2-induced inhibition of BFU-E in autologous cocultures containing CD3-triggered T cells. IL-2 caused a dose-dependent inhibition (52% to 92%) of BFU-E in the presence but not in the absence of CD3-triggered T cells. T-cell CD2 blockade prior to CD3 triggering caused a 65% to 87% abrogation of IL-2-induced inhibition of BFU-E at 10 to 10(2) U/mL IL-2. Preincubation of CD3- triggered T cells with isotype control antibody had no effect on IL-2- induced erythroid inhibition. Day 3 supernatants from CD3-triggered T cells or CD2-blocked, CD3-triggered T cells established in the presence of IL-2 were next assessed for modulation of BFU-E. CD3-triggered T- cell supernatants caused a 77% +/- 9% inhibition of BFU-E. Blockade of CD2 caused a 95% abrogation of T-cell-mediated BFU-E inhibition. In addition, CD2 blockade reduced interferon-gamma (IF gamma) release (84 to 128 U/mL) from CD3-triggered T cells by 81% at day 3 of culture. In control experiments, the addition of IF gamma-neutralizing monoclonal antibody to CD3-triggered T-cell supernatant established in the presence of IL-2 caused 75% abrogation of IL-2 inhibition of BFU-E. We conclude that blockade of the CD2 T-cell determinant induces down modulation of (a) T-cell p55 IL-2 receptor expression, (b) IL-2-induced inhibition of BFU-E, and (c) IL-2-induced marrow T-cell IF gamma release. These data suggest that the T-cell CD2 determinant can exert a regulatory effect on the control of erythropoiesis by the lymphokine cascade.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1368-1375 ◽  
Author(s):  
SE Burdach ◽  
LJ Levitt

Abstract Interleukin-2 (IL-2) induces differential secretion of lymphokines by IL-2 receptor (IL-2R)-positive and IL-2R-negative T cells. We studied T cell IL-2R-specific modulation of adult bone marrow erythropoiesis by recombinant IL-2 (rIL-2). I3–2R were induced by CD3 T cell surface determinant-triggering and analyzed by cytofluorography. Bone marrow monocyte and T cell-depleted (NAB-T) target cells were assessed for early erythroid progenitor expression (BFU-E) in the presence of 0 to 10(3) U/mL of rIL-2, rIL-2 had no significant effect on BFU-E expression in the absence of T cells or in the presence of IL-2R- negative T cells. rIL-2 caused a dose-dependent inhibition (75% to 90%) of BFU-E in the presence of autologous IL-2R-positive T cells. The addition of anti-IL2-receptor antibody to cultures containing rIL-2 plus IL-2R-positive T cells entirely abrogated rIL-2-mediated inhibition of BFU-E. In the presence of rIL-2 (10(2) U/mL) production of interferon gamma (IF-gamma) by adult marrow CD3-triggered IL-2R- positive T cells was increased 37- to 125-fold compared to IL-2R- negative T cells. rIF-gamma caused a dose-dependent (88% +/- 17% at 10(3) U/mL) inhibition of adult BFU-E in the presence of CD3-triggered autologous T cells. rIL2-mediated inhibition of adult BFU-E in the presence of IL-2R-positive T cells was partially abrogated (52% +/- 16%) following addition of monospecific IF-gamma antibody. These results demonstrate (a) rIL-2 modulation of adult marrow erythropoiesis is selectively dependent upon both the presence or absence of autologous T cells and the IL-2R status of these T cells; and (b) rIL-2- induced inhibition of adult marrow erythropoiesis is mediated in part by release of IF-gamma from IL-2R-positive T cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3242-3242 ◽  
Author(s):  
Mobin Karimi ◽  
Theresa M Leichner ◽  
Atsushi Satake ◽  
David Raulet ◽  
Taku Kambayashi

Abstract In allogeneic hematopoietic stem cell transplantation (HSCT), identification of mechanisms to control GVHD yet maintain GVL responses is of critical importance. One key effector cell that mediates both GVHD and GVL is the CD8+ T cell, which expands in response to T cell receptor (TCR) stimulation by allogeneic MHC class I molecules during allogeneic HSCT. In addition, co-stimulatory molecules facilitate the TCR-mediated activation process and the effector function of CD8+ T cells. Recent data suggest that NKG2D may play a co-stimulatory role in activation and in augmenting anti-tumor cytotoxic responses of CD8+ T cells. NKG2D is an NK cell-associated receptor that is also expressed on all human CD8+ T cells and on activated/memory mouse CD8+ T cells. NKG2D recognizes a diverse array of MHC-related ligands that are expressed by many tumors and induced on cells under stress such as myeloablative conditioning during HSCT. As the role of NKG2D in allogeneic HSCT is unknown, we hereby investigated the role of NKG2D on CD8+ T cells in a mouse model of GVHD and GVL. Our results show that a large fraction (40-50%) of mouse CD8+ T cells inducibly express NKG2D upon activation by allogeneic MHC in vitro and in vivo. To test the role of NKG2D in GVHD pathogenesis, we employed a major MHC-mismatched mouse model of GVHD involving the transplantation of C57BL/6-derived CD8+ T cells and bone marrow (BM) into lethally irradiated Balb/c mice (B6→Balb/c). Using 3 different approaches to block NKG2D on CD8+ T cells (shRNA-mediated silencing, germline NKG2D deficiency, and antibody blockade), we found that weight loss, clinical score, and survival were significantly improved in transplanted mice with NKG2D blockade. The attenuation in GVHD correlated with a significant reduction in TNFα and IFNγ production, cytotoxicity, and proliferation (BrdU incorporation) by CD8+ T cells. Although CD4+ T cells did not express NKG2D, a protective effect of NKG2D blockade was still observed in GVHD induced by a mixture of CD8+ and CD4+ T cells, albeit to a lesser extent. We next tested the effects of NKG2D on CD8+ T cell-mediated GVL. To this end, irradiated Balb/c mice were transplanted with C57BL/6-derived CD8+ T cells and BM, challenged intravenously with luciferase-positive A20 leukemia cells, and followed by total body imaging of luciferase-expressing cells. Given that NKG2D ligands are constitutively expressed on many tumor cells and plays an important role in their eradication, we predicted that continuous NKG2D blockade would inhibit GVL effects. However, as NKGD ligands are upregulated only transiently on stressed normal tissue, we reasoned that transient NKG2D blockade might be sufficient to attenuate GVHD and allow CD8+ T cells to regain their GVL function. To test this hypothesis, we compared the effect of anti-NKG2D antibody as continuous treatment or as 5-day transient treatment to mice receiving isotype control antibody. As expected, mice that received isotype control antibody cleared the A20 cells but developed severe GVHD. Continuous anti-NKG2D antibody-mediated blockade improved GVHD but also blunted the GVL response leading to increased A20 growth. In contrast, a large proportion of mice transiently treated with anti-NKG2D antibody cleared the A20 cells, while maintaining the attenuated GVHD state. Together, these data support a positive role of NKG2D on CD8+ T cells in mediating GVHD and GVL. Given the transient nature of NKG2D ligand upregulation on stressed tissues, a window of opportunity may exist where transient NKG2D blockade could provide a novel therapeutic strategy for treatment of acute GVHD while preserving the GVL function of CD8+ T cells after allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1368-1375
Author(s):  
SE Burdach ◽  
LJ Levitt

Interleukin-2 (IL-2) induces differential secretion of lymphokines by IL-2 receptor (IL-2R)-positive and IL-2R-negative T cells. We studied T cell IL-2R-specific modulation of adult bone marrow erythropoiesis by recombinant IL-2 (rIL-2). I3–2R were induced by CD3 T cell surface determinant-triggering and analyzed by cytofluorography. Bone marrow monocyte and T cell-depleted (NAB-T) target cells were assessed for early erythroid progenitor expression (BFU-E) in the presence of 0 to 10(3) U/mL of rIL-2, rIL-2 had no significant effect on BFU-E expression in the absence of T cells or in the presence of IL-2R- negative T cells. rIL-2 caused a dose-dependent inhibition (75% to 90%) of BFU-E in the presence of autologous IL-2R-positive T cells. The addition of anti-IL2-receptor antibody to cultures containing rIL-2 plus IL-2R-positive T cells entirely abrogated rIL-2-mediated inhibition of BFU-E. In the presence of rIL-2 (10(2) U/mL) production of interferon gamma (IF-gamma) by adult marrow CD3-triggered IL-2R- positive T cells was increased 37- to 125-fold compared to IL-2R- negative T cells. rIF-gamma caused a dose-dependent (88% +/- 17% at 10(3) U/mL) inhibition of adult BFU-E in the presence of CD3-triggered autologous T cells. rIL2-mediated inhibition of adult BFU-E in the presence of IL-2R-positive T cells was partially abrogated (52% +/- 16%) following addition of monospecific IF-gamma antibody. These results demonstrate (a) rIL-2 modulation of adult marrow erythropoiesis is selectively dependent upon both the presence or absence of autologous T cells and the IL-2R status of these T cells; and (b) rIL-2- induced inhibition of adult marrow erythropoiesis is mediated in part by release of IF-gamma from IL-2R-positive T cells.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mahinbanu Mammadli ◽  
Weishan Huang ◽  
Rebecca Harris ◽  
Aisha Sultana ◽  
Ying Cheng ◽  
...  

Allogeneic hematopoietic stem cell transplantation is a potentially curative procedure for many malignant diseases. Donor T cells prevent disease recurrence via graft-versus-leukemia (GVL) effect. Donor T cells also contribute to graft-versus-host disease (GVHD), a debilitating and potentially fatal complication. Novel treatment strategies are needed which allow preservation of GVL effects without causing GVHD. Using murine models, we show that targeting IL-2-inducible T cell kinase (ITK) in donor T cells reduces GVHD while preserving GVL effects. Both CD8+ and CD4+ donor T cells from Itk-/- mice produce less inflammatory cytokines and show decrease migration to GVHD target organs such as the liver and small intestine, while maintaining GVL efficacy against primary B-cell acute lymphoblastic leukemia (B-ALL). Itk-/- T cells exhibit reduced expression of IRF4 and decreased JAK/STAT signaling activity but upregulating expression of Eomesodermin (Eomes) and preserve cytotoxicity, necessary for GVL effect. Transcriptome analysis indicates that ITK signaling controls chemokine receptor expression during alloactivation, which in turn affects the ability of donor T cells to migrate to GVHD target organs. Our data suggest that inhibiting ITK could be a therapeutic strategy to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.


1994 ◽  
Vol 180 (1) ◽  
pp. 401-406 ◽  
Author(s):  
M Izquierdo ◽  
S Bowden ◽  
D Cantrell

Triggering of the T cell antigen receptor (TCR) complex activates the serine/threonine kinase Raf-1 whose function is necessary for TCR induction of the interleukin 2 gene. Raf-1 has been identified as a candidate mitogen-activated protein (MAP) kinase kinase kinase (MKKK) and thus has the potential to couple the TCR to the activation of the MAP kinases such as ERK2. In the present study, the role of Raf-1 in ERK2 regulation of ERK2 in T cells has been explored. A constitutively active Raf-1 kinase, v-raf, or a dominant inhibitory Raf-1 mutant were expressed transiently from the pEF BOS vector in Jurkat cells and the effects of these Raf-1 mutants on a coexpressed ERK2 reporter was assessed. The action of the constitutively active Raf-1 was to stimulate the ERK2 kinase, whereas the dominant negative version of Raf-1 inhibited the ERK2 activation induced by triggering of the TCR. These data indicate a role for Raf-1 in the regulation of ERK2 in T cells.


1985 ◽  
Vol 161 (6) ◽  
pp. 1513-1524 ◽  
Author(s):  
T Hara ◽  
S M Fu ◽  
J A Hansen

In previous studies (17-21), monoclonal antibody (mAb) 9.3 has been shown to react with a major population of human T cells, which include T4+ helper/inducer T cells and T8+ cytotoxic T cells. In this investigation, mAb 9.3 was shown to precipitate a disulfide-bonded dimer of a 44 kD polypeptide. Comodulation experiments showed that this molecule is not linked to T3/Ti or T11 antigens. mAb 9.3 was capable of inducing T cell proliferation in the presence of 12-o-tetradecanoyl phorbol-13-acetate (TPA). This effect was monocyte-independent. T cell activation with mAb 9.3 and TPA was associated with increases in interleukin 2(IL-2) receptor expression and IL-2 secretion. mAb 9.3 did not activate T cells, even with the addition of IL-1 or IL-2. Modulation of the T3 complex did not abolish mAb 9.3-induced T cell proliferation in the presence of TPA. These results suggest that the 9.3 antigen may serve as a receptor for an activation pathway restricted to a T cell subset.


Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Graziella Curtale ◽  
Franca Citarella ◽  
Claudia Carissimi ◽  
Marina Goldoni ◽  
Nicoletta Carucci ◽  
...  

Abstract Activation of the T cell–mediated immune response has been associated with changes in the expression of specific microRNAs (miRNAs). However, the role of miRNAs in the development of an effective immune response is just beginning to be explored. This study focuses on the functional role of miR-146a in T lymphocyte–mediated immune response and provides interesting clues on the transcriptional regulation of miR-146a during T-cell activation. We show that miR-146a is low in human naive T cells and is abundantly expressed in human memory T cells; consistently, miR-146a is induced in human primary T lymphocytes upon T-cell receptor (TCR) stimulation. Moreover, we identified NF-kB and c-ETS binding sites as required for the induction of miR-146a transcription upon TCR engagement. Our results demonstrate that several signaling pathways, other than inflammation, are influenced by miR-146a. In particular, we provide experimental evidence that miR-146a modulates activation-induced cell death (AICD), acting as an antiapoptotic factor, and that Fas-associated death domain (FADD) is a target of miR-146a. Furthermore, miR-146a enforced expression impairs both activator protein 1 (AP-1) activity and interleukin-2 (IL-2) production induced by TCR engagement, thus suggesting a role of this miRNA in the modulation of adaptive immunity.


1999 ◽  
Vol 73 (11) ◽  
pp. 9642-9649 ◽  
Author(s):  
Nathaniel D. Collins ◽  
Celine D’Souza ◽  
Björn Albrecht ◽  
Michael D. Robek ◽  
Lee Ratner ◽  
...  

ABSTRACT Human T-cell lymphotropic virus type 1 (HTLV-1), a complex retrovirus, encodes a hydrophobic 12-kD protein from pX open reading frame (ORF) I that localizes to cellular endomembranes and contains four minimal SH3 binding motifs (PXXP). We have demonstrated the importance of ORF I expression in the establishment of infection and hypothesize that p12I has a role in T-cell activation. In this study, we tested interleukin-2 (IL-2) receptor expression, IL-2-mediated proliferation, and Jak/Stat activation in T-cell lines immortalized with either wild-type or ORF I mutant clones of HTLV-1. All cell lines exhibited typical patterns of T-cell markers and maintained mutation fidelity. No significant differences between cell lines were observed in IL-2 receptor chain (α, β, or γc) expression, in IL-2-mediated proliferation, or in IL-2-induced phosphorylated forms of Stat3, Stat5, Jak1, or Jak3. The expression of ORF I is more likely to play a role in early HTLV-1 infection, such as in the activation of quiescent T cells in vivo.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Yongxia Wu ◽  
Chih-Hang Anthony Tang ◽  
Corey Mealer ◽  
David Bastian ◽  
Mohammed Hanief Sofi ◽  
...  

The endoplasmic-reticulum-resident protein STING (Stimulator of IFN genes) is a downstream signaling effector of cytosolic DNA sensor cGAS (cyclic GMP-AMP synthase). STING-mediated innate immune activation plays a key role in tumor- and self-DNA elicited anti-tumor immunity and autoimmunity, respectively, yet the mechanism remains largely unclear. We utilized murine models of allogeneic hematopoietic cell transplantation (allo-HCT) to study the biology of STING in antigen-presetting cells (APCs) and T cells. STING expression in donor T cells was dispensable for their ability to induce graft-versus-host disease (GVHD), a major complication of allo-HCT in the clinic. However, when STING-deficient mice were used as recipients, more severe disease was induced after allo-HCT. Using bone marrow (BM) chimeras where STING was absent in different compartments, we found that STING-deficiency on host hematopoietic cells (Fig. A), but not on non-hematopoietic cells, was primarily responsible for exacerbating the disease. Furthermore, STING expression on host CD11c+ cells played a dominant role in the regulation of allogeneic T-cell responses (Fig. B). Mechanistically, STING deficiency resulted in increased survival, activation and function of irradiated APCs, including macrophages and dendritic cells (DCs, fig. C-D). To further determine the role of STING in APCs, we generated a STING V154M knock-in mouse model, in which V154M mutation in TMEM173 causes constitutive activation of STING. Consistently, constitutive activation of STING attenuated the survival, activation and function of APCs isolated from STING V154M knock-in mice. In addition, STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression and migration into intestinal tissues (Fig. E), resulting in accelerated/exacerbated disease. Using pharmacologic approaches, we demonstrate that systemic administration of a STING agonist (c-di-GMP) to recipient mice before transplantation significantly reduced GVHD mortality (Fig. F). In conclusion, we report an inhibitory role of STING in regulating survival and T-cell priming function of hematopoietic APCs, especially CD11c+ cells, after allo-HCT. We validate that pharmacological activation of STING may serve as a potential therapeutic strategy to constrain APCs and induce immune tolerance. Figure Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document