scholarly journals Expression of human interleukin-3 (multi-CSF) is restricted to human lymphocytes and T-cell tumor lines

Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 945-951 ◽  
Author(s):  
CM Niemeyer ◽  
CA Sieff ◽  
B Mathey-Prevot ◽  
JZ Wimperis ◽  
BE Bierer ◽  
...  

While the cellular sources for granulocyte-macrophage colony- stimulating factor (GM-CSF) are known to be widely distributed among several cell types, interleukin-3 (IL-3) gene expression has been demonstrated in only certain T-cell clones and in blood mononuclear cells stimulated with phytohemagglutinin (PHA) and phorbol-myristate- acetate (PMA). To determine which blood cells were responsible for this expression, we fractionated PHA/PMA-stimulated mononuclear cells and identified T lymphocytes as the source of IL-3 mRNA. Low-level IL-3 expression was detected as well in several stimulated human T-cell lines. Hematopoietic stromal cells such as fibroblasts and endothelial cells could not be induced to express IL-3 mRNA. The kinetics of IL-3 mRNA induction in mononuclear cells and lymphocytes stimulated with PHA/PMA or anti-CD3 monoclonal antibody (MoAb) and interleukin-1 (IL-1) were similar to those observed for GM-CSF expression.

Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 945-951 ◽  
Author(s):  
CM Niemeyer ◽  
CA Sieff ◽  
B Mathey-Prevot ◽  
JZ Wimperis ◽  
BE Bierer ◽  
...  

Abstract While the cellular sources for granulocyte-macrophage colony- stimulating factor (GM-CSF) are known to be widely distributed among several cell types, interleukin-3 (IL-3) gene expression has been demonstrated in only certain T-cell clones and in blood mononuclear cells stimulated with phytohemagglutinin (PHA) and phorbol-myristate- acetate (PMA). To determine which blood cells were responsible for this expression, we fractionated PHA/PMA-stimulated mononuclear cells and identified T lymphocytes as the source of IL-3 mRNA. Low-level IL-3 expression was detected as well in several stimulated human T-cell lines. Hematopoietic stromal cells such as fibroblasts and endothelial cells could not be induced to express IL-3 mRNA. The kinetics of IL-3 mRNA induction in mononuclear cells and lymphocytes stimulated with PHA/PMA or anti-CD3 monoclonal antibody (MoAb) and interleukin-1 (IL-1) were similar to those observed for GM-CSF expression.


2001 ◽  
Vol 75 (5) ◽  
pp. 2288-2300 ◽  
Author(s):  
Steve S. Kim ◽  
Xue Juan You ◽  
Mary-Elizabeth Harmon ◽  
Julie Overbaugh ◽  
Hung Fan

ABSTRACT Cell tropism of human and simian immunodeficiency viruses (HIV and SIV, respectively) is governed in part by interactions between the viral envelope protein and the cellular receptors. However, there is evidence that envelope-host cell interactions also affect postentry steps in viral replication. We used a helper-free replication-defective SIV macaque (SIVmac)-based retroviral vector carrying the enhanced jellyfish green fluorescent protein inserted into thenef region (V1EGFP) to examine SIV tropism in a single cycle of infection. Vector stocks containing envelope proteins from three different SIVmac clones, namely, SIVmac239 (T-lymphocyte tropic [T-tropic]), SIVmac316 (macrophage tropic [M-tropic]), and SIVmac1A11 (dualtropic), were tested. SIVmac239 replicates efficiently in many human T-cell lines, but it does not efficiently infect primary rhesus macrophages. Conversely, SIVmac316 efficiently infects primary macrophages, but it does not replicate in Molt4-Clone8 (M4C8) T cells. SIVmac1A11 replicates efficiently in both cell types. When primary macrophages were infected with V1EGFP pseudotyped by SIVmac316 or SIVmac1A11 envelopes, the infection was substantially (ca. 200- to 300-fold) more efficient than for the SIVmac239 pseudotype. Thus, in primary macrophages, a major component of M versus T tropism involves relatively early events in the infection cycle. Quantitative PCR studies indicated that synthesis and transport of vector DNA into the nucleus were similar for macrophages infected with the clone 239 and 316 pseudotypes, suggesting that the restriction for SIVmac239 infection is after reverse transcription and nuclear import of viral DNA. When the same vector pseudotypes were used to infect M4C8 cells, they all showed approximately equivalent infectivities, even though replication-competent SIVmac316 does not continue to replicate in these cells. Therefore, in M4C8 cells, restriction involves a late step in the infection cycle (after proviral integration and expression). Thus, depending on the cell type infected, envelope-dependent cell interactions that govern SIV M and T tropism may involve different steps in infection.


1997 ◽  
Vol 10 (3) ◽  
pp. 189-194 ◽  
Author(s):  
B. Macchi ◽  
S. Grelli ◽  
C. Favalli ◽  
M. De Carli ◽  
Garaci ◽  
...  

Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) is a lymphotropic retrovirus. Cells infected with HTLV-1 in vitro, when maintained in interleukin-2 (IL-2) can be immortalized, remaining for a long time strictly dependent on IL-2 addition. In this study we have compared the effect of interleukin-4 (IL-4) and interleukin-2 on HTLV-1 infection of cord blood or normal adult mononuclear cells. The results showed that either cultures of cord blood or normal adult T cells are susceptible to HTLV-1 infection in presence of IL-4 as well as IL-2. Moreover HTLV-1 infected cells in the presence of IL-4 survived only for a limited length of time in culture, while those grown in IL-2 showed the characteristics of immortalized cell lines. Moreover the profile of cytokine production showed a different pattern in HTLV-1 infected cell lines maintained in IL-4 or IL-2. This suggests that the lymphokines differently modulate retrovirus infection in vitro.


1992 ◽  
Vol 66 (11) ◽  
pp. 6788-6793 ◽  
Author(s):  
D Ou ◽  
P Chong ◽  
Y Choi ◽  
P McVeigh ◽  
W A Jefferies ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4269-4277 ◽  
Author(s):  
Y Suen ◽  
SM Lee ◽  
J Schreurs ◽  
E Knoppel ◽  
MS Cairo

We have previously shown that protein production and mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and interleukin-3 are decreased in stimulated mononuclear cells (MNCs) from human umbilical cord compared with adult peripheral blood. These deficiencies may contribute to the increased susceptibility of neonates to infection. Macrophage colony- stimulating factor (M-CSF) regulates the proliferation, differentiation, and functional activation of monocytes. In the present study, we compared the regulation of M-CSF gene expression and protein production from stimulated cord and adult MNCs. Upon adhesion to tissue culture flasks, both cord and adult MNCs constitutively expressed M-CSF mRNA. In response to both adhesion and recombinant human GM-CSF (rhGM- CSF) stimulation for 120 hours, radioimmunoassays and bioassays showed that cord MNCs produced twofold to threefold less M-CSF protein compared with adult MNCs. Northern blot analysis also showed a fourfold decrease in M-CSF mRNA expression in both unstimulated and GM-CSF- induced cord versus adult MNCs. M-CSF mRNA expression in both cord and adult MNCs peaked between 16 and 24 hours and decreased to normal levels by 48 hours. We next determined the relative rates of transcription of the M-CSF gene by nuclear run-on assays in both cord and adult MNCs. The basal level signal of the M-CSF gene was similar between cord and adult MNCs. The transcriptional rate after stimulation with rhGM-CSF appeared to increase to a similar extent in both cord and adult MNCs (130% +/- 10% v 150% +/- 15%, C v A, n = 3, mean +/- SD). The comparative stability of M-CSF mRNA from cord versus adult MNCs was next determined by actinomycin D decay studies. The half-life of M-CSF mRNA from stimulated adult MNCs was 70 +/- 7.0 minutes (n = 4) compared with 47 +/- 2.8 minutes (n = 3) from stimulated cord MNCs (mean +/- SD, P < .05). To further determine the involvement of labile protein factors in posttranscriptional regulation, cord and adult MNCs were incubated with cycloheximide (CHX; 10 micrograms/mL). There was a significant increase in the induction of M-CSF mRNA by CHX treatment in both cord and adult MNCs. The increase of M-CSF mRNA induction by CHX was 2.5 times higher in cord MNCs compared with that in adult MNCs. These results suggest that there are one or more labile proteins that regulate M-CSF transcript stability in both cord and adult MNCs.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 721-730 ◽  
Author(s):  
H Segall ◽  
I Lubin ◽  
H Marcus ◽  
A Canaan ◽  
Y Reisner

Severe combined immunodeficient (SCID) mice are increasingly used as hosts for the adoptive transfer of human lymphocytes. Human antibody responses can be obtained in these xenogeneic chimeras, but information about the functionality of the human T cells in SCID mice is limited and controversial. Studies using human peripheral blood lymphocytes (PBL) injected intraperitoneally (IP) into SCID mice (hu-PBL-SCID mice) have shown that human T cells from these chimeras are anergic and have a defective signaling via the T-cell receptor. In addition, their antigenic repertoire is limited to xenoreactive clones. In the present study, we tested the functionality of human T cell in a recently described chimeric model. In this system, BALB/c mice are conditioned by irradiation and then transplanted with SCID bone marrow, followed by IP injection of human PBL. Our experiments demonstrated that human T cells, recovered from these hu-PBL-BALB mice within 1 month posttransplant, proliferated and expressed activation markers upon stimulation with anti-CD3 monoclonal antibody. A vigorous antiallogeneic human cytotoxic T-lymphocyte (CTL) response could be generated in these mice by immunizing them with irradiated allogeneic cells. Moreover, anti-human immunodeficiency virus type 1 (HIV-1) Net- specific human CTLs could be generated in vivo from naive lymphocytes by immunization of mouse-human chimeras with a recombinant vaccinia-nef virus. This model may be used to evaluate potential immunomodulatory drugs or cytokines, and could provide a relevant model for testing HIV vaccines, for production of antiviral T-cell clones for adoptive therapy, and for studying human T-cell responses in vivo.


Sign in / Sign up

Export Citation Format

Share Document