scholarly journals Effect of single amino acid substitutions on the formation of the PlA and Bak alloantigenic epitopes

Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 681-687 ◽  
Author(s):  
A Goldberger ◽  
M Kolodziej ◽  
M Poncz ◽  
JS Bennett ◽  
PJ Newman

Abstract The subunits that comprise the platelet-specific integrin alpha IIb beta 3 are polymorphic in nature, with several allelic forms present in the human gene pool. Minor changes in the secondary and tertiary structures of platelet membrane glycoproteins (GP) IIb and IIIa encoded by these alleles can result in an alloimmune reaction after transfusion or during pregnancy. To better understand the molecular structure of the PlA alloantigen system, located on GPIIIa, and the Bak alloantigen on GPIIb, we used a heterologous mammalian expression system to express these integrin subunits in their known polymorphic forms. An expression vector containing the PlA1 form of a GPIIIa cDNA, which encodes a leucine at amino acid 33 (Leu33), was modified to express the PlA2- associated form encoding a proline at amino acid 33 (Pro33). Similarly, a Baka GPIIb cDNA expressing an isoleucine at amino acid 843 (IIe843) was modified to express the Bakb form containing a serine at the same position (Ser843). Transfection of these vectors into COS cells resulted in the synthesis of GPIIb and GPIIIa molecules that were identical in size to those present in platelet lysates. Immunoprecipitation of the GPIIIa-transfected COS lysates with PlA)- specific alloantisera indicated that the Leu33 form was recognized only by anti-PIA1 sera while the Pro33 form was bound only by anti-PlA2 sera, showing that single amino acid polymorphisms are necessary and sufficient to direct the formation of the PlA1 and PlA2 alloepitopes. Similar experiments with Bak allele-specific expression vectors indicated that while the amino acid polymorphism (IIe843 in equilibrium Ser843) was necessary, posttranslational processing of pro-IIb was required for efficient exposure of both the Baka and Bakb alloepitopes.

Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 681-687 ◽  
Author(s):  
A Goldberger ◽  
M Kolodziej ◽  
M Poncz ◽  
JS Bennett ◽  
PJ Newman

The subunits that comprise the platelet-specific integrin alpha IIb beta 3 are polymorphic in nature, with several allelic forms present in the human gene pool. Minor changes in the secondary and tertiary structures of platelet membrane glycoproteins (GP) IIb and IIIa encoded by these alleles can result in an alloimmune reaction after transfusion or during pregnancy. To better understand the molecular structure of the PlA alloantigen system, located on GPIIIa, and the Bak alloantigen on GPIIb, we used a heterologous mammalian expression system to express these integrin subunits in their known polymorphic forms. An expression vector containing the PlA1 form of a GPIIIa cDNA, which encodes a leucine at amino acid 33 (Leu33), was modified to express the PlA2- associated form encoding a proline at amino acid 33 (Pro33). Similarly, a Baka GPIIb cDNA expressing an isoleucine at amino acid 843 (IIe843) was modified to express the Bakb form containing a serine at the same position (Ser843). Transfection of these vectors into COS cells resulted in the synthesis of GPIIb and GPIIIa molecules that were identical in size to those present in platelet lysates. Immunoprecipitation of the GPIIIa-transfected COS lysates with PlA)- specific alloantisera indicated that the Leu33 form was recognized only by anti-PIA1 sera while the Pro33 form was bound only by anti-PlA2 sera, showing that single amino acid polymorphisms are necessary and sufficient to direct the formation of the PlA1 and PlA2 alloepitopes. Similar experiments with Bak allele-specific expression vectors indicated that while the amino acid polymorphism (IIe843 in equilibrium Ser843) was necessary, posttranslational processing of pro-IIb was required for efficient exposure of both the Baka and Bakb alloepitopes.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1055-1064 ◽  
Author(s):  
David Gailani ◽  
Mao-Fu Sun ◽  
Yuehui Sun

Factor XI is a plasma glycoprotein that is required for contact activation initiated fibrin formation in vitro and for normal hemostasis in vivo. In preparation for developing a mouse model of factor XI deficiency to facilitate investigations into this protease's contributions to coagulation, we cloned the complementary DNA for murine factor XI, expressed the protein in a mammalian expression system, and compared its properties with human recombinant factor XI. The 2.8-kb murine cDNA codes for a protein of 624 amino acids with 78% homology to human factor XI. Both recombinant murine and human factor XI are 160 kD homodimers comprised of two 80 kD polypeptides connected by disulfide bonds. Murine factor XI shortens the clotting time of human factor XI deficient plasma in an activated partial thromboplastin time assay, with a specific activity 50% to 70% that of the human protein. In a purified system, murine factor XI is activated by human factor XIIa and thrombin in the presence of dextran sulfate. Murine factor XI differs from human factor XI in that it undergoes autoactivation slowly in the presence of dextran sulfate. This is due primarily to murine factor XIa preferentially cleaving a site on zymogen factor XI within the light chain, rather than the activation site between Arg371 and Val372. Northern blots of polyadenylated messenger RNA show that murine factor XI message is expressed, as expected, primarily in the liver. In contrast, messenger RNA for human factor XI was identified in liver, pancreas, and kidney. The studies show that murine and human factor XI have similar structural and enzymatic properties. However, there may be variations in tissue specific expression and subtle differences in enzyme activity across species.


1993 ◽  
Vol 105 (2) ◽  
pp. 481-488 ◽  
Author(s):  
J.V. Frangioni ◽  
B.G. Neel

We have constructed a general purpose mammalian expression vector for the study of intracellular protein targeting. The vector, p3PK, facilitates construction of N- and/or C-terminal fusions of an amino acid sequence of interest to the normally cytosolic protein chicken muscle pyruvate kinase (CMPK). The vector has been engineered such that any fusion construct can be subcloned into the versatile pJx omega family of mammalian expression vectors and into pGEX bacterial expression vectors, for the generation of affinity reagents. In this paper, we demonstrate the general utility of p3PK by redirecting CMPK to mitochondria (using the twelve amino acid pre-sequence of yeast cytochrome c oxidase subunit IV) and to the nucleus (using a putative eight amino acid nuclear localization signal from human nuclear lamins A and C). We also report that, contrary to the predictions of previously published work, substitution of a critical residue in the nuclear lamin A/C nuclear localization signal (the equivalent of lysine 128 in the SV40 large T nuclear localization signal) retains nuclear localization, and discuss how amino acid context might affect targeting to the nucleus.


2000 ◽  
Vol 182 (21) ◽  
pp. 6049-6054 ◽  
Author(s):  
Carol A. Holland-Staley ◽  
KangSeok Lee ◽  
David P. Clark ◽  
Philip R. Cunningham

ABSTRACT Expression of the alcohol dehydrogenase gene, adhE, inEscherichia coli is anaerobically regulated at both the transcriptional and the translational levels. To study the AdhE protein, the adhE + structural gene was cloned into expression vectors under the control of the lacZ andtrp c promoters. Wild-type AdhE protein produced under aerobic conditions from these constructs was inactive. Constitutive mutants (adhC) that produced high levels of AdhE under both aerobic and anaerobic conditions were previously isolated. When only the adhE structural gene from one of the adhC mutants was cloned into expression vectors, highly functional AdhE protein was isolated under both aerobic and anaerobic conditions. Sequence analysis revealed that the adhE gene from the adhC mutant contained two mutations resulting in two amino acid substitutions, Ala267Thr and Glu568Lys. Thus,adhC strains contain a promoter mutation and two mutations in the structural gene. The mutant structural gene fromadhC strains was designated adhE*. Fragment exchange experiments revealed that the substitution responsible for aerobic expression in the adhE* clones is Glu568Lys. Genetic selection and site-directed mutagenesis experiments showed that virtually any amino acid substitution for Glu568 produced AdhE that was active under both aerobic and anaerobic conditions. These findings suggest that adhE expression is also regulated posttranslationally and that strict regulation of alcohol dehydrogenase activity in E. coli is physiologically significant.


2014 ◽  
Vol 16 (suppl 5) ◽  
pp. v202-v202
Author(s):  
C. L. Nilsson ◽  
A. Vegvari ◽  
E. Mostovenko ◽  
C. F. Lichti ◽  
D. Fenyo ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
David Roy ◽  
Taryn B. T. Athey ◽  
Jean-Philippe Auger ◽  
Guillaume Goyette-Desjardins ◽  
Marie-Rose Van Calsteren ◽  
...  

1991 ◽  
Vol 114 (3) ◽  
pp. 413-421 ◽  
Author(s):  
C B Brewer ◽  
M G Roth

In the polarized kidney cell line MDCK, the influenza virus hemagglutinin (HA) has been well characterized as a model for apically sorted membrane glycoproteins. Previous work from our laboratory has shown that a single amino acid change in the cytoplasmic sequence of HA converts it from a protein that is excluded from coated pits to one that is efficiently internalized. Using trypsin or antibodies to mark protein on the surface, we have shown in MDCK cells that HA containing this mutation is no longer transported to the apical surface but instead is delivered directly to the basolateral plasma membrane. We propose that a cytoplasmic feature similar to an endocytosis signal can cause exclusive basolateral delivery.


2007 ◽  
Vol 05 (06) ◽  
pp. 1215-1231 ◽  
Author(s):  
YUM LINA YIP ◽  
NATHALIE LACHENAL ◽  
VIOLAINE PILLET ◽  
ANNE-LISE VEUTHEY

The UniProt/Swiss-Prot Knowledgebase records about 30,500 variants in 5,664 proteins (Release 52.2). Most of these variants are manually curated single amino acid polymorphisms (SAPs) with references to the literature. In order to keep the list of published documents related to SAPs up to date, an automatic information retrieval method is developed to recover texts mentioning SAPs. The method is based on the use of regular expressions (patterns) and rules for the detection and validation of mutations. When evaluated using a corpus of 9,820 PubMed references, the precision of the retrieval was determined to be 89.5% over all variants. It was also found that the use of nonstandard mutation nomenclature and sequence positional correction is necessary to retrieve a significant number of relevant articles. The method was applied to the 5,664 proteins with variants. This was performed by first submitting a PubMed query to retrieve articles using gene or protein names and a list of mutation-related keywords; the SAP detection procedure was then used to recover relevant documents. The method was found to be efficient in retrieving new references on known polymorphisms. New references on known SAPs will be rendered accessible to the public via the Swiss-Prot variant pages.


Sign in / Sign up

Export Citation Format

Share Document