scholarly journals Acute- and chronic-phase chronic myelogenous leukemia colony-forming units are highly sensitive to the growth inhibitory effects of c-myb antisense oligodeoxynucleotides

Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 1956-1961 ◽  
Author(s):  
MZ Ratajczak ◽  
N Hijiya ◽  
L Catani ◽  
K DeRiel ◽  
SM Luger ◽  
...  

Abstract We have previously demonstrated that malignant hematopoietic colony- forming units (CFUs) may be purged from normal CFU by exposure to c-myb antisense oligodeoxynucleotides (oligomers). This novel strategy appeared particularly promising for patients with chronic myelogenous leukemia (CML) in blast crisis, since in some cases complete elimination of bcr-abl-expressing cells was accomplished. We have examined 11 additional patients, including seven in chronic phase, in order to extend these initial observations. We sought in particular to determine if elimination of bcr-abl-expressing clones was a usual event. Exposure of CML cells to c-myb antisense oligomers resulted in inhibition of CFU-granulocyte, macrophage (CFU-GM)-derived colony formation in eight of 11 (73%) cases evaluated. Inhibition was antisense sequence-specific, dose-dependent, ranged between 58% and 93%, and was statistically significant (P less than or equal to .03) in seven of the eight cases. In two cases, CFU-granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GEMM)-derived colony formation was also examined and found to be inhibited by the c-myb antisense oligomers in a sequence-specific manner. To determine whether CML CFU had been reduced or eliminated after exposure to the antisense oligomers, we examined cells in the residual colonies for bcr-abl mRNA expression using a reverse transcription-polymerase chain reaction detection technique (RT-PCR). Eight cases were evaluated and in each case where antisense myb inhibited growth, bcr-abl expression as detected by RT- PCR was either greatly decreased or nondetectable. No residual leukemic CFU were demonstrable on replating of treated cells. These results suggest that c-myb antisense oligomers substantially inhibit the growth and survival of CML CFU in both chronic and blast phase of disease. They may therefore prove useful for both ex vivo and in vivo treatment of CML.

Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 1956-1961 ◽  
Author(s):  
MZ Ratajczak ◽  
N Hijiya ◽  
L Catani ◽  
K DeRiel ◽  
SM Luger ◽  
...  

We have previously demonstrated that malignant hematopoietic colony- forming units (CFUs) may be purged from normal CFU by exposure to c-myb antisense oligodeoxynucleotides (oligomers). This novel strategy appeared particularly promising for patients with chronic myelogenous leukemia (CML) in blast crisis, since in some cases complete elimination of bcr-abl-expressing cells was accomplished. We have examined 11 additional patients, including seven in chronic phase, in order to extend these initial observations. We sought in particular to determine if elimination of bcr-abl-expressing clones was a usual event. Exposure of CML cells to c-myb antisense oligomers resulted in inhibition of CFU-granulocyte, macrophage (CFU-GM)-derived colony formation in eight of 11 (73%) cases evaluated. Inhibition was antisense sequence-specific, dose-dependent, ranged between 58% and 93%, and was statistically significant (P less than or equal to .03) in seven of the eight cases. In two cases, CFU-granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GEMM)-derived colony formation was also examined and found to be inhibited by the c-myb antisense oligomers in a sequence-specific manner. To determine whether CML CFU had been reduced or eliminated after exposure to the antisense oligomers, we examined cells in the residual colonies for bcr-abl mRNA expression using a reverse transcription-polymerase chain reaction detection technique (RT-PCR). Eight cases were evaluated and in each case where antisense myb inhibited growth, bcr-abl expression as detected by RT- PCR was either greatly decreased or nondetectable. No residual leukemic CFU were demonstrable on replating of treated cells. These results suggest that c-myb antisense oligomers substantially inhibit the growth and survival of CML CFU in both chronic and blast phase of disease. They may therefore prove useful for both ex vivo and in vivo treatment of CML.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2904-2908 ◽  
Author(s):  
Kechen Ban ◽  
Yin Gao ◽  
Hesham M. Amin ◽  
Adrienne Howard ◽  
Claudia Miller ◽  
...  

Chronic myelogenous leukemia (CML) invariably progresses to blast crisis, which represents the most proliferative phase of the disease. The BCR-ABL1 oncogene stimulates growth and survival pathways by phosphorylating numerous substrates, including various Src family members. Here we describe up-regulation, in contrast to activation, of the ubiquitously expressed Src kinase, Fyn, by BCR-ABL1. In a tissue microarray, Fyn expression was significantly increased in CML blast crisis compared with chronic phase. Cells overexpressing BCR-ABL1 in vitro and in vivo display an up-regulation of Fyn protein and mRNA. Knockdown of Fyn with shRNA slows leukemia cell growth, inhibits clonogenicity, and leads to increased sensitivity to imatinib, indicating that Fyn mediates CML cell proliferation. In severe combined immunodeficient (SCID) mice injected with Fyn shRNA–expressing cells, myeloid-derived cell numbers dropped by 50% and death from leukemia was delayed. Taken together, these results encourage the development of therapies targeting Fyn expression.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3449-3456 ◽  
Author(s):  
C Wada ◽  
S Shionoya ◽  
Y Fujino ◽  
H Tokuhiro ◽  
T Akahoshi ◽  
...  

Abstract Tumorigenesis has been shown to proceed through a series of genetic alterations involving protooncogenes and tumor-suppressor genes. Investigation of genomic instability of microsatellites has indicated a new mechanism for human carcinogenesis in hereditary nonpolyposis colorectal cancer and sporadic cancer and this instability has been shown to be related to inherited predisposition to cancer. This study was conducted to determine whether such microsatellite instability is associated with the evolution of chronic myelogenous leukemia (CML) to the blast crisis. Nineteen CML patients clinically progressing from the chronic phase to accelerated phase or blast crisis and 20 other patients in the CML chronic phase were studied. By polymerase chain reaction assay, DNAs for genomic instability in five separate microsatellites in chromosome arms 5q (Mfd27), 17p (Mfd41), 18q (DCC), 3p (CI3–9), and 8p (LPL) were examined. Differences in unrelated microsatellites of chronic and blastic phase DNAs in 14 of 19 patients (73.7%) were demonstrated. Somatic instability in five microsatellites, Mfd27, Mfd41, DCC, CI3–9, and LPL, was detected in 2 of 19 (10.5%), 8 of 19 (42.1%), 11 of 19 (57.9%), 4 of 17 (23.5%), and 4 of 17 (23.5%) cases. In 10 of 19 cases (52.6%), genetic instability in at least two of five microsatellites was observed and was categorized as replication error (RER+) phenotype. CML evolution cases with myeloid, lymphoid, and mixed phenotypes and the blast crisis and accelerated phase showed somatic instability in a number of microsatellites. No alterations in leukemic cells at the chronic phase could be detected in any microsatellites. These data indicate instability of microsatellites (RER+) but not familial predisposition to possibly be a late genetic event in the evolution of CML to blast crisis. In the microsatellite of the DCC gene, complicated alterations in band patterns caused by instability as well as loss of heterozygosity (LOH) were observed in 13 of 19 cases (68.4%): instability in 9 cases, instability plus LOH in 2 cases, and only LOH in 2 cases. These highly frequent alterations in microsatellites, including instability and LOH, suggesting that secondary events due possibly to loss of fidelity in replication and repair machinery may be significantly associated with CML evolution.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2248-2254 ◽  
Author(s):  
J Miyauchi ◽  
M Asada ◽  
M Sasaki ◽  
Y Tsunematsu ◽  
S Kojima ◽  
...  

Juvenile chronic myelogenous leukemia (JCML), a myeloproliferative disorder of childhood, is distinct from adult-type chronic myelogenous leukemia (CML) and bears resemblance to chronic myelomonocytic leukemia (CMMoL). Since mutations in the N-ras gene have been found at high frequencies in CMMoL, but only rarely in CML, we analyzed mutations activating the N-ras gene in 20 patients with JCML. We used the strategy for analysis of gene mutations based on in vitro DNA amplification by polymerase chain reaction (PCR) followed by single- strand conformation polymorphism (SSCP) analysis and/or direct sequence analysis. Nucleotide sequence analysis showed single nucleotide substitutions involving codons 12, 13, or 61 in six of 20 patients (30%). Four of six patients with mutations were in chronic phase and the other two in blast crisis, indicating no apparent correlation with disease stage. Most of the patients with mutations were in the older age group with poor prognosis, although one patient in the younger age group also harbored the mutation. These data suggest that N-ras gene mutations may be involved in the pathogenesis and/or prognosis of JCML and provide further evidence that JCML is an entity distinct from CML.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 981-989 ◽  
Author(s):  
Carmine Selleri ◽  
Jaroslaw P. Maciejewski ◽  
Fabrizio Pane ◽  
Luigia Luciano ◽  
Anna Maria Raiola ◽  
...  

Abstract Fas-R is expressed constitutively in CD34+ cells of patients with chronic myelogenous leukemia (CML); Fas-R triggering results in decreased proliferation rate due to apoptosis of clonogenic cells. We have already shown that α-interferon (IFN-α) enhances Fas-R expression on CML progenitor cells, thus increasing their sensitivity to Fas-R agonists. Although it appears that IFN-α can prime CML cells for the effects of Fas, the response to IFN-α in vivo is not a constant feature in CML patients. We studied the mechanisms of Fas-mediated apoptosis in 11 patients suffering from CML in chronic phase and tried to see whether there was a correlation between in vitro inducibility of apoptosis in CD34+ CML cells after Fas-R triggering and the clinical response to IFN-α. After priming with IFN-α, Fas triggering resulted in in vitro suppression of hematopoietic cell growth in seven of eight patients who had optimal hematologic response to IFN-α; in the same conditions, no inhibitory response to Fas-R agonist was observed in cells from three of three patients who proved to be poor responders to IFN-α. In responders to IFN-α, Fas-R agonist induced dose-dependent apoptosis of CD34+ cells; this effect was associated with a decrease in the bcr/abl protein level. In cells derived from patients with a poor response to IFN-α, the rate of apoptosis in culture remained unchanged in the presence of Fas-R agonist and nobcr/abl downmodulation was observed. Finally, we measuredbcr/abl mRNA by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and found that decreased bcr/ablprotein after Fas triggering was not associated with decreased amounts of specific mRNA, a finding which is consistent with a posttranscriptional regulation of the bcr/abl protein expression. It appears that Fas-mediated downmodulation of p210bcr/abl restores susceptibility to apoptosis of CML cells; in addition, in vitro studies on CML cells may predict response to IFN-α treatment. © 1998 by The American Society of Hematology.


2001 ◽  
Vol 19 (11) ◽  
pp. 2915-2926 ◽  
Author(s):  
Razelle Kurzrock ◽  
Carlos E. Bueso-Ramos ◽  
Hagop Kantarjian ◽  
Emil Freireich ◽  
Susan L. Tucker ◽  
...  

PURPOSE: To document the characteristics of patients with major breakpoint cluster region (M-bcr) rearrangement–negative chronic myelogenous leukemia (CML). PATIENTS AND METHODS: The hematopathologist, who was blinded to patients’ molecular status, reviewed the referral bone marrows and peripheral-blood smears from 26 patients with Philadelphia (Ph) translocation–negative CML who lacked Bcr rearrangement (and other evidence of a Bcr-Abl anomaly) and 14 patients (controls) with chronic-phase Ph-positive CML. Clinical data was ascertained by chart review. RESULTS: Among the 26 M-bcr rearrangement–negative CML patients, three pathologic subtypes emerged: (1) patients indistinguishable from classic CML (n = 9), (2) patients with atypical CML (n = 8), and (3) patients with chronic neutrophilic leukemia (n = 9). Among the 14 patients with Ph-positive CML who were included in the blinded review, 13 were classified as classic CML, and one was classified as atypical CML. The only statistically significant difference between M-bcr rearrangement–negative subgroups was in the proportion of patients having karyotypic abnormalities, an observation common only in patients with atypical CML (P = 0.008). However, the small number of patients in each subgroup limited our ability to differentiate between them. Interferon alfa induced complete hematologic remission in five of 14 patients; four of these remissions lasted more than 5 years. Only one of 26 patients developed blast crisis. The median survival of the 26 patients was 37 months. CONCLUSION: Patients with M-bcr rearrangement–negative CML fall into three morphologic subgroups. Disease evolution does not generally involve blastic transformation. Instead, patients show progressive organomegaly, leukocytosis, anemia, and thrombocytosis. Some patients in each subgroup can respond to interferon alfa.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1390-1396 ◽  
Author(s):  
Francesco Dazzi ◽  
Debora Capelli ◽  
Robert Hasserjian ◽  
Finbarr Cotter ◽  
Margherita Corbo ◽  
...  

Abstract In vitro studies have provided little consensus on the kinetic abnormality underlying the myeloid expansion of chronic myelogenous leukemia (CML). Transplantation of human CML cells into non-obese diabetic mice with severe immunodeficiency disease (NOD/SCID mice) may therefore be a useful model. A CML cell line (BV173) and peripheral blood cells collected from CML patients in chronic phase (CP), accelerated phase (AP), or blastic phase (BP) were injected into preirradiated NOD/SCID mice. Animals were killed at serial intervals; cell suspensions and/or tissue sections from different organs were studied by immunohistochemistry and/or flow cytometry using antihuman CD45 monoclonal antibodies (MoAbs), and by fluorescence in situ hybridization (FISH) for the BCR-ABL fusion gene. One hour after injection, cells were sequestered in the lungs and liver, but 2 weeks later they were no longer detectable in either site. Similar short-term kinetics were observed using51Cr-labeled cells. The first signs of engraftment for BV173, AP, and BP cells were detected in the bone marrow (BM) at 4 weeks. At 8 weeks the median percentages of human cells in murine marrow were 4% (range, 1 to 9) for CP, 11% (range, 5 to 36) for AP, 38.5% (range, 18 to 79) for BP, and 54% (range, 31 to 69) for BV173. CP cells progressively infiltrated BM (21%) and spleen (6%) by 18 to 20 weeks; no animals injected with the cell line or BP cells survived beyond 12 weeks. The rate of increase in human cell numbers was higher for BP (7.3%/week) as compared with CP (0.9%/week) and AP (0.5%/week). FISH analysis with BCR and ABL probes showed that some of the human cells engrafting after injection of CP cells lacked a BCR-ABL gene and were presumably normal. We conclude that CML cells proliferate in NOD/SCID mice with kinetics that recapitulate the phase of the donor’s disease, thus providing an in vivo model of CML biology. © 1998 by The American Society of Hematology.


Blood ◽  
1989 ◽  
Vol 73 (8) ◽  
pp. 2165-2170
Author(s):  
MS Lee ◽  
A LeMaistre ◽  
HM Kantarjian ◽  
M Talpaz ◽  
EJ Freireich ◽  
...  

The Philadelphia (Ph′) chromosome in chronic myelogenous leukemia (CML) results in fusion of the bcr gene and c-abl oncogene, which transcribes into two types of chimeric bcr/abl mRNAs: the L-6 junction and the K-28 junction. By means of a highly sensitive assay, combination of reverse transcription and polymerase chain reaction (RT/PCR), we analyzed 38 blood samples obtained from 31 patients with Ph′-positive CML and two patients with Ph′-negative bcr rearranged CML. Among the 21 samples obtained in chronic phase, eight patients had the L-6 mRNA, 11 had the K-28 mRNA, and two had both the L-6 and K-28 mRNAs. Among the nine samples obtained in blast crisis, four contained the L-6 mRNA, two contained the K-28 mRNA, and three contained both the K-28 and L-6 mRNAs. This finding supports the concept of alternative splicing of bcr/abl mRNAs transcribed in Ph′-positive CML. However, it appears to be a rare event. Of the eight samples obtained from eight patients who had achieved complete cytogenetic remission and negativity for bcr region rearrangement for 6 months to 3 years after recombinant alpha interferon (r alpha-IFN) therapy, all of them showed evidence of minimal residual Ph′-positive clones as detected by the RT/PCR assay. This finding suggests that interferon therapy suppresses the proliferation of the Ph′-positive clones, but it does not completely eradicate the Ph′-positive stem cells.


Sign in / Sign up

Export Citation Format

Share Document